
a

study the
ted-ENO

d image

mputer-
e to fine
, as well
arch in
,21] for

tion
ient in
rom the
ility and
to data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Appl. Comput. Harmon. Anal. 15 (2003) 89–116
www.elsevier.com/locate/ach

Quasilinear subdivision schemes with applications
to ENO interpolation

Albert Cohen,a,∗ Nira Dyn,b and Basarab Mateia

a Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 175 rue du Chevaleret, 75013 Paris, France
b School of Mathematical Sciences, Tel-Aviv University, Ramat Aviv, 69978 Israel

Received 16 May 2001; accepted 15 February 2003

Communicated by Wim Sweldens

Abstract

We analyze the convergence and smoothness of certain class of nonlinear subdivision schemes. We
stability properties of these schemes and apply this analysis to the specific class based on ENO and weigh
interpolation techniques. Our interest in these techniques is motivated by their application to signal an
processing.
 2003 Published by Elsevier Inc.

1. Introduction

Subdivision schemes are a powerful tool for the fast generation of curves and surfaces in co
aided geometric design. In such algorithms discrete data are recursively generated from coars
scales by means of local rules. The stability and the convergence of such refinement process
as the smoothness properties of its limit function if it exists, have been the subject of active rese
recent years. We refer to [5,17] for general surveys on subdivision algorithms, and, e.g., to [12,13
more specialized results on their convergence and smoothness.

An important motivation for the study of subdivision algorithms is their relation to multiresolu
analysis and wavelets (see, e.g., [9,11]). In particular, the contribution of a single wavelet coeffic
the representation of a discrete signal is precisely obtained by applying a subdivision scheme f
scale of the coefficient up to the signal discretization scale. Therefore, understanding the stab
smoothness of subdivision algorithms is fundamental in the context of applications of wavelets
compression or signal denoising, in which certain coefficients are quantized or discarded.
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In all those instances of subdivision schemes which have been analyzed so far, the refinemen
is based on linear rules. The present work is concerned with the situation where this rule is nonl
the sense that the refinement operator depends itself on the data to be refined.

Our main motivation for such a study is the analysis of nonlinear multiresolution represent
introduced by Ami Harten [22] in the context of the numerical simulation of conservation law
we recall in more details, these representations are based on nonlinear refinement rules which i
data dependent stencil selection. The goal of this stencil selection is to make the refinement
more accurate in the presence of isolated singularities such as discontinuities. It is no surpr
these ideas have recently been applied to image compression. In this context, it is hoped that
adapted treatment of the singularities corresponding to edges might improve the sparsity of the m
representations of images, and in turn the rate/distortion performance of compression algorithms b
such representations (see [10,15,19,25] for several results which relates the sparsity of the repre
to concrete rate/distortion bounds). Some first numerical results, all based on tensor product tec
which do confirm this intuition are available in [1,2,7,8].

From a mathematical point of view, edges are indeed the main limitation to the performa
wavelet based coding: this is reflected by the poor decay,O(N−1/2), of the error ofL2 best wavelet
N -term approximation for a “sketchy image function”f = χΩ , whereΩ is a bounded domain with
smooth boundary. This reflects the fact that this type of approximation essentially provide local is
refinement near the edges. Improving on this rate through a better choice of the representa
motivated the recent development ofridgeletsin [3] and ofcurveletsin [4] which are bases and frame
having some anisotropic features, resulting in the better rateO(N−1).

Nonlinear multiscale representations are another possible track for such improvements, provi
one can overcome two difficulties: first, for a proper anisotropic adaptation to the edges, it is cru
develop nonlinear methods which are not based on tensor products, and second, one needs to c
stability of these representations. This second point is crucial: since nonlinear multiscale represe
cannot be thought as decompositions of the signal into a fixed wavelet basis, the error produ
thresholding or quantizing the coefficients is no more clearly understood: such perturbations m
greatly amplified by the iteration of the nonlinear refinement rules involved in the prediction proce
order to solve this problem, we essentially need to understand the behavior of the nonlinear sub
schemes corresponding to these iterative refinements.

The objective of the present paper is to provide appropriate tools for analyzing the smoothne
stability of quasilinear subdivision schemes, and apply these tools in the particular case of the es
nonoscillatory (ENO) refinements introduced in [23].

The results of this paper represent the first step in the study of nonlinear multiscale represen
Using these results, our next perspective, is the analysis of data compression algorithms based
nonlinear representations.

Our work is organized as follows. A quick overview of the framework introduced in [22] is give
Section 1, together with several relevant examples of quasilinear schemes. In Sections 2 and 3, w
several results concerning the smoothness and stability analysis of quasilinear subdivision sch
the uniform and Hölder metric. In Section 4, we apply these results to the particular example of t
points ENO and WENO refinement rules. Finally, an Appendix A is devoted to the generalization
results of Sections 2 and 3, to other smoothness and error measures, such asLp, Sobolev or Besov norms
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2. Motivation and background

The framework introduced by A. Harten [22] for the discrete multiresolution representations o
is based on two interscales discrete operators:the projection and the prediction operators.

The projection operatorP j

j−1 acts from fine to coarse level of resolution. This operator extr
from vj , the data string at the levelj of discretization, the discrete information at the coarser l
of resolution,j − 1, i.e.,vj−1. The prediction operatorP j−1

j , acts from coarse to fine level of resolutio
It yields anapproximationof the discrete vectorvj from the projected vectorvj−1. These two operator
should in addition satisfy the property

P
j

j−1P
j−1
j = I, (1)

i.e., the projection operator is a left inverse to the prediction operator.
The approximation built byP j−1

j is defined as follows:

v̂j := P
j−1
j vj−1.

This gives the redundant representation of the vectorvj by itsapproximationv̂j and the prediction erro

ej := v̂j − vj .

From (1), we have thatP j

j−1 is onto, and that the prediction error belongs to the finite-dimensional s
Wj−1, defined as the null space of the projection operator. Therefore by decomposingej in terms of
a basis ofWj−1, we can eliminate the redundant information inej . We denote bydj−1 the coordinate
vector of the error vector in this basis ofWj−1. In analogy with the wavelet terminology we calldj−1 the
detail vector. Sincêvj = P

j−1
j vj−1, vj can be equivalently characterized by(vj−1, dj−1). By iteration we

obtain a one-to-one correspondence betweenvj and its multiresolution representation(v0, d0, . . . , dj−1).
If both discrete operators, projection and prediction, are linear, then the corresponding multires

transform is equivalent to a biorthogonal wavelet transform.
Some of the prediction operators proposed by Harten [22] are nonlinearly data dependent sin

are based onessentially nonoscillatory(ENO) prediction techniques. By using them, the correspon
multiresolution transforms cannot be thought as a change of basis, which makes the analysis
transforms more difficult.

The representations introduced by Harten are formulated for specific types of discretization, oft
in computational applications (e.g., the point values and the cell averages discretization). The s
of the discretization depends on the problem under consideration, e.g., for the image modeliza
square integrable functions, an appropriate choice of the discretization is by the cell averages (in
point values discretization, which does not make sense in this case). In the following, we briefly
the nonlinear prediction operators based on ENO, in the point value and cell averages context.

Example 1 (Point value multiresolution). In this setting, we interpret the discrete vectorvj = (v
j

k )k∈Z

as the point values of a continuous functionv on the gridΓ j := (2−j k)k∈Z, i.e., vj

k := v(2−j k). This
suggests the choice forP j

j−1 as the simple downsampling operator. For the prediction operator, we n
that the vector̂vj should coincide withvj on the coarse grid; then building prediction operator can
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onΛj−1 := Γ j \Γ j−1, i.e.,

dj−1 := (
v
j

k − v̂
j

k

)
k∈Λj−1.

In the sequel, we present an important class of local predictors obtained by Lagrange interpolatio
At scalej we want to predict for eachk ∈ Z the valuev̂j

2k+1 from the values(vj−1
l )l∈Z. To such ak we

associate aprediction stencilof lengthM

Sr(k) := {
(k − r)2−j+1, . . . , (k − r + M)2−j+1

}
,

with r an integer representing the position of the stencil with respect tok. Using the values(v(γ ))γ∈Sr(k),
we definepr ∈ ΠM as the unique polynomial of degreeM , which interpolates the values ofv on Sr(k).
We then define the predicted value

v̂
j

2k+1,r := pr

(
2−j (2k + 1)

)
.

