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Abstract

We analyze the convergence and smoothness of certain class of nonlinear subdivision schemes. We study the
stability properties of these schemes and apply this analysis to the specific class based on ENO and weighted-ENO
interpolation techniques. Our interest in these techniques is motivated by their application to signal and image
processing.

0 2003 Published by Elsevier Inc.

1. Introduction

Subdivision schemes are a powerful tool for the fast generation of curves and surfaces in computer-
aided geometric design. In such algorithms discrete data are recursively generated from coarse to fine
scales by means of local rules. The stability and the convergence of such refinement process, as well
as the smoothness properties of its limit function if it exists, have been the subject of active research in
recent years. We refer to [5,17] for general surveys on subdivision algorithms, and, e.g., to [12,13,21] for
more specialized results on their convergence and smoothness.

An important motivation for the study of subdivision algorithms is their relation to multiresolution
analysis and wavelets (see, e.g., [9,11]). In particular, the contribution of a single wavelet coefficient in
the representation of a discrete signal is precisely obtained by applying a subdivision scheme from the
scale of the coefficient up to the signal discretization scale. Therefore, understanding the stability and
smoothness of subdivision algorithms is fundamental in the context of applications of wavelets to data
compression or signal denoising, in which certain coefficients are quantized or discarded.
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In all those instances of subdivision schemes which have been analyzed so far, the refinement process
is based on linear rules. The present work is concerned with the situation where this rule is nonlinear in
the sense that the refinement operator depends itself on the data to be refined.

Our main motivation for such a study is the analysis of nonlinear multiresolution representations
introduced by Ami Harten [22] in the context of the numerical simulation of conservation laws. As
we recall in more details, these representations are based on nonlinear refinement rules which involve a
data dependent stencil selection. The goal of this stencil selection is to make the refinement process
more accurate in the presence of isolated singularities such as discontinuities. It is no surprise that
these ideas have recently been applied to image compression. In this context, it is hoped that a better
adapted treatment of the singularities corresponding to edges might improve the sparsity of the multiscale
representations of images, and in turn the rate/distortion performance of compression algorithms based on
such representations (see [10,15,19,25] for several results which relates the sparsity of the representation
to concrete rate/distortion bounds). Some first numerical results, all based on tensor product techniques,
which do confirm this intuition are available in[1,2,7,8].

From a mathematical point of view, edges are indeed the main limitation to the performance of
wavelet based coding: this is reflected by the poor de€ayy —*/?), of the error of L? best wavelet
N-term approximation for a “sketchy image functioff’= x,, wheres2 is a bounded domain with a
smooth boundary. This reflects the fact that this type of approximation essentially provide local isotropic
refinement near the edges. Improving on this rate through a better choice of the representation has
motivated the recent developmentrafgeletsin [3] and of curveletsin [4] which are bases and frames
having some anisotropic features, resulting in the better®aré—1).

Nonlinear multiscale representations are another possible track for such improvements, provided that
one can overcome two difficulties: first, for a proper anisotropic adaptation to the edges, it is crucial to
develop nonlinear methods which are not based on tensor products, and second, one needs to control the
stability of these representations. This second point is crucial: since nonlinear multiscale representations
cannot be thought as decompositions of the signal into a fixed wavelet basis, the error produced by
thresholding or quantizing the coefficients is no more clearly understood: such perturbations might be
greatly amplified by the iteration of the nonlinear refinement rules involved in the prediction process. In
order to solve this problem, we essentially need to understand the behavior of the nonlinear subdivision
schemes corresponding to these iterative refinements.

The objective of the present paper is to provide appropriate tools for analyzing the smoothness and
stability of quasilinear subdivision schemes, and apply these tools in the particular case of the essentially
nonoscillatory (ENO) refinements introduced in [23].

The results of this paper represent the first step in the study of nonlinear multiscale representations.
Using these results, our next perspective, is the analysis of data compression algorithms based on such
nonlinear representations.

Our work is organized as follows. A quick overview of the framework introduced in [22] is given in
Section 1, together with several relevant examples of quasilinear schemes. In Sections 2 and 3, we prove
several results concerning the smoothness and stability analysis of quasilinear subdivision schemes, in
the uniform and Holder metric. In Section 4, we apply these results to the particular example of the four
points ENO and WENO refinement rules. Finally, an Appendix A is devoted to the generalization of the
results of Sections 2 and 3, to other smoothness and error measures, 5ycBaisolev or Besov norms.
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2. Motivation and background

The framework introduced by A. Harten [22] for the discrete multiresolution representations of data
is based on two interscales discrete operatbiesprojection and the prediction operators

The projection operatoit’jz"_1 acts from fine to coarse level of resolution. This operator extracts
from v/, the data string at the levgl of discretization, the discrete information at the coarser level
of resolution,j — 1, i.e.,v/~1. The prediction operatonj*l, acts from coarse to fine level of resolution.
It yields anapproximationof the discrete vectos’ from the projected vectar/—1. These two operators
should in addition satisfy the property

S
Pl P =1, )

i.e., the projection operator is a left inverse to the prediction operator.
The approximation built by?,:’_l is defined as follows:

Aj._ pi-l j-1
v/ = P; v/

This gives the redundant representation of the veetdy its approximations’/ and the prediction error
el =0/ — .

From (1), we have thall?’j’;l is onto, and that the prediction error belongs to the finite-dimensional space
Wi~ defined as the null space of the projection operator. Therefore by decompésimgerms of

a basis ofW/~1, we can eliminate the redundant informationein We denote by//—* the coordinate
vector of the error vector in this basis Bf/—1. In analogy with the wavelet terminology we calfl~* the

detail vector. Sincé’ = Pj"_lv-"‘l, v/ can be equivalently characterized ay 1, 4/~1). By iteration we
obtain a one-to-one correspondence betweeand its multiresolution representation?, d°, ..., d/=1).

If both discrete operators, projection and prediction, are linear, then the corresponding multiresolution
transform is equivalent to a biorthogonal wavelet transform.

Some of the prediction operators proposed by Harten [22] are nonlinearly data dependent since they
are based omssentially nonoscillatorgENO) prediction techniques. By using them, the corresponding
multiresolution transforms cannot be thought as a change of basis, which makes the analysis of these
transforms more difficult.

The representations introduced by Harten are formulated for specific types of discretization, often used
in computational applications (e.g., the point values and the cell averages discretization). The selection
of the discretization depends on the problem under consideration, e.g., for the image modelization by
square integrable functions, an appropriate choice of the discretization is by the cell averages (instead of
point values discretization, which does not make sense in this case). In the following, we briefly evoke
the nonlinear prediction operators based on ENO, in the point value and cell averages context.

Example 1 (Point value multiresolution In this setting, we interpret the discrete vectdr= (v,{)kez

as the point values of a continuous functioron the gridI"/ := (277k)ez, i.€., v,{ :=v(27/k). This
suggests the choice dej’;l as the simple downsampling operator. For the prediction operator, we notice
that the vectori/ should coincide withy/ on the coarse grid; then building prediction operator can be
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viewed as an interpolation problem. The details are defined by the restriction of the interpolatiari error
onA/~t:=ri\ri-ie,

@i (o] — i)

In the sequel, we present an important class of local predictors obtained by Lagrange interpolation.
At scalej we want to predict for each e Z the valuevy, . , from the valuesvl’_l)lez. To such & we
associate arediction stencibf length M

Sp(k) i= (k= )27 L (k= + M)27 T,

keAi—1"

with r an integer representing the position of the stencil with respéctiising the valuesv(y)), cs, «)»
we definep, € I1), as the unique polynomial of degréé, which interpolates the values ofon S, (k).
We then define the predicted value

aéjk+l,r =pr(27 (2 +1)).

Note thatM + 1 is exactly the order of accuracy of the prediction. If the paramdteiixed independently

of the data, we obtain a linear prediction operator, and the multiresolution transform is then equivalent to a

biorthogonal interpolatory wavelet transform, for which the dual scaling function is the Dirac distribution.
The goal of ENO interpolation is to obtain a better adapted prediction near the singularities of the

data. The idea is to select by some prescribed numerical criterion the polyngmiddich is theleast

oscillatory in the neighborhood of. This selection is typically obtained by the minimization of a cost

function. A typical choice is

277 (k+1)

Cix(pr) == / Pl ()| dbr. )
27k
Thus we choose for the prediction at the point @k + 1) the value ofr, which minimizesC; x(p,),
among{o0, ..., M — 1} (with some prescribed convention for the choice  @fi the case of a nonunique
minimum).
We give below the formulae for the fourth-order accurate prediction (cubic polynoMiais3). The
predicted valueﬁék 41, UsingS, (k), r =0, 1,2, are obtained, respectively, by

~J .5 j-1, 15 j-1 5 -1 1,.j-1

V21,0 = 16% T 16Y%+1 — 16%+2 T 16Vk+3

~J . 1.7-1 9. j-1 9 Jj—-1 1. j-1

V2411 °= T 16V%-1 16V T T6Vk+1 — 16Vk+2> 3

S _1.j-1_ 5 j-1 15 j-1 5 j-1

V412 = 16%—2 — 76V—1 T 1a% T+ 36Vir1-
In the case of prediction by the value of the unique cubic polynomial that interpelatasthe centered
stencil, the corresponding multiresolution transform is equivalent to the Dubuc—Deslaurier interpolatory
wavelet transform (see [14,18]). For the properties of the interpolant as well as for the smoothness of the
limit of this iterative process, we refer the reader to [12,14,18].

Example 2 (Cell average multiresolutign In the cell average contex® is partitioned in disjointed
dyadic cells/™/ :={I/ = [k27/, (k + 1)27/) }kcz. In this context, the discrete vectof is viewed as the
average(2’ [,.; v(t) dr),cr; of alocally integrable function.

k
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As in the point values setting, this suggests to takeP.f,-flgr1 the averaging operator. The construction of

the prediction operator is similar to the prediction in the point values setting. Tolgféi&h we associate
a stencil of cells

S,k :={[tk =2t (k—r+ D277, [k —r 4+ M — D277 (k—r + M)27 T}

Using the averages within the stensjl(k), we defineg, € IT),_; as the unique polynomial of degree
M — 1, which interpolates these averages.

We then define the predicted averages as thosg of the half interval§2—/12k, 27/+1(2k 4 1)]
and[27/+1(2k + 1), 2771 (2k + 2)].

Notice that by using the averages of a local integrable function we can obtain the point values of its
primitive function. This interpretation allows to obtain the polynomial used to make the prediction in cell
averages context through a derivation of the prediction polynomial used in the point values setting for
the primitive function.

The multiresolution decomposition based on cell averages is equivalent to the biorthogonal wavelet
transform, for which the dual scaling function is the box function [16].

We can also make the same remarks concerning the possibility of using ENO-type reconstructions. In
the case of two order accurate prediction based on Lagrange interpolation, the predicted adgrages
usingS, (k), r =0, 1, 2, are given by

~j .11 -1 1 -1, 1 j-1

V26,0 = FV% Vi1t §Vks2s

~Ajoo._ 1 -1 j-1 1 j-1

Ugp 1= gVk—1 TV ~ — gVit1 4)
~j . 1.j-1,1 j-1 5 j-1

V2= —gVk—2 T 3Vi_1 T gV -

In both types of discretization, the details are defined as the prediction error at the odd samples.

Weighted-ENO interpolation. The weighted-ENO (WENO) interpolation developed in [6] is based on
the ENO idea. In this technique, in contrast to ENO interpolation which uses only one of the candidate
stencils to make the prediction, one considers a convex combination of the polynomials associated with
these stencils, i.e.,

M-1
~ L AF
D= ey,
r=0

witha, >0 andzﬁ”:gl a, = 1. In ENO interpolation, a small round-off error perturbation of the data can
result in changing the selected stencils. This situation is avoided in WENO interpolation which provides
a smooth transition between the stencils. A possible form of the weights is given in [6] by

ay

0 =—-——\ r=0,...,M—1,
Zlﬁiolal
where
d =, 3 p,(x)\?
. =—" and b, := 2"‘21‘1)/ 7} dx. 5
RARCETSE 2 ox ®)

j
Fk
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Thed, are fixed positive constants. Theare defined by the sum of the squared.éfnorms for all the
derivatives of the interpolation polynomia} over the intervall}’ . The factor 2/~ is introduced to
remove any level dependency on the derivatives. Hasantroduced in order to avoid the denominator
to vanish b, are the so called “smoothness indicators” of the stes)¢i): if the functionv(x) is smooth
inside the stencilS, (k), thenb, ~ ©O(27%), else if the function has a discontinuity inside the stencil
S, (k), thenb, ~ O(1).

The rational form of the weights is chosen in order to emulate the ENO idea and to be computationally
efficient. If the stencilS, is located in a smooth region, the smoothness indidat@® close to 0 and then
the weighte, is close to 1. In contrast, if the stencil contains a singularity the smoothness indicé&or
larger and the weight, is closer to 0.

In the case of four point interpolatory schemes, we compute the predicted value as a convex
combination of the predicted values by the three stencils, as follows:

~J o ~J ~J ~J
Vojt1 7= 0OV 41 0+ A1V 1 1 T X2V o, (6)

wherexg, a1, anda, represent the weights associated with the right, centered and left stencil, respectively.
More precisely

N ar -1 Saptoay ;g Soap + 2001\ i1
gy 1= 1_6U1ifz T T 16 vir (1+ 3 )UI{
Sap+ 201\ jo1 Sapotar 1 oo j1
+ (1+ T)“iﬂ - 1—6U1f+2 1_6U’i+3’ (7)

The weights associated with the three stencils are defined as in [6,24]. In thig\tas8), (5) gives

bo:= co,o(v,{Jr2 — 21),{Jrl + v,{)2 + cogl(v,{;z — 4“1{+1 + 3v,{)2,

by = c10(Vi4g — 200 +vi_)? + 11Vl — V()% (8)

by = c20(v] — 2v]_1 +v{_,)*+c21(3v] — D] | +v]_,)?
wherec; ;, i =0,1,2, j =0, 1, are fixed positive constants. Some possible choices of the constants are
suggested in [6].

As we already explained, stability of the multiresolution transform is a key issue in applications where
some coefficients are discarded (such as compression or denoising). In this paper, we limit our study
to nonlinear subdivision schemes corresponding to the iterative application of a prediction operator,
from coarse to fine scales, without adding any details. To begin with, we give some basic notations
and definitions and recall some properties of the subdivision operators.

A subdivision scheme defines a function (called the limit function) as the limit of a subdivision process
in which an initial finite set of points, called the control points, is recursively refined.