Note thatM+1 is exactly the order of accuracy of the prediction. If the parameterr is fixed independently
of the data, we obtain a linear prediction operator, and the multiresolution transform is then equiva
biorthogonal interpolatory wavelet transform, for which the dual scaling function is the Dirac distrib

The goal of ENO interpolation is to obtain a better adapted prediction near the singularities
data. The idea is to select by some prescribed numerical criterion the polynomialpr which is theleast
oscillatory in the neighborhood ofk. This selection is typically obtained by the minimization of a c
function. A typical choice is

Cj,k(pr) :=
2−j (k+1)∫
2−j k

∣∣p′′
r (t)

∣∣2 dt. (2)

Thus we choose for the prediction at the point 2−j (2k + 1) the value ofr , which minimizesCj,k(pr),
among{0, . . . ,M − 1} (with some prescribed convention for the choice ofr in the case of a nonuniqu
minimum).

We give below the formulae for the fourth-order accurate prediction (cubic polynomialsM = 3). The
predicted valueŝvj

2k+1,r usingSr(k), r = 0,1,2, are obtained, respectively, by
v̂
j

2k+1,0 := 5
16v

j−1
k + 15

16v
j−1
k+1 − 5

16v
j−1
k+2 + 1

16v
j−1
k+3,

v̂
j

2k+1,1 := − 1
16v

j−1
k−1 + 9

16v
j−1
k + 9

16v
j−1
k+1 − 1

16v
j−1
k+2,

v̂
j

2k+1,2 := 1
16v

j−1
k−2 − 5

16v
j−1
k−1 + 15

16v
j−1
k + 5

16v
j−1
k+1.

(3)

In the case of prediction by the value of the unique cubic polynomial that interpolatesvj on the centered
stencil, the corresponding multiresolution transform is equivalent to the Dubuc–Deslaurier interp
wavelet transform (see [14,18]). For the properties of the interpolant as well as for the smoothnes
limit of this iterative process, we refer the reader to [12,14,18].

Example 2 (Cell average multiresolution). In the cell average context,R is partitioned in disjointed
dyadic cellsΓ j := {Γ j

k = [k2−j , (k + 1)2−j )}k∈Z. In this context, the discrete vectorvj is viewed as the
average(2j

∫
j v(t)dt)k∈Γ j of a locally integrable function.
Γk
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As in the point values setting, this suggests to take forP
j

j−1 the averaging operator. The construction

the prediction operator is similar to the prediction in the point values setting. To eachΓ
j−1
k , we associate

a stencil of cells

Sr(k) := {[
(k − r)2−j+1, (k − r + 1)2−j+1

]
, . . . ,

[
(k − r +M − 1)2−j+1, (k − r + M)2−j+1

]}
.

Using the averages within the stencilSr(k), we defineqr ∈ ΠM−1 as the unique polynomial of degre
M − 1, which interpolates these averages.

We then define the predicted averages as those ofqr on the half intervals[2−j+12k,2−j+1(2k + 1)]
and[2−j+1(2k + 1),2−j+1(2k + 2)].

Notice that by using the averages of a local integrable function we can obtain the point value
primitive function. This interpretation allows to obtain the polynomial used to make the prediction
averages context through a derivation of the prediction polynomial used in the point values set
the primitive function.

The multiresolution decomposition based on cell averages is equivalent to the biorthogonal
transform, for which the dual scaling function is the box function [16].

We can also make the same remarks concerning the possibility of using ENO-type reconstruct
the case of two order accurate prediction based on Lagrange interpolation, the predicted averav̂

j

2k,r
usingSr(k), r = 0,1,2, are given by

v̂
j

2k,0 := 11
8 v

j−1
k − 1

2v
j−1
k+1 + 1

8v
j−1
k+2,

v̂
j

2k,1 := 1
8v

j−1
k−1 + v

j−1
k − 1

8v
j−1
k+1,

v̂
j

2k,2 := −1
8v

j−1
k−2 + 1

2v
j−1
k−1 + 5

8v
j−1
k .

(4)

In both types of discretization, the details are defined as the prediction error at the odd samples.

Weighted-ENO interpolation. The weighted-ENO (WENO) interpolation developed in [6] is based
the ENO idea. In this technique, in contrast to ENO interpolation which uses only one of the can
stencils to make the prediction, one considers a convex combination of the polynomials associa
these stencils, i.e.,

v̂k :=
M−1∑
r=0

αr v̂
r
k,

with αr � 0 and
∑M−1

r=0 αr = 1. In ENO interpolation, a small round-off error perturbation of the data
result in changing the selected stencils. This situation is avoided in WENO interpolation which pr
a smooth transition between the stencils. A possible form of the weights is given in [6] by

αr := ar∑M−1
l=0 al

, r = 0, . . . ,M − 1,

where

ar := dr

(ε + br)2
and br :=

M−1∑
l=1

2−j (2l−1)
∫
Γ

j

(
∂lpr(x)

∂lx

)2

dx. (5)
k
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Thedr are fixed positive constants. Thebr are defined by the sum of the squares ofL2 norms for all the
derivatives of the interpolation polynomialpr over the intervalΓ j

k . The factor 2−j (2l−1) is introduced to
remove any level dependency on the derivatives. Hereε is introduced in order to avoid the denomina
to vanish,br are the so called “smoothness indicators” of the stencilSr(k): if the functionv(x) is smooth
inside the stencilSr(k), thenbr ∼ O(2−2j ), else if the function has a discontinuity inside the ste
Sr(k), thenbr ∼ O(1).

The rational form of the weights is chosen in order to emulate the ENO idea and to be computa
efficient. If the stencilSr is located in a smooth region, the smoothness indicatorbr is close to 0 and the
the weightαr is close to 1. In contrast, if the stencil contains a singularity the smoothness indicatobr is
larger and the weightαr is closer to 0.

In the case of four point interpolatory schemes, we compute the predicted value as a
combination of the predicted values by the three stencils, as follows:

v̂
j

2k+1 := α0v̂
j

2k+1,0 + α1v̂
j

2k+1,1 + α2v̂
j

2k+1,2, (6)

whereα0, α1, andα2 represent the weights associated with the right, centered and left stencil, respe
More precisely

v̂
j

2k+1 := α2

16
v
j−1
k−2 − 5α2 + α1

16
v
j−1
k−1 +

(
1+ 5α2 + 2α1

8

)
v
j−1
k

+
(

1+ 5α0 + 2α1

8

)
v
j−1
k+1 − 5α0 + α1

16
v
j−1
k+2 + α0

16
v
j−1
k+3. (7)

The weights associated with the three stencils are defined as in [6,24]. In this case(M = 3), (5) gives
b0 := c0,0(v

j

k+2 − 2vj

k+1 + v
j

k )
2 + c0,1(v

j

k+2 − 4vj

k+1 + 3vj

k )
2,

b1 := c1,0(v
j

k+1 − 2vj

k + v
j

k−1)
2 + c1,1(v

j

k+1 − v
j

k−1)
2,

b2 := c2,0(v
j

k − 2vj

k−1 + v
j

k−2)
2 + c2,1(3v

j

k − 4vj

k−1 + v
j

k−2)
2,

(8)

whereci,j , i = 0,1,2, j = 0,1, are fixed positive constants. Some possible choices of the constan
suggested in [6].

As we already explained, stability of the multiresolution transform is a key issue in applications
some coefficients are discarded (such as compression or denoising). In this paper, we limit ou
to nonlinear subdivision schemes corresponding to the iterative application of a prediction op
from coarse to fine scales, without adding any details. To begin with, we give some basic no
and definitions and recall some properties of the subdivision operators.

A subdivision scheme defines a function (called the limit function) as the limit of a subdivision pr
in which an initial finite set of points, called the control points, is recursively refined.

Definition 1. A data dependent subdivision rule is an operator valued functionS which associates to eac
v ∈ &∞(Z) a linear operator

S(v) :&∞(Z) → &∞(Z),

defined by a rule of the type(
S(v)w

)
k
:=
∑

ak,l(v)wl, (9)

l
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where the coefficientsak,l(v) are zero if|k − 2l| >M for some fixedM > 0.
We define the associated quasilinear subdivision scheme as the recursive action of the quasili

Sv := S(v)v on an initial set of datav0, according to

vj := Svj−1 = S
(
vj−1)vj−1, j � 1. (10)

In the above definition,M typically represents the size of the stencil used in the subdivision rule
linear subdivision schemes, the coefficientsak,l do not depend on the datav, i.e., S(v) = S a fixed
operator. For linear and uniform subdivision schemes, these coefficients have the formak,l = ak−2l .

The analysis of a subdivision scheme consists of establishing conditions for the convergenc
scheme, and in characterizing the smoothness as well as the order of approximation of the set
functions. We refer the reader to [5,17,21] for a general survey on this subject, in the linear and u
case.

Definition 2. A subdivision scheme, generating recursively the data{vj : j ∈ Z+}, is called uniformly
convergent if, for every set of initial control pointsv0 ∈ &∞(Z), there exists a continuous functio
f ∈ C(R), called the limit function, such that

lim
j→+∞ sup

k∈Z

∣∣vj

k − f (2−j k)
∣∣= 0, (11)

and thatf is nontrivial at least for one initial datav0.

We also associate a functionf j to the datavj as the piecewise affine interpolation to{(2−j k, vj): j ∈
Z+}. Thus

f j (x) :=
∑
k∈Z

v
j

k ϕ
(
2j x − k

)
, (12)

where ϕ(x) := max{1 − |x|,0} is the hat function. It is clear that the uniform convergence of
subdivision scheme is equivalent to

lim
j→+∞

∥∥f j − f
∥∥
L∞ = 0.

The limit functionf is denoted byS∞v0. The following definition plays an important role in the analy
of subdivision schemes.

Definition 3. Let N � 0 be a fixed integer. The data dependent subdivision rule has the pro
of polynomial reproduction of orderN if for all u ∈ &∞(Z) andP ∈ ΠN there existsP̃ ∈ ΠN with
P − P̃ ∈ ΠN−1 such thatS(u)p = p̃, wherep andp̃ are defined bypk = P(k) andp̃k = P̃ (k/2).

In particular, the ENO and WENO schemes discussed in the previous section satisfy such a p
up to the orderM for point values andM − 1 for cell averages. We recall the definition of thenth order
forward finite difference operator,(

∆nv
)
k
=

n∑
(−1)m

(
n

m

)
vk+m. (13)
m=0
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For the first order finite difference we omit the superscript 1. In the case of linear subdivision sc
using a formalism based on Laurent polynomials [17], it has been proved that if the subdivision s
has the property of polynomial reproduction up to the orderN , then there exist similar schemes for t
differences of ordern := 1, . . . ,N + 1

Sn :&∞(Z) → &∞(Z), ∆n(Sv) = Sn

(
∆nv

)
.

The convergence and smoothness properties of a subdivision scheme are then studied thr
contraction properties of the schemesSn. More precisely, denoting byρ∞(A) the spectral radius o
an operatorA in &∞, the uniform convergence of the linear subdivision is equivalent to the pro
ρ∞(S1) < 1. Moreover, if for somem ∈ {1, . . . ,N +1}, we haveρ∞(Sm) < 2−m+1, then the limit function
is inCs for all s < s∗ = −(logρ∞(Sm))/log2 (and thereforem−1 times differentiable sinces∗ >m−1).

In order to study quasilinear subdivision schemes, we need to introduce some additional defi
We start with the boundedness property.

Definition 4. A data dependent subdivision rule is called bounded if there exists a constantB > 0 such
that for allv ∈ &∞(Z),∥∥S(v)∥∥

&∞ � B, (14)

where the norm stands for the&∞ operator norm.

Clearly, this property can also be expressed by saying that the coefficients{ak,l(v)} are bounded
independently ofk, l, andv. In the following, we always assume that the rules that we study are bou

We have already remarked that, in the WENO technique, the transition between two stencils is
a continuous way. This property is crucial in the study of the stability of quasilinear subdivision sch
This notion is expressed in the next definition.

Definition 5. A data dependent subdivision rule is called continuously dependent on the data if for
v,w ∈ &∞(Z), the associated operatorsS(v) andS(w) satisfy∥∥S(v) − S(w)

∥∥
&∞ � C‖v −w‖&∞, (15)

whereC depends in a nondecreasing way on max{‖v‖&∞,‖w‖&∞}.
The fact that the constantC might grow with‖v‖&∞ and‖w‖&∞ is encountered in the practical examp
that we have in mind such as WENO interpolation.

We finally introduce the notion of joint spectral radius associated with a data dependent subd
rule.

Definition 6. The joint spectral radius of a data dependent subdivision ruleS is the number

ρ∞(S) := lim sup
j→∞

sup
(u0,u1,...,uj−1)∈(&∞(Z))j

∥∥S(uj−1) · · ·S(u0)∥∥1/j
&∞ .

In other words,ρ∞(S) is the infimum of allρ > 0 for which there existsC > 0 such that for all arbitrary
(uj )j�0 in &∞ andv ∈ &∞ one has∥∥S(uj−1

) · · ·S(u0
)
v
∥∥ � Cρj‖v‖&∞, (16)

&∞
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for all j � 0. Note that in the case of linear subdivision schemes, this is exactly the spectral radiS

in &∞.

3. Convergence and smoothness analysis

In this section, we provide sufficient conditions for the convergence of quasilinear subdivision sc
and for the smoothness of the limit function. In fact, the results in this section, but not those of th
section, apply to a wider class of subdivision schemes than the class of quasilinear subdivision s
In this class, a scheme is defined by a data dependent rule,S, and by a given sequence of data{ul: l ∈ Z+}
and initial datav0 according tovj := S(uj−1) · · ·S(u0)v0. As in the linear case, the results of this sect
are obtained through the study of the associated schemes for the differences. The existence of th
for the differences is obtained by using the property of polynomial reproduction of the data dep
rule. This result is given in the next proposition.

Proposition 1. LetS be a data dependent subdivision rule which reproduces polynomials up to degN .
Then for1 � n � N + 1 there exists a data dependent subdivision ruleSn with the property that for all
v,w ∈ &∞,

∆nS(v)w := Sn(v)∆
nw.

Proof. Let 1� n � N + 1 and letu := S(v)w. Combining (13) and (9), we obtain

(
∆nu

)
k
=

n∑
m=0

(−1)m
(

n

m

) ∑
l s.t. |k+m−2l|�M

ak+m,l(v)wl. (17)

Therefore,(∆nu)k can be written as a linear combination of thewl(
∆nu

)
k
=
∑
l

bk,l(v)wl, (18)

wherebk,l(v) := ∑n
m=0(−1)m

(
n

m

)
ak+m,l(v). Note thatbk,l(v) is zero for l < (k − M)/2 and l > (k +

n + M)/2. For each fixedk, we thus have a finite vector(bk,l(v))l∈Ek
with Ek := {l: (k − M)/2 � l �

(k + n +M)/2}.
Since the rule reproduces polynomials of degree up toN , we have∑

|k−2l|�M

ak,l(v)l
m = Pm(k), 0� m � n− 1, (19)

with Pm ∈ Πm. Applying thenth order finite difference operator∆n on this identity, we obtain∑
l

bk,l(v)l
m = 0, m = 0, . . . , n− 1. (20)

Therefore, for eachk (bk,l(v))l∈Ek
is orthogonal to the vectors(lm)l∈Ek

for m = 0, . . . , n − 1. It follows
that(bk,l(v))l∈Ek

can be written in terms of a basis of the orthogonal complement of span{(lm)l∈Ek
| m =

0, . . . , n− 1}. A natural choice for this basis is given by
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he joint

et
e0(l) :=
(
n

l

)
(−1)n+l if l = 0, . . . , n,

e0(l) := 0 if l /∈ {0, . . . , n},
and takingeq(l) := e0(l − q) with (k − M)/2� q � (k − n+ M)/2. Therefore, we have

bk,l(v) :=
∑

(k−M)/2�q�(k−n+M)/2

βk,q(v)eq(l), (21)

from which we derive a subdivision rule for thenth order differences of the type(
∆nu

)
k
=
∑
l

bk,l(v)wl =
∑

|k−2q|�M

βk,q(v)
(
∆nw

)
q
. ✷ (22)

Notice from the above proof that the stencils used inSn are always smaller than those used inS.
Moreover, ifS is bounded (respectively, continuously dependent on the data), thenSn is also bounded
(respectively, continuously dependent on the data). The next result gives a relation between t
spectral radius of these schemes.