Definition 1. A data dependent subdivision rule is an operator valued funétiwhich associates to each
v € Lo (Z) a linear operator

S) Hloo(Z) — Leo(Z),
defined by a rule of the type

(Sw), = a @, ©)

l
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where the coefficients; ;(v) are zero iflk — 2/| > M for some fixedM > O.
We define the associated quasilinear subdivision scheme as the recursive action of the quasilinear rule
Sv := S(v)v on an initial set of data®, according to

v = Svi Tl = S(vjfl)vjfl, j= 1 (10)

In the above definition)M typically represents the size of the stencil used in the subdivision rule. For
linear subdivision schemes, the coefficieats do not depend on the daig i.e., S(v) = S a fixed
operator. For linear and uniform subdivision schemes, these coefficients have thg fera;_o;.

The analysis of a subdivision scheme consists of establishing conditions for the convergence of the
scheme, and in characterizing the smoothness as well as the order of approximation of the set of limit
functions. We refer the reader to [5,17,21] for a general survey on this subject, in the linear and uniform
case.

Definition 2. A subdivision scheme, generating recursively the data j € Z.}, is called uniformly
convergent if, for every set of initial control poini® e £.,(Z), there exists a continuous function
f € C(R), called the limit function, such that

lim supv{ — f(277k)| =0, (11)

f9+mk€Z

and thatf is nontrivial at least for one initial dataf.

We also associate a functiofy to the datav’ as the piecewise affine interpolation {{@ 'k, v/): j
Z.}. Thus

Fo) =) vie(@x —k), (12)
keZ

where ¢(x) := max{1 — |x|, 0} is the hat function. It is clear that the uniform convergence of the
subdivision scheme is equivalent to
lim || f/ — =0.
LY R
The limit function f is denoted bys>v°. The following definition plays an important role in the analysis
of subdivision schemes.

Definition 3. Let N > 0 be a fixed integer. The data dependent subdivision rule has the property
of polynomial reproduction of ordenN if for all u € £,,(Z) and P e I1y there existsP e ITy with
P — P e IIy_; such thatS(u) p = p, wherep and p are defined by, = P (k) andp, = P(k/2).

In particular, the ENO and WENO schemes discussed in the previous section satisfy such a property
up to the ordeM for point values and/ — 1 for cell averages. We recall the definition of tiik order
forward finite difference operator,

(Am), = Xn:(—l)'" (Z) Vit (13)

m=0
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For the first order finite difference we omit the superscript 1. In the case of linear subdivision scheme,
using a formalism based on Laurent polynomials [17], it has been proved that if the subdivision scheme
has the property of polynomial reproduction up to the omdiethen there exist similar schemes for the
differences of orden :=1,..., N +1

Sp loo(Z) > Loo(Z),  A"(Sv) =S,(A™M).

The convergence and smoothness properties of a subdivision scheme are then studied through the
contraction properties of the schemg&s More precisely, denoting by..(A) the spectral radius of
an operatorA in £, the uniform convergence of the linear subdivision is equivalent to the property
Poo(S1) < 1. Moreover, if for somen € {1, ..., N+ 1}, we haveo,.(S,,) < 27"+, then the limit function
isinC* forall s < s* = —(log pso (S,,)) /log 2 (and therefore: — 1 times differentiable sincg > m —1).

In order to study quasilinear subdivision schemes, we need to introduce some additional definitions.
We start with the boundedness property.

Definition 4. A data dependent subdivision rule is called bounded if there exists a colstalft such
that for allv € £,,(Z),

Iswl,, <5, (14)
where the norm stands for tllg, operator norm.

Clearly, this property can also be expressed by saying that the coeffigienta)} are bounded
independently ok, /, andv. In the following, we always assume that the rules that we study are bounded.

We have already remarked that, in the WENO technigue, the transition between two stencils is made in
a continuous way. This property is crucial in the study of the stability of quasilinear subdivision schemes.
This notion is expressed in the next definition.

Definition 5. A data dependent subdivision rule is called continuously dependent on the data if for every
v, w € £ (Z), the associated operatafsv) and S (w) satisfy

|S@) =S|, <Cllv—wlle, (15)
whereC depends in a nondecreasing way on fifjiaf,. . [lwll¢..}-
The fact that the constaigt might grow with||v|,,, and|w]|,_ is encountered in the practical examples
that we have in mind such as WENO interpolation.

We finally introduce the notion of joint spectral radius associated with a data dependent subdivision
rule.

Definition 6. The joint spectral radius of a data dependent subdivisionSigeghe number

Poo(S) :=limsup sup 8@ S(uo)”l/j,

. ] L
J=00 @Oul, . ui=1)e(loo(Z))i *

In other words o (S) is the infimum of allp > 0 for which there exist§€’ > 0 such that for all arbitrary
(u’)j>01in €o andv € £, one has

IS (u’=1) - S(uo)vnew < Cp/|v]len (16)
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for all j > 0. Note that in the case of linear subdivision schemes, this is exactly the spectral raflius of
inf.

3. Convergence and smoothness analysis

In this section, we provide sufficient conditions for the convergence of quasilinear subdivision schemes
and for the smoothness of the limit function. In fact, the results in this section, but not those of the next
section, apply to a wider class of subdivision schemes than the class of quasilinear subdivision schemes.
In this class, a scheme is defined by a data dependentSiiad by a given sequence of dété: [ € Z.,
and initial dataw® according tav/ := S(u/~1) - .- S®)v°. As in the linear case, the results of this section
are obtained through the study of the associated schemes for the differences. The existence of the scheme
for the differences is obtained by using the property of polynomial reproduction of the data dependent
rule. This result is given in the next proposition.

Proposition 1. Let S be a data dependent subdivision rule which reproduces polynomials up to dégree
Then forl < n < N + 1 there exists a data dependent subdivision i}levith the property that for all
v, W € Ly,

A'S()w =S, (v)A"w.

Proof. Let1<n < N +1 and letu := S(v)w. Combining (13) and (9), we obtain

(a"u), = (=1 (”;) Yo ami@ur (17)

m=0 I st |k+m—=2|<M

Therefore,(A™u), can be written as a linear combination of the

(A”u)k = Zbk,l(v)wl, (18)
l

whereb; ;(v) 1= Z;zo(—l)m(,’r’l)aﬂm,l(v). Note thatb, ;(v) is zero forl < (k — M)/2 andl > (k +
n + M)/2. For each fixed, we thus have a finite vect@b; ;(v));cg, With Ey :={l: (k — M)/2 <1 <
(k+n+M)/2}.

Since the rule reproduces polynomials of degree ujg tave have

Y @I =Pyk), 0<m<n-1, (19)
k=21|<M

with P, € IT,,. Applying thenth order finite difference operatat” on this identity, we obtain
> by =0, m=0,...n-1 (20)
!
Therefore, for eaclk (b ;(v))ck, is orthogonal to the vector§”);cg, for m =0, ...,n — 1. It follows

that (b ;(v))cg, Can be written in terms of a basis of the orthogonal complement of §fan g, | m =
0,...,n —1}. A natural choice for this basis is given by
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eo(l) := (’;) (—)" if1=0,...,n,
eo():=0 if1¢{0,...,n}
and takinge, (1) := eo(l — g) with (k — M)/2< q < (k —n+ M) /2. Therefore, we have
bes(v) = > Brg)eg (1), (22)
(k=M)/2<q<(k—n+M)/2
from which we derive a subdivision rule for th¢h order differences of the type

(A"u) Z bawi= Y B, (4A"w),. D (22)

k—2q|<M

Notice from the above proof that the stencils usedsjnare always smaller than those usedsSin
Moreover, if S is bounded (respectively, continuously dependent on the data) Sthismalso bounded
(respectively, continuously dependent on the data). The next result gives a relation between the joint
spectral radius of these schemes.

Proposition 2. Forall n =0, ..., N, one hasoe(S,11) = poo(S,)/2.

Proof. We shall prove thap,,(S1) > 0-(S)/2, and the general result will follow by induction. Let
0 > Poo(S1), andC > 0 such that for all sequence’);~ in £, andv € ¢, one has

IS2 (/1) - Sl(uo)AvHeoo < Cpl |l Avlle,. (23)
for all j > 0. Defining
wl = S(u-/_l) . S(uo)v, (24)

it follows that:

| Aw ||,Zoc < Cp || Av]y,. (25)
We use the relation

[wl,,, = supsup{|uw/: 1 € [2k. 2k + D)}, (26)

and exploit the fact that the scheme is local. The values/ofor / € [2/k, 2/ (k + 1)) only depend on
those ofv; for |l — k| < M. For a fixedk, we definev by v vl = If |l — k| < M andv; = 0 otherwise,
and we leti’ := S(u’/~1)--- Su°7. It follows thatwl =wj forl € [2/k, 2/ (k+ 1)) and thatw’ 0 for

|l —2/k| > 2/2M. In turn, we obtain that

s |uf|= sup (@< Y |ad|<c2aw],
1€[27k,2) (k+1)) 1€[2/k,2) (k+1)) 20kl =2i2M
< C2p) | ADlle,, <2C2p) |[Vlle-
It follows that ||w/ ||, <2C(2p)/|[v]le,,, and thuso(S) < 2p. Letting p tend top..(S1), we obtain the
claimed result. O
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Note that convergence of the subdivision scheme implie® > 1 since otherwises>v° = 0 for all
initial datav®. Therefore, the above result shows that we always have

Poo(Sp) =27". (27)

We are now ready to establish a sufficient condition for the convergence of quasilinear subdivision
schemes and for thé* smoothness of the limit function with< 1.

Theorem 1. Let S be a data dependent subdivision rule which reproduces constants. If the rule for
the differences satisfies,,(S1) < 1, then the quasilinear subdivision scheme based dég uniformly
convergent and the limit functios™v® is C* for all s < —(10g ps(S1))/l0g 2.

Proof. Let p be such thap,,(S1) < p < 1. There exists a consta@tsuch that for all initial data® € £,
andj >0,

| av’|,
Observe that

< Cp’ ”AUOHZOO' (28)

J J
i+1 ; j+1 j i1 U T U
| f7 = f ”LOc <supluy ™ — o[, oy — > . (29)
keZ
We now write
1 . .
vy — U= Z Cr v (30)
leFy
and
j+1 v,{ + U1{+1 dov) 31
Va1 = T 5 T Z k1V] 5 (31)

leFy
where F, .= {l: |k — 1] < M}, Ck,l = dag, — Sk —1) anddk,, =ay41— Gk —D+8k+1-1))/2.
Since our scheme reproduces constants, the ve@ions. 5, and(dx ;);cr, are orthogonal to the constant
vector. By the same reasoning as in the proof of Proposition 1, we conclude thaugﬁﬂ)th v; and

vhi 4 — (v} +v],1)/2 are linear combinations of the finite differences/ fori =k — M, ..., k+M —1.

From this it follows that:
|78 = £, <cllav], <colfav?], . (32)
Therefore the sequeng& converges uniformly to a continuous limit= S*v°. We also see that
1l < NP0+ D0 = £, < (1l +140°), ) <’ -
j>0
In order to prove thay € C* it suffices to evaluatef (x) — f(y)] for |[x — y| < 1. Letj be such that
27771 < |x — y| < 277. We then write

1) = FO| | FE) = F+[f0) = D]+ [/ ) = ()]

<2 f =l 0= Pl <cpl|av], +27 ()],
<co’|ar], +]av], <col|av],,
<Cle =y 4],
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with s := —log(p)/log 2. This concludes the proof.0
In the following, we give sufficient conditions for th&' smoothness of the limit function fer> 1.

Theorem 2. Let S be a data dependent subdivision rule which reproduces polynomials up to dégree
If the rule for the differences satisfigs,(S,,1) < 27" for somen € {0, ..., N}, then the quasilinear
subdivision scheme based ¢his uniformly convergent and the limit functios™v° is C* for all

s < —(l09 po (S, +1))/10g 2

Proof. Notice that by Proposition 2, the assumption that(S, 1) < 27" implies thato, (S, 11) <27
form=0,1,...,n.In particular,p,,(S1) < 1 and the scheme is convergent by Theorem 1.

We shall use induction on to proveC* smoothness. For = 0, the result is proved by Theorem 1.
Forn =1, we letf = S*v° and we assume that,(S,) < 1/2. Introducing

w’ =2/ Av! = 2jSl(vj71) Sl(vjfz) .- Sl(vo)Avo, (33)
we have
Aw’ =21 A%y =278, (v 1) Sp(v/7?) - - §2(v0) AR, (34)

and therefore ip is such that 2,.(S») < p < 1, then
Hij H@ =2/ A% = Cp/ HAZUO He . (35)
We obtain as in Theorem 1 that' uniformly converges to a continuous functignnamely,

lim sup|w{ — g(277k)| =0.
—>00

J
Introducing the functiory := x0.1; and the functions

g/ i= ) wlp(2-—k), (36)
keZ

one easily checks thagt = (d/dx) f/, wheref/ is the affine function defined by (12), i.e.,
[ewdi= i@ - s 37)
b

for all a andb. We know that lim_ || f/ — fll.., =0, and we also have lim,« |lg/ — gll.., = 0. It

follows that:

/g(x)dx = f(a) — f(b), (38)
b
for all a and b. Therefore, f is differentiable with f’ = g. Moreover, as in Theorem 1, we obtain

that g € C* for all ¢+ < —(10g 204 (S2))/l0g2 < —1 — (109 pso(S2))/log 2. Thereforef € C* for all
s < —(log p(S2))/log 2. Iterating this argument for > 1, we obtain the general result
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Remark. As pointed out by one of the anonymous referees, the uniform convergence of the subdivision
scheme is still ensured if we simply assume #atS, 1) < 1. This can be proved by refined arguments
similar to those developed in [20] in the case of linear subdivision schemes. On the other hand, note that
the second conclusion of the above theorem implies that the limit of the subdivision schéméois

somes > n. For this amount of smoothness, in the case of a linear subdivision scheme, the condition
P00 (Spi1) < 27" is known to be necessary, and in this sense our result is sharp.

4. Stability analysis

In this section, we study the stability of quasilinear subdivision schemes, e.g., properties of the type
s = 5230, <o -], (39)
In the linear case, this is a simple consequence of convergence, naniéi off|| ;. < C[[v°]|,, . In the
nonlinear case, it requires a more specific study.
In our study of stability we need the additional assumption that there exists a linear left-inverse

operator of the subdivision operator (calkedtrictionor projectionoperator by Harten). More precisely,
we assume that there exists coefficiettg); < with 3, _, » = 1 such that

- .
yoi= Z ViV s (40)
<P

wheneven/ := Sv/~t,

In many interesting cases of linear or nonlinear subdivision algorithms, such an operator exists. In the
point-value contexy; = o, and in the cell-averages context= y_1 = 1/2, y, = 0 otherwise. In the
following we always assume the existence of a restriction operator of the form (40). In the next result
we obtain the existence of a similar left inverse for the subdivision schémassociated with the finite
differences.