Proposition 2. For all n = 0, . . . ,N , one hasρ∞(Sn+1) � ρ∞(Sn)/2.

Proof. We shall prove thatρ∞(S1) � ρ∞(S)/2, and the general result will follow by induction. L
ρ > ρ∞(S1), andC > 0 such that for all sequence(ul)l�0 in &∞ andv ∈ &∞ one has∥∥S1

(
uj−1) · · ·S1

(
u0)∆v

∥∥
&∞ � Cρj‖∆v‖&∞, (23)

for all j > 0. Defining

wj := S
(
uj−1) · · ·S(u0)v, (24)

it follows that:∥∥∆wj
∥∥
&∞ � Cρj‖∆v‖&∞ . (25)

We use the relation∥∥wj
∥∥
&∞ = sup

k∈Z

sup
{∣∣wj

l

∣∣: l ∈ [2j k,2j (k + 1)
)}
, (26)

and exploit the fact that the scheme is local. The values ofw
j

l for l ∈ [2j k,2j (k + 1)) only depend on
those ofvl for |l − k| � M . For a fixedk, we defineṽ by ṽl = vl if |l − k| � M and ṽl = 0 otherwise,
and we let̃wj := S(uj−1) · · ·S(u0)ṽ. It follows thatwj

l = w̃
j

l for l ∈ [2j k,2j (k + 1)) and that̃wj

l = 0 for
|l − 2j k| > 2j2M . In turn, we obtain that

sup
l∈[2j k,2j (k+1))

∣∣wj

l

∣∣= sup
l∈[2j k,2j (k+1))

∣∣w̃j

l

∣∣� ∑
|l−2j k|<2j2M

∣∣∆w̃
j

l

∣∣� C2j
∥∥∆w̃

j

l

∥∥
&∞

� C(2ρ)j‖∆ṽ‖&∞ � 2C(2ρ)j‖v‖&∞ .

It follows that‖wj‖&∞ � 2C(2ρ)j‖v‖&∞ , and thusρ∞(S) � 2ρ. Lettingρ tend toρ∞(S1), we obtain the
claimed result. ✷



A. Cohen et al. / Appl. Comput. Harmon. Anal. 15 (2003) 89–116 99

ivision

le for

nt

t

Note that convergence of the subdivision scheme impliesρ(S) � 1 since otherwiseS∞v0 = 0 for all
initial datav0. Therefore, the above result shows that we always have

ρ∞(Sn) � 2−n. (27)

We are now ready to establish a sufficient condition for the convergence of quasilinear subd
schemes and for theCs smoothness of the limit function withs < 1.

Theorem 1. Let S be a data dependent subdivision rule which reproduces constants. If the ru
the differences satisfiesρ∞(S1) < 1, then the quasilinear subdivision scheme based onS is uniformly
convergent and the limit functionS∞v0 is Cs for all s < −(logρ∞(S1))/log 2.

Proof. Let ρ be such thatρ∞(S1) < ρ < 1. There exists a constantC such that for all initial datav0 ∈ &∞
andj � 0,∥∥∆vj

∥∥
&∞ � Cρj

∥∥∆v0
∥∥
&∞. (28)

Observe that∥∥f j+1 − f j
∥∥
L∞ � sup

k∈Z

∣∣vj+1
2k − v

j

k

∣∣, ∣∣∣∣vj+1
2k+1 − v

j

k + v
j

k+1

2

∣∣∣∣. (29)

We now write

v
j+1
2k − v

j

k =
∑
l∈Fk

ck,lv
j

l (30)

and

v
j+1
2k+1 − v

j

k + v
j

k+1

2
=
∑
l∈Fk

dk,lv
j

l , (31)

whereFk := {l: |k − l| � M}, ck,l := a2k,l − δ(k − l) anddk,l := a2k+1,l − (δ(k − l) + δ(k + 1− l))/2.
Since our scheme reproduces constants, the vectors(ck,l)l∈Fk

and(dk,l)l∈Fk
are orthogonal to the consta

vector. By the same reasoning as in the proof of Proposition 1, we conclude that bothv
j+1
2k − v

j

k and
v
j+1
2k+1− (v

j

k +v
j

k+1)/2 are linear combinations of the finite differences∆v
j

l for l = k−M, . . . , k+M −1.
From this it follows that:∥∥f j+1 − f j

∥∥
L∞ � C

∥∥∆vj
∥∥
&∞ � Cρj

∥∥∆v0
∥∥
&∞ . (32)

Therefore the sequencef j converges uniformly to a continuous limitf = S∞v0. We also see that

‖f ‖L∞ �
∥∥f 0

∥∥
L∞ +

∑
j�0

∥∥f j+1 − f j
∥∥
L∞ � C

(∥∥v0
∥∥
&∞ + ∥∥∆v0

∥∥
&∞

)
� C

∥∥v0
∥∥
&∞.

In order to prove thatf ∈ Cs it suffices to evaluate|f (x) − f (y)| for |x − y| � 1. Let j be such tha
2−j−1 < |x − y| � 2−j . We then write∣∣f (x) − f (y)

∣∣� ∣∣f (x) − f j (x)
∣∣+ ∣∣f (y) − f j (y)

∣∣+ ∣∣f j (x) − f j (y)
∣∣

� 2
∥∥f − f j

∥∥
L∞ + ∣∣f j (x) − f j (y)

∣∣� Cρj
∥∥∆v0

∥∥
&∞ + 2−j

∥∥(f j
)′∥∥

L∞
� Cρj

∥∥∆v0
∥∥
&∞ + ∥∥∆vj

∥∥
&∞ � Cρj

∥∥∆v0
∥∥
&∞

� C|x − y|s∥∥∆v0
∥∥

&∞
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in
with s := − log(ρ)/ log2. This concludes the proof.✷
In the following, we give sufficient conditions for theCs smoothness of the limit function fors � 1.

Theorem 2. Let S be a data dependent subdivision rule which reproduces polynomials up to degrN .
If the rule for the differences satisfiesρ∞(Sn+1) < 2−n for somen ∈ {0, . . . ,N}, then the quasilinea
subdivision scheme based onS is uniformly convergent and the limit functionS∞v0 is Cs for all
s < −(logρ∞(Sn+1))/log2.

Proof. Notice that by Proposition 2, the assumption thatρ∞(Sn+1) < 2−n implies thatρ∞(Sm+1) < 2−m

for m = 0,1, . . . , n. In particular,ρ∞(S1) < 1 and the scheme is convergent by Theorem 1.
We shall use induction onn to proveCs smoothness. Forn = 0, the result is proved by Theorem

Forn = 1, we letf = S∞v0 and we assume thatρ∞(S2) < 1/2. Introducing

wj := 2j∆vj = 2jS1
(
vj−1

)
S1
(
vj−2

) · · ·S1
(
v0
)
∆v0, (33)

we have

∆wj := 2j∆2vj = 2jS2
(
vj−1

)
S2
(
vj−2

) · · ·S2
(
v0
)
∆2v0, (34)

and therefore ifρ is such that 2ρ∞(S2) < ρ < 1, then∥∥∆wj
∥∥
&∞ := 2j∆2vj = Cρj

∥∥∆2v0
∥∥
&∞ . (35)

We obtain as in Theorem 1 thatwj uniformly converges to a continuous functiong, namely,

lim
j→∞ sup

k

∣∣wj

k − g
(
2−j k

)∣∣= 0.