Proposition 3. Let S be a data dependent subdivision rule which reproduces polynomials of d¥gree
Then, forn =1,..., N + 1there exists coefficients;")<p With 3, _p ¥/" = 2" such that

(Anvjil)k = Z Vln(An“j)zk—z’ (41)
|l|[<P+n

wheneven’ := Sv/~1,

Proof. Consider the case= 1. Assuming (40), we can write

(A“j_l)k - Z Vl(v£k+2—l - Uékfl) - Z Vl((AUj)zkH—l * (Avj)Zk—l)

[l|<P [l|<P

= Z yll(AUj)zkfz

[1<P+1

with y,! := y; + 141 which proves the result. The case- 1 follows by induction. O

We use the restriction operators for the finite differences through the following lemma.
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Lemmal. Let S be a data dependent subdivision rule which reproduces polynomials of d€grBeen
there exists a consta® > 0, depending only on, such that

[am!], <27|am |, + DA, . 0<n<N, (42)
forall j >0andv® e £,
Proof. Since(A"v/ ™) =37 < pyn V' (A0 )y With 3, " = 2", we also have

(Anvjil)k =2 (Anvj)zk + Z Vln((Ant)zkfz - (Anvj)Zk)' (43)

[|<P+n

It follows that:

(@)= (@), 4 Y alaro, | (44)
[|<P+n
with ¢; := Y"4_% ¥ In a similar way, we obtain
(Anvj)2k+l 2” |:A"vf D) Z d A”Jrl ] (45)
ll|<P+n

The claim follows withD :=2""max{}_,_p,, lcil, X yj<pyn ldil}. O
Remark 1. Note that, since the restriction operator is linear, we also have

! — a9], < 20| Aot a4 DA - A (46)
for v/ = S/ ~YHv/~tandv/ = S/ v/~

The main ingredient for our analysis of the stability of quasilinear subdivision schemes is the following
result.

Lemma2. LetS be a quasilinear subdivision rule, which reproduces polynomials up to dégréssume
that S is continuously dependent on the data. ThemferQ, ..., N, andp > 05 (S,11), we have

. 7 ]71
|amt’ — amtiy |, < cpf ( > fam! —ardt ”ew>’ “n

=0

whereC depends in a continuous nondecreasing wayraax[|v' ||¢., [|0]l¢; {=0,..., j —1}).

Proof. It is enough to give the proof for = 0, since it is similar for larger values ef If p > p5(S1),
there exists a constarit such that for all initial data®,

Jav'], <Kol av°],.. “48)
Moreover, there exists an integersuch that
Javi], <pt|aviH],. L. 49)

Assuming thatj > L, we have
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|av = Ad7 |, = [S1(v/7) - Su(/ ) Av T = Sy (87H) S8R Ad |, < AT+ B,
where

A =[5 i) (A - A
and

B = $1(v/7Y) -+ S1 (v ) ATTE = S (0771 - (9 ) v
By (49), we obtain

AT ph|av Tt — av T, (50)
In order to estimate8’, we define fori > j — L

G' =81 (v'71) - Sy(v/ ) AV T = Sy (3 - Su(8E) Av
and

K':=S1(v S (v 72) - S (v TE) A T = Sy (5) S1 (v P) - Sa (v ) A R,

L =8 (3 HS1(v'72) - S1(v/7F) AV F = S (87) S (572) - - S (3 E) v
We thus have

B =|¢’|, <[|&’], +[L],. (51)
Recalling the boundedness and continuous dependency on the data of the Sghesme

|10, < Bi, (52)
and

[$10) = $1®) [, < Callv = Blle, (53)

where(C; depends in a continuous nondecreasing way on{ngx_, [|v]l.}, we can estimate the first
term according to

|&7,, < Coy o=t =0 [ad ], (54)
whereC; depends in a continuous nondecreasing way on{fnex?||,_, /1|, }, and the second term
by

|27],, < Bl (55)
Therefore, we obtain
1671, <GB~ Mo/ =t =Y a0+ Bu] G,
whereC; depends in a continuous nondecreasing way on{fnax!||,_, [|5/7|l,_}. Similarly, we have

1677, < B[/ =2 =772, a0, +Ba] G,
whereC; depends in a continuous nondecreasing way on{fnex?|,_, |5/ 72|}, and therefore

1670, < CaBr (070 =978+ [0/ 72 =072 )48, + B2|672 .,
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whereC; depends in a continuous nondecreasing way on

max{ || o/, 5 o2 ]
By iteration, and sinc&’~L := A3/~F — Ap/~F =0, we obtain
L
B/ < C1B{ | 407" H@m(Z v~ 5"_l||em>’ (56)
=1

whereC; depends in a continuous nondecreasing way on{fnél_., |9’ [l¢.; [ =0, ..., j —1}. Adding
(50) and (56), we thus obtain

L
|av’ - 2], <anAvfL—Aﬁf-Lngw+cle-l||Aa-f-Lngw(Znvff—ﬁ”llew)-
=1

Combining this estimate with (48) gives

L
v = a0, < vt sttt -0, ) )
=1

with C, = 2C1K |||, . If j — L > L, we also have

2L
B A R DO R
I=L+1

and therefore

2L
|av — A%, < p?|avi 2 — A, 4+ Czij<Z [o/= = Hem)
=1

After [j/L] iterations, we thus obtain

J
vt - 4], <m0 - ]+ oo+ Sl -, ).

For the valued =0, ..., L — 1, as well as in the caseQ j < L, we simply use||Av' — Aﬁll|goc <
2|lvt — |, it follows that:

J
javi - a9/l <ol L1571, ) £
=1
where
C=2maxql p " }1+KC)[?°], (59)

depends in a continuous nondecreasing way on{fmé_, [||l,..; [=0,...,j —1}. O

We are now ready to give conditions for the stability of the quasilinear subdivision schemes for various
norms measuring*v — S*°v. We begin with the uniform norm.
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Theorem 3. Let S be a quasilinear subdivision rule which reproduces constants. Assumes thsat
continuously dependent on the data and tha(S1) < 1. Then for all dataw® and t°, we have

5200 - 530, <[], (60)

whereC depends in a continuous nondecreasing waymax{||v°| ..., [|7°]/¢..}-
Also fors < —10g(px(S1))/log 2 we have that

| — Adf|, < c2i 0=, . (61)

Proof. It suffices to prove that for alj > 0

[v/ =], <cv® =], (62)
with C independent of, since we then have
[ = Fll,, <Cl®=, (63)

and therefore (60) by letting go to+oo. ‘ .
Let p be such thap,,(S1) < p < 1. Let us denote’ := ||v/ — v/, andB’ := || Av/ — AV ||, . By
Remark 1 and Lemma 2, these sequences satisfy the following inequalities:
{a-/ <a/~14 DB/,
Bl < Cpl(a/™t4 - 4a9),
where C depends in a continuous nondecreasing way on {fék._,[|v']l¢.; [ =0,...,j —
1}. However, we note that sincg..(S1) < 1, we have|S/v|,, < K|v|,, with K a constant
independent ofi andv, and therefore we have that depends in a continuous nondecreasing way on
max{[|v0ll . [17°lc..}- - )
If we now consider the positives nondecreasing sequencaad’/ defined byx® = «°, 8° = g° and
satisfying
{&-/ =a’"1+ Dp/,
B/ =Cpl(@ 1+ +a%,
we clearly haver’ < &’/ andg/ < B/. Using the last equality from (64) and the fact thatis increasing,
we get

(64)

Bl < Cjplal. (65)
Combining this with the first equality in (64), we obtain
@’ < (1+CDjp’)a’ 2, (66)

and therefore
j

& <[]+ CDip")a®. (67)
=0

Clearly the producf];°, (1+ CDIp') is convergent, and by taking its logarithm, one easily check that
its limit is bounded bf :=exp(CDp/((1— p)?)). Therefore, we obtain

[v/ 97, =/ < Ca®=C|o*~°,_. (68)
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which proves our first claim since the constgahbf Lemma 2 depends in a continuous nondecreasing
way on max|[v°||,, [I1°l¢}. For the second claim we now assume thatS;) < p < 2~ and we note
that

B <P <Cjpladt<cCjp °-1°), <270 -7,
with the last constant depending in a continuous nondecreasing way on{mélmoo, ||?70||eoo}- O

We next address the stability in the Holder notihfor 0 < s < 1.