Introducing the functioñϕ := χ[0,1] and the functions

gj :=
∑
k∈Z

w
j

k ϕ̃
(
2j · −k

)
, (36)

one easily checks thatgj = (d/dx)f j , wheref j is the affine function defined by (12), i.e.,

a∫
b

gj (x)dx = f j (a) − f j (b), (37)

for all a andb. We know that limj→∞ ‖f j − f ‖L∞ = 0, and we also have limj→∞ ‖gj − g‖L∞ = 0. It
follows that:

a∫
b

g(x)dx = f (a) − f (b), (38)

for all a and b. Therefore,f is differentiable withf ′ = g. Moreover, as in Theorem 1, we obta
that g ∈ Ct for all t < −(log2ρ∞(S2))/log 2 < −1 − (logρ∞(S2))/log2. Thereforef ∈ Cs for all
s < −(logρ∞(S2))/log2. Iterating this argument forn > 1, we obtain the general result.✷
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Remark. As pointed out by one of the anonymous referees, the uniform convergence of the subd
scheme is still ensured if we simply assume thatρ∞(Sn+1) < 1. This can be proved by refined argume
similar to those developed in [20] in the case of linear subdivision schemes. On the other hand, n
the second conclusion of the above theorem implies that the limit of the subdivision scheme isCs for
somes > n. For this amount of smoothness, in the case of a linear subdivision scheme, the co
ρ∞(Sn+1) < 2−n is known to be necessary, and in this sense our result is sharp.

4. Stability analysis

In this section, we study the stability of quasilinear subdivision schemes, e.g., properties of the∥∥S∞v0 − S∞ṽ0
∥∥
L∞ � C

∥∥v0 − ṽ0
∥∥
&∞ . (39)

In the linear case, this is a simple consequence of convergence, namely of‖S∞v0‖L∞ � C‖v0‖&∞ . In the
nonlinear case, it requires a more specific study.

In our study of stability we need the additional assumption that there exists a linear left-in
operator of the subdivision operator (calledrestrictionor projectionoperator by Harten). More precisel
we assume that there exists coefficients(γl)|l|<P with

∑
|l|<P γl = 1 such that

v
j−1
k :=

∑
|l|<P

γlv
j

2k−l, (40)

whenevervj := Svj−1.
In many interesting cases of linear or nonlinear subdivision algorithms, such an operator exists

point-value contextγl = δ0,l, and in the cell-averages contextγ0 = γ−1 = 1/2, γl = 0 otherwise. In the
following we always assume the existence of a restriction operator of the form (40). In the next
we obtain the existence of a similar left inverse for the subdivision schemesSn associated with the finit
differences.

Proposition 3. Let S be a data dependent subdivision rule which reproduces polynomials of degrN .
Then, forn = 1, . . . ,N + 1 there exists coefficients(γ n

l )|l|<P with
∑

|l|<P γ n
l = 2n such that(

∆nvj−1)
k
:=

∑
|l|<P+n

γ n
l

(
∆nvj

)
2k−l

, (41)

whenevervj := Svj−1.

Proof. Consider the casen = 1. Assuming (40), we can write(
∆vj−1

)
k
=
∑
|l|<P

γl

(
v
j

2k+2−l − v
j

2k−l

)=
∑
|l|<P

γl

((
∆vj

)
2k+1−l

+ (
∆vj

)
2k−l

)
=

∑
|l|�P+1

γ 1
l

(
∆vj

)
2k−l

with γ 1
l := γl + γl+1 which proves the result. The casen > 1 follows by induction. ✷

We use the restriction operators for the finite differences through the following lemma.
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Lemma 1. LetS be a data dependent subdivision rule which reproduces polynomials of degreeN . Then
there exists a constantD > 0, depending only onn, such that∥∥∆nvj

∥∥
&∞ � 2−n

∥∥∆nvj−1
∥∥
&∞ + D

∥∥∆n+1v
j∥∥

&∞, 0� n � N, (42)

for all j � 0 andv0 ∈ &∞.

Proof. Since(∆nvj−1)k =∑
|l|�P+n γ

n
l (∆

nvj )2k−l with
∑

l γ
n
l = 2n, we also have(

∆nvj−1
)
k
= 2n

(
∆nvj

)
2k +

∑
|l|<P+n

γ n
l

((
∆nvj

)
2k−l

− (
∆nvj

)
2k

)
. (43)

It follows that:(
∆nvj

)
2k := 2−n

[(
∆nvj−1

)
k
+

∑
|l|<P+n

cl
(
∆n+1vj

)
2k−l

]
(44)

with cl :=∑l−1
k=0γ

n
k . In a similar way, we obtain(

∆nvj
)

2k+1 := 2−n

[(
∆nvj−1

)
k
+

∑
|l|<P+n

dl
(
∆n+1vj

)
2k−l

]
. (45)

The claim follows withD := 2−n max{∑|l|<P+n |cl |,∑|l|<P+n |dl|}. ✷
Remark 1. Note that, since the restriction operator is linear, we also have∥∥∆nvj − ∆nṽj

∥∥
&∞ � 2−n

∥∥∆nvj−1 − ∆nṽj−1
∥∥
&∞ + D

∥∥∆n+1vj −∆n+1ṽj
∥∥
&∞, (46)

for vj = S(vj−1)vj−1 andṽj = S(ṽj−1)ṽj−1.

The main ingredient for our analysis of the stability of quasilinear subdivision schemes is the foll
result.

Lemma 2. LetS be a quasilinear subdivision rule, which reproduces polynomials up to degreeN . Assume
thatS is continuously dependent on the data. Then forn = 0, . . . ,N , andρ > ρ∞(Sn+1), we have

∥∥∆n+1v
j − ∆n+1ṽ

j∥∥
&∞ � Cρj

(
j−1∑
l=0

∥∥∆nvl −∆nṽ
l
∥∥
&∞

)
, (47)

whereC depends in a continuous nondecreasing way on(max{‖vl‖&∞,‖ṽl‖&∞; l = 0, . . . , j − 1}).
Proof. It is enough to give the proof forn = 0, since it is similar for larger values ofn. If ρ > ρ∞(S1),
there exists a constantK such that for all initial datav0,∥∥∆vj

∥∥
&∞ � Kρj

∥∥∆v0
∥∥
&∞ . (48)

Moreover, there exists an integerL such that∥∥∆vj
∥∥
&∞ � ρL

∥∥∆vj−L
∥∥
&∞, j � L. (49)

Assuming thatj � L, we have
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∥∥∆vj − ∆ṽ
j
∥∥
&∞ = ∥∥S1

(
vj−1

) · · ·S1
(
vj−L

)
∆vj−L − S1

(
ṽj−1

) · · ·S1
(
ṽj−L

)
∆ṽ

j−L
∥∥
&∞ � Aj + Bj,

where

Aj = ∥∥S1
(
vj−1

) · · ·S1
(
vj−L

)(
∆vj−L − ∆ṽ

j−L
)∥∥

&∞,

and

Bj = ∥∥S1
(
vj−1

) · · ·S1
(
vj−L

)
∆ṽ

j−L − S1
(
ṽj−1

) · · ·S1
(
ṽj−L

)
∆ṽ

j−L
∥∥
&∞.

By (49), we obtain

Aj � ρL
∥∥∆vj−L −∆ṽ

j−L
∥∥
&∞ . (50)

In order to estimateBj , we define fori > j − L

Gi := S1
(
vi−1

) · · ·S1
(
vj−L

)
∆ṽ

j−L − S1
(
ṽi−1

) · · ·S1
(
ṽj−L

)
∆ṽ

j−L
,

and

Ki := S1
(
vi−1

)
S1
(
vi−2

) · · ·S1
(
vj−L

)
∆ṽ

j−L − S1
(
ṽi−1

)
S1
(
vi−2

) · · ·S1
(
vj−L

)
∆ṽ

j−L
,

Li := S1
(
ṽi−1)S1

(
vi−2) · · ·S1

(
vj−L

)
∆ṽ

j−L − S1
(
ṽi−1)S1

(
ṽi−2) · · ·S1

(
ṽj−L

)
∆ṽ

j−L
.