Theorem 4. Under the assumptions of Theor@&rwe have
5200 = 5%5% ., < [~ 5], (69)

for all s > 0 such thats < —(log (0~ (S1)))/log 2, whereC depends in a continuous nondecreasing way
onmax{[|v°le,. 7%0e,.}-

Proof. Let p be such that < —(logp)/log2 < —(10g (0= (S51)))/10g 2, i.€.,000(S1) < p <27° < 1. Let
us definef = §*°, f =S5*7°, andF = f — f. We also recallf/ and f/ defined by the interpolation
of v/ and?’ according to (12), and we defin® = f/ — f/. Asin the proof of Theorem 1, we can write

|Fit = Fi],_<Clavi - av], . (70)
From Theorem 3, we thus obtain

|F7E = F < c27 o =30, (71)
whereC depends in a continuous nondecreasing way on{mé..., |2°[l...}. It follows that:

|7~ Fi], <c2io -], . (72)

For|x — y| < 1andj suchthat 2/~ < |x — y| <27/,

|[F(x) = FO)| < |F(x) = F/(x)| + |F(y) = F/ ()| + |F/(x) = F/(y)]
<2|F—F|, +|F - Fyl<cz | =, +27[(F)],
SC2ZV [ =0, +[Av - Av||, < c2V =0,
< Clx =y o2 =%,

up to a multiplicative change i@. This concludes the proof. O
Finally, we address stability in the Holder noiit for s > 1.

Theorem 5. Let S be a quasilinear subdivision rule which reproduces polynomials up to defjree
Assume thaf is continuously dependent of the data, and thatS,.1) < 2" for somen € {0, ..., N}.
We then have

5700 — %30 ., < 0~ . 73)

for all s > 0 such thats < —(log (s (S,+1)))/l0g 2, whereC depends in a continuous nondecreasing
way onmax{[|v°l¢.,. 7%, }-
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Proof. We shall use induction om in a similar way as in the proof of Theorem 2. kot 0, the result
is proved by Theorem 4. Far= 1, we assume that(S,) < 1/2. We definef, 7, F, f/, f/, andF/ as
in the proof of Theorem 4. We recall the sequeneés= 2/ Av/ andw’ := 2/ Av/, and the functions
/ ZkeZ wk&(zj _k) andgj ZkeZ wka(zl _k)
We already know from the proof of Theorem 2 thgt and g/ uniformly _converge tog = f" and
g = f. ThereforeG’ := g/ — g/ converges ta; = F’. Sinces < —(10g (pu(S2)))/log 2, we obtain by
similar arguments as in the proof of Theorem 3 that

|aw’ — a7, < c20i|w® -0, . (74)
Note that, we use the fact that, according to Remark 1, we also have the inequality
Jw’ =@, <[w ==&, +D]aw’ - aw], (75)

with constant 1 for the first term. We then use the same type of arguments as in the proof of Theorem 4
to derive that

|G@) =G| < Clx =y Hw® = @°, <2Clx =y =3°,_,
which gives the desired result. Iterating this argumeniferl, we obtain the general result

5. Application

In this section we apply the results of the previous sections to quasilinear subdivision schemes based
on ENO and WENO interpolation techniques in the point values setting as described in Example 1 of
Section 2. Note that the smoothness of the limit functions based on ENO interpolation techniques is
inherently limited in the following sense: if the datg are such that the stencil selection always avoids
a singularity point on the coarse grid, then the limit function will not be differentiable at this point.
Similarly, we cannot expect continuity in the ENO cell-average setting.

We treat here the particular case of 4 point interpolation, M&= 4. The associated schensg is
defined by a rule of the type

(1) Aw), == > ) Awy, (76)
k—21|<4

whereby ;, are the coefficients associated with the inter)\?ﬁl:: [(k =277, (k =1+ 1)27/]. In the
particular case of the four point ENO interpolation, the differences are calculated with one of the
following rules:

Jj+1. 1

Avye o= 16Avk - Avk+l+ 16Avk+2’
j+1, 1

Avy = Avk 1+5 Avk Avk+l, (77)
J+1l._ 1 5 J

sz,(’2 = _EAvk—z + ZAvk_l + EAvk,

obtained, respectively, from each case of (3). By symmetry, we can also write the rule for the odd
differences

j+1 1 J 1 J

Avyeiao: Avk + 7401 — 7540040
i+l Tad L 1 And

Avyiyq = _RAkal +54v + EAUkJrl’ (78)
J+1 1 J 1

Avyq = 74V — Avk 1+ 1 Avk
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These rules allow us to estimate the joint spectral radiug odiccording to the following result.

Lemma 3. In the case of the ENO four point subdivision scheme, one has
sup [ S Siw), <1 (79)

U, weloo

and thereforeo,, (S1) < 1.
Proof. Notice first that the/, norm of the operator defined in (77) and (78) satisfies

1 1
[S:0) ], _sup2|bk,(v)|—l—6+4+1—6 1 (80)

For fixedu, w € £, (Z), we have that
(S1)S1w)), =D ($1w)), . (S1(w)),,, (81)

k'eZ
and therefore|S; (1) S1(w)|l,,, is estimated by

s]gpz |(S1)S1(w)), | < sng > (1),
I I k'
<sup > (|bk,k/<u)| > |bw )
k'eS (k) l

whereS (k) is the selected stencils fér SinceS (k) includes three consecutive integers, it always include
a pair(2m, 2m + 1). From (77) and (78), we notice that eithel, |52, ;(w)| =5/8 or ), |bay41.(w)| =
5/8. Therefore, there exisks € S(k) such that

> |bros(w)| =5/8. (82)
l

|(Sl(w))k’,l|

Sincekg € S(k), we also haveb, x,(u)| > 1/16. It follows that:

Z (|bk,k'(u)| Z |bk’,l(w)|) |bk )|+ Z |bic i () | Zlbk’ (W)

% 1 K'#ko

5
< §|bkk0(u)| + Z |bk,k/(u)| < 1+ (é - l) |bksk0(u)|

k' #ko
31 125
<l—--—— <1 O
8 16 128

A more precise estimation dfS;(x)S1(w)ll,,, can be obtained by an explicit computation for each
different stencil combinations. This leads to the sharper bound

peo(S) < sUp || S1)S1(w)|,* = —6f2. (83)
u,wel 00

As a consequence of Theorem 1 and (83), we obtain the following smoothness result of the limit function,

in the particular case of the four point ENO interpolation.
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Theorem 6. In the case of the ENO four point interpolation, the limit function of the subdivision scheme
is bounded and belongs @' for all s < —(10g((9/16)+/2))/log 2~ 0.6601499

We finally turn to WENO interpolation defined in Section 1. The schémie defined by a rule of the
type

(1) Aw), == > b)) Aw,. (84)
|k—21|<6
The rule for the differences has the form of a convex combination of the rules (77), namely,
; —ap i1 Aaptor, o1 llog+8ay +5ar i1
Avék:= 1—6AU£_2+1—6AU£_1+ 16 Avi
—dog—o1 ;1 0, 1
+1—6AU£+1+1—6AU£+2. (85)

By symmetry, we can also write the rule for the odd differences

; o2 i1 —dar—m i1 1lop 4 8ay + 5o i1
Avhy g = 1—6Av',i_2 + 16 Avi 1+ 6 Av;,
doo+ay , jo1 o, j-1
+1—6Avi+l— 1—6AU£+2. (86)

Note that in both formulasyg, o1, anda, vary with k. We then have the following result for the joint
spectral radius of;.

Lemma 4. In the case of WENO interpolation, one has
sup || S1w)Si(w), <1 (87)

U, weloo

and thereforeo,, (S1) < 1.

Proof. From (85) and (86) we have that

Z |21 (V)| < o+ g(al +az) <1, (88)
and |
Z |borri (V)| S ox+ g(al +ap) <1, (89)
and thlereforeﬂ S1(v) |1, < 1. For fixedu, w € £+ (Z), we have that
(Sa)S1w))y =D ($200),  (S2(w)), (90)
k'eZ

We recall that] S1(u) S1(w)||¢., iS estimated by

sup)_ [(S1@)Saw), )| < supY S D T [(S1w0)y s
I T 4
<sup Y (|bk,kf<u>|z|bk,,l<w>|).
!

k' st |k—2k'|<6

|(Sl(w))k’,l|
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We note that the sk’ s.t. |k — 2k’| < 6} includes five consecutive integers, and then it always include a
quadruplet(2m, 2m + 1, 2m + 2, 2m + 3). We then again note that one of the rules (85) or (86) for the
differences is contractive, since we have

5 13 13
Xl: |bai(v)| + Xl: |bokir,1 (V)| = et + E(Olo +oap) < g < 2. (91)

Consequently, there existsandg in {0, 1} such thad , [y, (w)| < 13/16 < L and); |boyi244,:(w)]
< 13/16 < 1. We also derive from the rules (85) or (86) that we always have

min{ [ be.am+p )|, |br2mrarq )]} > (92)

1_6.
Therefore, there existg such that) ", |by, ;(w)| < 13/16 and|by x,(u)| > 1/16. It follows that:

13
Z (‘bk,k’(u)‘ Xl: |bk’,l(w)|) = 1—6|bk,ko(u)| + Z

| i ()| Z‘bk’,l(w)‘
]

K k' kg
13 13
< Elbk,ko(u)l +kéo\bk,kf(u)| <1+ (1—6 - )lbk,ko(u)l
31 253

< = — .
St T 1616 256 H

A more precise estimation dfS;(x)S1(w)ll,,, can be obtained by an explicit computation for each
different stencil combinations. This leads to the same sharper bound as in the ENO case

9

poo(S) < SUP || S10)Sa(w) |2 = /2. (93)
u,Weloo 0 16

As a consequence of Theorem 1 and (93), we obtain the following smoothness result of the limit function

of the subdivision process, based on WENO interpolation.

Theorem 7. In the case of WENO interpolation, the limit function of the subdivision scheme is bounded
and belongs ta* for all s < —(log((9/16)+/2))/log 2~ 0.6601499

Although they are bounded, the nonlinear operators based on ENO techniques are unstable. The ENO
techniques use a numerical criterion in the selection process of the stencil, such as the minimization of
the cost function (2). If this cost function has a nonunique minimum, then an arbitrarily small change at
the round off level would be sufficient to change the stencil selection. In this situation, there is no hope
to have stability. In contrast, WENO interpolation based on the weights introduced in [6] is stable.

Proposition 4. In the case of WENO interpolation, the subdivision operator givéB)mith the weights
defined in(8) is continuous with respect to the data.

Proof. Letu, i € £,,(Z). From the definition of the subdivision operator we have

|Se) —s@|, = sng|ak,,<u> — g (@)]. (94)
1
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In the particular case of WENO interpolation we obtain
|S@) = S@)|,  <lao— ol + loeg — @l + oz — @2,

wherew;,, a1, ag, &2, &1, &g represent the weights of the left and of the right stencikfandi. From the

definition of the weights in Section 2, we have

a; — CNZI'

ap+ar+ax

o — & & G
o — ;| = I p =
ap+ay+ax ap+ay+a

X

~( 1 1 )
a; - = - p
ap+ayr+ax; ap+ai+a
1
<————|2a; —a; i —ajl |,
ao+a1+a2|: la; —a |+§|a/ a,/|:|
and therefore

- 4 -
IS @) — S(”)Hew < mZIai —a.

From (8) we have thal;| < C0||u||§oo, whereCy > 0 is a constant independent mfand w. It follows
that:

2
do dy d d; > i di
ag+ar+az= - + > = l : 95
T T et b2 T e+ b7 (e +b2)? ;) e+ Colull?, &+ Collull?, 9
Using straightforward computations we also obtain
2¢ +b; +b; - d; -
0y = d— =0 < 2% b, — Bl (96)
(€ + bi)?(e + b;)? €
From (8), we obtain
|bi = bi| < Cullu + e llu — @l (97)
whereC, > 0, constant independent erandi, and therefore
. 2C1) ; d; . .
D e — il < 2—§(||u||em H il ) 1t = il - (98)
Combining (95) and (98), we therefore obtain
. 8C - -
|S@) —s@|,_ < [8—;(nunew + liillen) (e + C0||M||§m)} = illese (99)

which concludes the proof. O
We can thus apply the results of Section 4 to derive the following result.

Theorem 8. In the case of the WENO four point interpolatory techniques, defingd),iwith the weights
satisfying(8), the subdivision scheme Is,, stable andC* stable for alls < —(log(p(S1)))/log 2~
0.6601499
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Appendix A

We shall briefly sketch some smoothness and stability results in the spgcesd B, , which

generalize those obtained in Sections 3 and 4. The Besov spgcesoughly represent the functions
with s derivatives inL ,. They can be defined through thtéh orderL , modulus off,

o (f. e, = sup| AL £, . (A.1)

||t
where A}, f is the usuahth order finite difference operator

apf=) (D" (,’;) f G+ hm).

m=0

Forp,qg > 1, s > 0, the Besov space%;,)q consists of the functiong € L, such that

(27 ou(f. zij)Lp).,;O €y A2)
Heren is an integer strictly larger than A natural norm for such a space is then given by

1Ay, =1, + (27 0u(£.277) ) il
Remark 2. For g = oo, (A.2) simply means thatAj f., < Ch®. In particular, one ha&” = B;

whens is not an integer. More generally, one Hé$? = B;, , if s is not an integer anél® = W2 = B;,
forall s.

We can study the convergence of quasilinear subdivision schemes agcording to the following
natural definition.

Definition 7. A subdivision scheme is calletd, convergent if, for every finite set of initial control points
vo € £,(Z), there exists a functioif € L, called the limit function, such that
lim | f/ = f|, =0, (A.3)
Jj—>o r

where f/ is the function defined in (12).