We thus have

Bj = ∥∥Gj
∥∥
&∞ �

∥∥Kj
∥∥
&∞ + ∥∥Lj

∥∥
&∞ . (51)

Recalling the boundedness and continuous dependency on the data of the schemeS1, i.e.,∥∥S1(v)
∥∥
&∞ � B1, (52)

and ∥∥S1(v)− S1(ṽ)
∥∥
&∞ � C1‖v − ṽ‖&∞, (53)

whereC1 depends in a continuous nondecreasing way on max{‖v‖&∞,‖ṽ‖&∞}, we can estimate the firs
term according to∥∥Kj

∥∥
&∞ � C1B

L−1
1

∥∥vj−1 − ṽj−1
∥∥
&∞

∥∥∆ṽ
j−L

∥∥
&∞, (54)

whereC1 depends in a continuous nondecreasing way on max{‖vj−1‖&∞,‖ṽj−1‖&∞}, and the second term
by ∥∥Lj

∥∥
&∞ � B1

∥∥Gj−1
∥∥
&∞ . (55)

Therefore, we obtain∥∥Gj
∥∥
&∞ � C1B

L−1
1

∥∥vj−1 − ṽj−1
∥∥
&∞

∥∥∆ṽ
j−L

∥∥
&∞ + B1

∥∥Gj−1
∥∥
&∞,

whereC1 depends in a continuous nondecreasing way on max{‖vj−1‖&∞,‖ṽj−1‖&∞}. Similarly, we have∥∥Gj−1
∥∥
&∞ � C1B

L−2
1

∥∥vj−2 − ṽj−2
∥∥
&∞

∥∥∆ṽ
j−L

∥∥
&∞ + B1

∥∥Gj−2
∥∥
&∞,

whereC1 depends in a continuous nondecreasing way on max{‖vj−2‖&∞,‖ṽj−2‖&∞}, and therefore∥∥Gj
∥∥ � C1B

L−1(∥∥vj−1 − ṽj−1
∥∥ + ∥∥vj−2 − ṽj−2

∥∥ )∥∥∆ṽ
j−L

∥∥ + B2
1

∥∥Gj−2
∥∥ ,
&∞ 1 &∞ &∞ &∞ &∞
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whereC1 depends in a continuous nondecreasing way on

max
{∥∥vj−1

∥∥
&∞,

∥∥ṽj−1
∥∥
&∞,

∥∥vj−2
∥∥
&∞,

∥∥ṽj−2
∥∥
&∞

}
.

By iteration, and sinceGj−L := ∆ṽ
j−L −∆ṽ

j−L = 0, we obtain

Bj � C1B
L−1
1

∥∥∆ṽ
j−L

∥∥
&∞

(
L∑

l=1

∥∥vj−l − ṽj−l
∥∥
&∞

)
, (56)

whereC1 depends in a continuous nondecreasing way on max{‖vl‖&∞,‖ṽl‖&∞; l = 0, . . . , j −1}. Adding
(50) and (56), we thus obtain∥∥∆vj − ∆ṽ

j
∥∥
&∞ � ρL

∥∥∆vj−L − ∆ṽ
j−L

∥∥
&∞ + C1B

L−1
1

∥∥∆ṽ
j−L

∥∥
&∞

(
L∑

l=1

∥∥vj−l − ṽj−l
∥∥
&∞

)
.

Combining this estimate with (48) gives∥∥∆vj − ∆ṽ
j
∥∥
&∞ � ρL

∥∥∆vj−L − ∆ṽ
j−L

∥∥
&∞ + C2ρ

j−L

(
L∑

l=1

∥∥vj−l − ṽj−l
∥∥
&∞

)
(57)

with C2 = 2C1K‖ṽ0‖&∞ . If j − L � L, we also have

∥∥∆vj−L −∆ṽ
j−L

∥∥
&∞ � ρL

∥∥∆vj−2L − ∆ṽ
j−2L

∥∥
&∞ + C2ρ

j−2L

(
2L∑

l=L+1

∥∥vj−l − ṽj−l
∥∥
&∞

)
,

and therefore∥∥∆vj − ∆ṽ
j
∥∥
&∞ � ρ2L

∥∥∆vj−2L − ∆ṽ
j−2L

∥∥
&∞ + C2ρ

j−L

(
2L∑
l=1

∥∥vj−l − ṽj−l
∥∥
&∞

)
.

After [j/L] iterations, we thus obtain

∥∥∆vj − ∆ṽ
j
∥∥
&∞ � ρL[j/L] max

0�l�L−1

∥∥∆vl −∆ṽ
l
∥∥
&∞ + C2ρ

j−L

(
j∑

l=1

∥∥vj−l − ṽj−l
∥∥
&∞

)
.

For the valuesl = 0, . . . ,L − 1, as well as in the case 0� j < L, we simply use‖∆vl − ∆ṽ
l‖&∞ �

2‖vl − ṽl‖&∞ it follows that:

∥∥∆vj − ∆ṽ
j
∥∥
&∞ � Cρj

(
j∑

l=1

∥∥vj−l − ṽj−l
∥∥
&∞

)
, (58)

where

C = 2max
{
1, ρ−L

}
(1+KC1)

∥∥ṽ0
∥∥
&∞ (59)

depends in a continuous nondecreasing way on max{‖vl‖&∞,‖ṽl‖&∞; l = 0, . . . , j − 1}. ✷
We are now ready to give conditions for the stability of the quasilinear subdivision schemes for v

norms measuringS∞v − S∞ṽ. We begin with the uniform norm.
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Theorem 3. Let S be a quasilinear subdivision rule which reproduces constants. Assume thaS is
continuously dependent on the data and thatρ∞(S1) < 1. Then for all datav0 and ṽ0, we have∥∥S∞v0 − S∞ṽ0

∥∥
L∞ <C

∥∥v0 − ṽ0
∥∥
&∞, (60)

whereC depends in a continuous nondecreasing way onmax{‖v0‖&∞,‖ṽ0‖&∞}.
Also fors < − log(ρ∞(S1))/ log2 we have that∥∥∆vj − ∆ṽj

∥∥
&∞ � C2−sj

∥∥v0 − ṽ0
∥∥
&∞ . (61)

Proof. It suffices to prove that for allj > 0∥∥vj − ṽj
∥∥
&∞ <C

∥∥v0 − ṽ0
∥∥
&∞ (62)

with C independent ofj , since we then have∥∥f j − f̃ j
∥∥
L∞ <C

∥∥v0 − ṽ0
∥∥
&∞, (63)

and therefore (60) by lettingj go to+∞.
Let ρ be such thatρ∞(S1) < ρ < 1. Let us denoteαj := ‖vj − ṽj‖&∞ andβj := ‖∆vj − ∆ṽ

j‖&∞ . By
Remark 1 and Lemma 2, these sequences satisfy the following inequalities:{

αj � αj−1 + Dβj,

βj � Cρj(αj−1 + · · · + α0),

where C depends in a continuous nondecreasing way on max{‖vl‖&∞,‖ṽl‖&∞; l = 0, . . . , j −
1}. However, we note that sinceρ∞(S1) < 1, we have‖Sjv‖&∞ � K‖v‖&∞ with K a constant
independent ofj andv, and therefore we have thatC depends in a continuous nondecreasing way
max{‖v0‖&∞,‖ṽ0‖&∞}.

If we now consider the positives nondecreasing sequencesᾱj andβ̄j defined byᾱ0 = α0, β̄0 = β0 and
satisfying{

ᾱj = ᾱj−1 + Dβ̄j ,

β̄j = Cρj(ᾱj−1 + · · · + ᾱ0),
(64)

we clearly haveαj � ᾱj andβj � β̄j . Using the last equality from (64) and the fact thatᾱj is increasing,
we get

β̄j � Cjρj ᾱj−1. (65)

Combining this with the first equality in (64), we obtain

ᾱj �
(
1+CDjρj

)
ᾱj−1, (66)

and therefore

ᾱj �
j∏

l=0

(
1+CDlρl

)
α0. (67)

Clearly the product
∏∞

l=0 (1+CDlρl) is convergent, and by taking its logarithm, one easily check
its limit is bounded bỹC := exp(CDρ/((1− ρ)2)). Therefore, we obtain∥∥vj − ṽj

∥∥ = αj � C̃α0 = C̃
∥∥v0 − ṽ0

∥∥ , (68)

&∞ &∞
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which proves our first claim since the constantC of Lemma 2 depends in a continuous nondecrea
way on max{‖v0‖&∞,‖ṽ0‖&∞}. For the second claim we now assume thatρ∞(S1) < ρ < 2−s and we note
that

βj � β̄j � Cjρj ᾱj−1 � CC̃jρj
∥∥v0 − ṽ0

∥∥
&∞ � C2−sj

∥∥v0 − ṽ0
∥∥
&∞

with the last constantC depending in a continuous nondecreasing way on max{‖v0‖&∞,‖ṽ0‖&∞}. ✷
We next address the stability in the Hölder normCs for 0< s < 1.