One easily checks that we have
1#70,, <2777, (A-4)

Therefore, similar convergence and smoothness results can be obtained, based on thefscieies
of the S,. We assume boundednessSah the £, sense which means that for alk ¢, (%),

[sw],, <B. (A.5)

where||A|, :=supg|Aw],; [wl, =1}, and we define thé, joint spectral radius

i (A.6)

0,(S) :=limsup sup IS@=1), ..., S(u°) . -

=00 WO, .ui~Ye(t,(Z))]

It can easily be checked that Proposition 2 extends tofthgint spectral radius, i.e.p,(S,+1) =
pp(S,)/2. Note that convergence of the subdivision scheme impligs) > 217 since otherwise
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§*y% = 0 for all initial datav® in view of (A.4). Therefore, the above result shows that we always
have
Pp(Sy) = 2577, (A7)
With such definitions, we have the following results, similar to Theorems 1 and 2.

Theorem 9. Let S be a quasilinear subdivision scheme which reproduces constaptgSif) < 21/ then
S is L -convergent. Moreover, the limit functiof belong toB; , for all s < —(log(p,(S1)))/log2+

1/p.

Proof. By similar arguments as in the proof of Theorem 1, we establish that
[F752 =7l <c2r|av], < el av?], (A-8)

for p such thato,(S1) < p < 2Y/7, from which we obtain the., convergence of/ to somef € L?. If
|h| <1 andj is such that 2/~ < || < 27/, we have

[f=femly, <20 =1, + 17 = eml,, <cozr|a], +27 [ ()],
<c(zir|av], w270 av], ) < colz | A,
<clrjac,

with s = —(logp)/log2+ 1/p. Therefore f € B;, ., for all s < —(log(p,(S1)))/log2+ 1/p. Since
B’) C B, whent > s, it follows that we also havq‘ € B, for all s < —(log(p,(S1)))/log2 +

1/p. O

Theorem 10. Let S be a quasilinear subdivision scheme which reproduces polynomials up to déglee
Pp(Sny1) < 2Y/P7" for somen < N, the limit functionf is in B; _ for all s < —(log(p,(S,+1)))/log 2+

1/p.

Proof. We use exactly the same arguments as those used in the proof of Theoremn2=Forthe
result is proved by Theorem 9. Far= 1, we recall the sequence’ := 2/ Av/ and the function

= 1z wkgo(ZJ —k). We get thagg := S Av° belongs toB), , fors < (Iog(p,,(Sl)))/Iog 2+1/p
and satlsflesf’ = g. Thereforef € B;,  for all s < —(Iogpoo(Sz))/Iogz Iterating this argument for
n > 1, we obtain the general resuItD

We finally want to generalize the stability results given in Theorems 3 and 4 to,therm ands;, .,
norm. A first possibility is to proceed in a similar way as in the proof of these results, replacmg the
assumptions on the spectral radiusSpbr S, in £, by assumptions of their spectral radiuginsimilar
to those in Theorems 9 and 10, and to assume continuous dependency with respect to the data in the sense
where

[S@) =s@),, <cl =7

However, this last assumption is too restrictive in view of the factof’?2 In particular, it is not
fulfilled by the WENO point value subdivision scheme. In the following, we showIharespectively,
B;,Oo) _st_ablllty can bfe obtained by combining tlig, (respectively,C*) stability with the fact that the
subdivision scheme is local.

= c2ilr |yl —

L P P
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Theorem 11. Let S be a quasilinear subdivision scheme which reproduces constants and which is
continuously dependent on the data in the sengd®f Assume thap.,(S1) < 1. Then we have

|s>v° = 8*3°|, <C[°=1°, . (A.9)
r P
whereC depends in a continuous nondecreasing waynax{|[v°]|,__, [|7°]/¢..}-
Proof. Forall j > 0, we have
[ =0z, <27 =015, =27 31 =0 o iy (A.10)
keZ
We also have
27 H v/ — o/ HfP(Zﬂ[z./k,Zi(kJrl))) < ij — v’ wa(Zﬂ[z./k,Zi(kJrl)))' (A.11)

Using theL,, stability result established in Theorem 3, together with the fact that our scheme is local,
we obtain that

|| v/ — o/ ”Zw(Zﬂ[Z/k,Z/(kJrl))) < C“ v° — 50||€m(Zm[k72M,k+2M])’ (A.12)

whereC depends in a continuous nondecreasing way on{{ndy,_., |°||... }. Taking thepth power of
the last estimate, we thus obtain from (A.10) that

|£7 =7, <cl®=°),, (A-13)
where C depends in a continuous nondecreasing way on{nd¥,_, [2°|l..}. The claim follows by
letting j tend to+oc in the above inequality. O

We finally give a stability result in Besov norms.

Theorem 12. Let S be a quasilinear subdivision scheme which reproduces polynomials up to dégree
which is continuously dependent of the data in the seng@%)f Assume thap,,(S1) < 1 and that for
somen < N, p,(Sqp+1) < 277", Then we have

5200 — §>5° < Clv® =%, . (A.14)

By,
for all s < —(log(p,(S,+1)))/log2+ 1/p, whereC depends in a continuous nondecreasing way on
max{[[v°]l ¢, 17%]1e, }-

Proof. Forn =0, we proceed as in the proof of Theorem 4. pebe such that < —(logp)/log2+
1/p < —(log(p,(S1)))/log2+ 1/p, i.e., p,(S1) < p < 2P — 5 < 2Y7, RecallingF/ := f/ — f/ and
its L, limit F = f — f, we first establish

|FItY—FI|7 <c277||av — Ad |7, (A.15)

p p

whereC depends in a continuous nondecreasing way on{mdy,._, [|7°]...}, by the same technique as
in the proof of Theorem 1. In order to estimate the right-hand side, we use the same localization technique
as in the proof of Theorem 10, i.e.,
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27 AV —Av |} =277y [ Av - A

P Jj_ ~jil|lP
ep(msz,zf(k+1>>><ZHAU Av Hew<zm[2-fk,2f<k+1>>>

keZ keZ
<C Z 2P ” v?—° Hgoo(Zﬂ[kuM,kJrZM]) <c27V ” v’ — ’70”2;'
keZ

In the third inequality, we have used the local version of the estithaté — AT/ ||, < 27 [|v° — 9|,
used in the proof of Theorem 4. It follows that:

|F— Pl <2, (a.16)

whereC depends in a continuous nondecreasing way on{{ndy,_., |2°||,.}. For|k| < 1 and;j such
that 2/~ < |n| < 27/, we then write

+anF], <c2 =, +27|(F)],,

<C2 o=, + 27| av - v, <c2 -0,

IAWFll,, <4|F - F/

I, .,

<cmr =],

which proves the result faf = oo and therefore for aly sinceB;’OO C B}, , whent > s. Forn > 0 we
use exactly the same argument as in Theoremrb.

The results of this Appendix can be applied to thg analysis of ENO and WENO subdivision
schemes in a similar way as in Section 5. We end this Appendix with a smoothness result in the cell
averages setting. We consider the prediction operator defined in Example 2 of Section 2. An estimation of
|S1(u) S1(v) S1(w)|l¢, can be obtained by an explicit computation for each different stencil combinations.

This leads to the same bound for ENO and WENO interpolation:
pr(SD) < sup [[S1)S1(v)S1(w) ], ®_—1.2365 (A.17)

u,v,wely

As a consequence of Theorem 9, the following result holds.

Theorem 13. In the case of three cell averages ENO interpolation and in the case of three cell
averages WENO interpolation the quasilinear subdivision operatds L,-convergent. Moreover, in
both situations, the limit function, belong B, forall s < —(log(1.2365)/log2+ 1~ 0.69371
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