Theorem 4. Under the assumptions of Theorem3, we have∥∥S∞v0 − S∞ṽ0
∥∥
Cs < C

∥∥v0 − ṽ0
∥∥
&∞, (69)

for all s > 0 such thats < −(log(ρ∞(S1)))/log2, whereC depends in a continuous nondecreasing w
on max{‖v0‖&∞,‖ṽ0‖&∞}.
Proof. Let ρ be such thats < −(logρ)/log2< −(log(ρ∞(S1)))/log2, i.e.,ρ∞(S1) < ρ < 2−s < 1. Let
us definef = S∞v0, f̃ = S∞ṽ0, andF = f − f̃ . We also recallf j andf̃ j defined by the interpolatio
of vj andṽj according to (12), and we defineFj = f j − f̃ j . As in the proof of Theorem 1, we can wri∥∥Fj+1 − Fj

∥∥
L∞ � C

∥∥∆vj − ∆ṽ
j
∥∥
&∞ . (70)

From Theorem 3, we thus obtain∥∥Fj+1 − Fj
∥∥
L∞ � C2−sj

∥∥v0 − ṽ0
∥∥
&∞, (71)

whereC depends in a continuous nondecreasing way on max{‖v0‖&∞,‖ṽ0‖&∞}. It follows that:∥∥F − Fj
∥∥
L∞ � C2−sj

∥∥v0 − ṽ0
∥∥
&∞ . (72)

For |x − y| � 1 andj such that 2−j−1 < |x − y| � 2−j ,∣∣F(x) −F(y)
∣∣� ∣∣F(x) −Fj (x)

∣∣+ ∣∣F(y) − Fj(y)
∣∣+ ∣∣Fj (x) − Fj(y)

∣∣
� 2

∥∥F − Fj
∥∥
L∞ + ∣∣Fj (x) − Fj(y)

∣∣� C2−sj
∥∥v0 − ṽ0

∥∥
&∞ + 2−j

∥∥(Fj
)′∥∥

L∞
� C2−sj

∥∥v0 − ṽ0
∥∥
&∞ + ∥∥∆vj − ∆ṽj

∥∥
&∞ � C2−sj

∥∥v0 − ṽ0
∥∥
&∞

� C|x − y|s∥∥v0 − ṽ0
∥∥
&∞,

up to a multiplicative change inC. This concludes the proof.✷
Finally, we address stability in the Hölder normCs for s > 1.

Theorem 5. Let S be a quasilinear subdivision rule which reproduces polynomials up to degreN .
Assume thatS is continuously dependent of the data, and thatρ∞(Sn+1) < 2−n for somen ∈ {0, . . . ,N}.
We then have∥∥S∞v0 − S∞ṽ0

∥∥
Cs < C

∥∥v0 − ṽ0
∥∥
&∞, (73)

for all s > 0 such thats < −(log(ρ∞(Sn+1)))/log2, whereC depends in a continuous nondecreas
way onmax{‖v0‖&∞,‖ṽ0‖&∞}.
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Proof. We shall use induction onn in a similar way as in the proof of Theorem 2. Forn = 0, the result
is proved by Theorem 4. Forn = 1, we assume thatρ(S2) < 1/2. We definef , f̃ , F , f j , f̃ j , andFj as
in the proof of Theorem 4. We recall the sequenceswj := 2j∆vj andw̃j := 2j∆ṽj , and the functions
gj :=∑

k∈Z
w

j

k ϕ̃(2
j · −k) andg̃j :=∑

k∈Z
w̃

j

k ϕ̃(2
j · −k).

We already know from the proof of Theorem 2 thatgj and g̃j uniformly converge tog = f ′ and
g̃ = f̃ ′. ThereforeGj := gj − g̃j converges toG = F ′. Sinces < −(log(ρ∞(S̃2)))/log 2, we obtain by
similar arguments as in the proof of Theorem 3 that∥∥∆wj −∆w̃j

∥∥
&∞ � C2(1−s)j

∥∥w0 − w̃0
∥∥
&∞ . (74)

Note that, we use the fact that, according to Remark 1, we also have the inequality∥∥wj − w̃j
∥∥
&∞ �

∥∥wj−1 − w̃j−1
∥∥
&∞ + D

∥∥∆wj − ∆w̃j
∥∥
&∞ (75)

with constant 1 for the first term. We then use the same type of arguments as in the proof of The
to derive that∣∣G(x) −G(y)

∣∣� C|x − y|s−1
∥∥w0 − w̃0

∥∥
&∞ � 2C|x − y|s−1

∥∥v0 − ṽ0
∥∥
&∞,

which gives the desired result. Iterating this argument forn > 1, we obtain the general result.✷

5. Application

In this section we apply the results of the previous sections to quasilinear subdivision scheme
on ENO and WENO interpolation techniques in the point values setting as described in Examp
Section 2. Note that the smoothness of the limit functions based on ENO interpolation techni
inherently limited in the following sense: if the datav0

k are such that the stencil selection always avo
a singularity point on the coarse grid, then the limit function will not be differentiable at this p
Similarly, we cannot expect continuity in the ENO cell-average setting.

We treat here the particular case of 4 point interpolation, i.e.,M = 4. The associated schemeS1 is
defined by a rule of the type(

S1(v)∆w
)
k
:=

∑
|k−2l|�4

bk,l(v)∆wl, (76)

wherebk,l , are the coefficients associated with the intervalΓ
j

l := [(k − l)2−j , (k − l + 1)2−j ]. In the
particular case of the four point ENO interpolation, the differences are calculated with one
following rules:

∆v
j+1
2k,0 := 11

16∆v
j

k − 1
4∆v

j

k+1 + 1
16∆v

j

k+2,

∆v
j+1
2k,1 := 1

16∆v
j

k−1 + 1
2∆v

j

k − 1
16∆v

j

k+1,

∆v
j+1
2k,2 := − 1

16∆v
j

k−2 + 1
4∆v

j

k−1 + 5
16∆v

j

k,

(77)

obtained, respectively, from each case of (3). By symmetry, we can also write the rule for th
differences

∆v
j+1
2k+1,0 := 5

16∆v
j

k + 1
4∆v

j

k+1 − 1
16∆v

j

k+2,

∆v
j+1
2k+1,1 := − 1

16∆v
j

k−1 + 1
2∆v

j

k + 1
16∆v

j

k+1,

∆v
j+1 := 1 ∆v

j − 1∆v
j + 11∆v

j
.

(78)
2k+1,2 16 k−2 4 k−1 16 k
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These rules allow us to estimate the joint spectral radius ofS1, according to the following result.

Lemma 3. In the case of the ENO four point subdivision scheme, one has

sup
u,w∈&∞

∥∥S1(u)S1(w)
∥∥
&∞ < 1 (79)

and thereforeρ∞(S1) < 1.

Proof. Notice first that the&∞ norm of the operator defined in (77) and (78) satisfies∥∥S1(v)
∥∥
&∞ = sup

k

∑
l

∣∣bk,l(v)∣∣= 11

16
+ 1

4
+ 1

16
= 1. (80)

For fixedu,w ∈ &∞(Z), we have that(
S1(u)S1(w)

)
k,l

:=
∑
k′∈Z

(
S1(u)

)
k,k′
(
S1(w)

)
k′,l (81)

and therefore‖S1(u)S1(w)‖&∞ is estimated by

sup
k

∑
l

∣∣(S1(u)S1(w)
)
k,l

∣∣� sup
k

∑
l

∑
k′

∣∣(S1(u)
)
k,k′
∣∣∣∣(S1(w)

)
k′,l
∣∣

� sup
k

∑
k′∈S(k)

(∣∣bk,k′(u)
∣∣∑

l

∣∣bk′,l(w)
∣∣),

whereS(k) is the selected stencils fork. SinceS(k) includes three consecutive integers, it always incl
a pair(2m,2m+ 1). From (77) and (78), we notice that either

∑
l |b2m,l(w)| = 5/8 or

∑
l |b2m+1,l(w)| =

5/8. Therefore, there existsk0 ∈ S(k) such that∑
l

∣∣bk0,l(w)
∣∣= 5/8. (82)

Sincek0 ∈ S(k), we also have|bk,k0(u)| � 1/16. It follows that:∑
k′

(∣∣bk,k′(u)
∣∣∑

l

∣∣bk′,l(w)
∣∣)= 5

8

∣∣bk,k0(u)
∣∣+ ∑

k′ �=k0

∣∣bk,k′(u)
∣∣∑

l

∣∣bk′,l(w)
∣∣

� 5

8

∣∣bk,k0(u)
∣∣+ ∑

k′ �=k0

∣∣bk,k′(u)
∣∣� 1+

(
5

8
− 1

)∣∣bk,k0(u)
∣∣

� 1− 3

8

1

16
= 125

128
< 1. ✷

A more precise estimation of‖S1(u)S1(w)‖&∞ can be obtained by an explicit computation for ea
different stencil combinations. This leads to the sharper bound

ρ∞(S1) � sup
u,w∈&∞

∥∥S1(u)S1(w)
∥∥1/2
&∞ = 9

16

√
2. (83)

As a consequence of Theorem 1 and (83), we obtain the following smoothness result of the limit fu
in the particular case of the four point ENO interpolation.
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Theorem 6. In the case of the ENO four point interpolation, the limit function of the subdivision sc
is bounded and belongs toCs for all s < −(log((9/16)

√
2))/log2≈ 0.6601499.

We finally turn to WENO interpolation defined in Section 1. The schemeS1 is defined by a rule of the
type (

S1(v)∆w
)
k
:=

∑
|k−2l|�6

bk,l(v)∆wl. (84)

The rule for the differences has the form of a convex combination of the rules (77), namely,

∆v
j

2k := −α2

16
∆v

j−1
k−2 + 4α2 + α1

16
∆v

j−1
k−1 + 11α0 + 8α1 + 5α2

16
∆v

j−1
k

+ −4α0 − α1

16
∆v

j−1
k+1 + α0

16
∆v

j−1
k+2. (85)

By symmetry, we can also write the rule for the odd differences

∆v
j

2k+1 := α2

16
∆v

j−1
k−2 + −4α2 − α1

16
∆v

j−1
k−1 + 11α2 + 8α1 + 5α0

16
∆v

j−1
k

+ 4α0 + α1

16
∆v

j−1
k+1 − α0

16
∆v

j−1
k+2. (86)

Note that in both formulas,α0, α1, andα2 vary with k. We then have the following result for the joi
spectral radius ofS1.

Lemma 4. In the case of WENO interpolation, one has

sup
u,w∈&∞

∥∥S1(u)S1(w)
∥∥
&∞ < 1 (87)

and thereforeρ∞(S1) < 1.

Proof. From (85) and (86) we have that∑
l

∣∣b2k,l(v)
∣∣� α0 + 5

8
(α1 + α2) � 1, (88)

and ∑
l

∣∣b2k+1,l(v)
∣∣� α2 + 5

8
(α1 + α0) � 1, (89)

and therefore‖S1(v)‖l∞ � 1. For fixedu,w ∈ &∞(Z), we have that(
S1(u)S1(w)

)
k,l

:=
∑
k′∈Z

(
S1(u)

)
k,k′
(
S1(w)

)
k′,l . (90)

We recall that‖S1(u)S1(w)‖&∞ is estimated by

sup
k

∑
l

∣∣(S1(u)S1(w)
)
k,l

∣∣� sup
k

∑
l

∑
k′

∣∣(S1(u)
)
k,k′
∣∣∣∣(S1(w)

)
k′,l
∣∣

� sup
k

∑
′ ′

(∣∣bk,k′(u)
∣∣∑∣∣bk′,l(w)

∣∣).

k s.t. |k−2k |�6 l
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We note that the set{k′ s.t.|k − 2k′| � 6} includes five consecutive integers, and then it always inclu
quadruplet(2m,2m + 1,2m + 2,2m + 3). We then again note that one of the rules (85) or (86) for
differences is contractive, since we have∑

l

∣∣b2k,l(v)
∣∣+∑

l

∣∣b2k+1,l(v)
∣∣= 5

4
α1 + 13

8
(α0 + α2) � 13

8
< 2. (91)

Consequently, there existsp andq in {0,1} such that
∑

l |b2m+p,l(w)| � 13/16< 1 and
∑

l |b2m+2+q,l(w)|
� 13/16< 1. We also derive from the rules (85) or (86) that we always have

min
{∣∣bk,2m+p(u)

∣∣, ∣∣bk,2m+2+q(u)
∣∣}� 1

16
. (92)

Therefore, there existsk0 such that
∑

l |bk0,l(w)| � 13/16 and|bk,k0(u)| � 1/16. It follows that:∑
k′

(∣∣bk,k′(u)
∣∣∑

l

∣∣bk′,l(w)
∣∣)= 13

16

∣∣bk,k0(u)
∣∣+ ∑

k′ �=k0

∣∣bk,k′(u)
∣∣∑

l

∣∣bk′,l(w)
∣∣

� 13

16

∣∣bk,k0(u)
∣∣+ ∑

k′ �=k0

∣∣bk,k′(u)
∣∣� 1+

(
13

16
− 1

)∣∣bk,k0(u)
∣∣

� 1− 3

16

1

16
= 253

256
< 1. ✷

A more precise estimation of‖S1(u)S1(w)‖&∞ can be obtained by an explicit computation for ea
different stencil combinations. This leads to the same sharper bound as in the ENO case

ρ∞(S1) � sup
u,w∈&∞

∥∥S1(u)S1(w)
∥∥1/2
&∞ = 9

16

√
2. (93)

As a consequence of Theorem 1 and (93), we obtain the following smoothness result of the limit fu
of the subdivision process, based on WENO interpolation.

Theorem 7. In the case of WENO interpolation, the limit function of the subdivision scheme is bo
and belongs toCs for all s < −(log((9/16)

√
2))/log2≈ 0.6601499.

Although they are bounded, the nonlinear operators based on ENO techniques are unstable. T
techniques use a numerical criterion in the selection process of the stencil, such as the minimiz
the cost function (2). If this cost function has a nonunique minimum, then an arbitrarily small cha
the round off level would be sufficient to change the stencil selection. In this situation, there is n
to have stability. In contrast, WENO interpolation based on the weights introduced in [6] is stable

Proposition 4. In the case of WENO interpolation, the subdivision operator given in(3) with the weights
defined in(8) is continuous with respect to the data.

Proof. Let u, ũ ∈ &∞(Z). From the definition of the subdivision operator we have∥∥S(u) − S(ũ)
∥∥
&∞ = sup

k

∑∣∣ak,l(u) − ak,l(ũ)
∣∣. (94)
l
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In the particular case of WENO interpolation we obtain∥∥S(u) − S(ũ)
∥∥
&∞ � |α0 − α̃0| + |α1 − α̃1| + |α2 − α̃2|,

whereα2, α1, α0, α̃2, α̃1, α̃0 represent the weights of the left and of the right stencil foru andũ. From the
definition of the weights in Section 2, we have

|αi − α̃i| =
∣∣∣∣ ai

a0 + a1 + a2
− ãi

ã0 + ã1 + ã2

∣∣∣∣� ∣∣∣∣ ai − ãi

a0 + a1 + a2

∣∣∣∣+ ∣∣∣∣ãi( 1

a0 + a1 + a2
− 1

ã0 + ã1 + ã2

)∣∣∣∣
� 1

a0 + a1 + a2

[
2|ai − ãi | +

∑
j �=i

|aj − ãj |
]
,

and therefore∥∥S(u) − S(ũ)
∥∥
&∞ � 4

a0 + a1 + a2

∑
i

|ai − ãi|.

From (8) we have that|bi | � C0‖u‖2
&∞ , whereC0 > 0 is a constant independent ofu andw. It follows

that:

a0 + a1 + a2 = d0

(ε + b0)2
+ d1

(ε + b1)2
+ d2

(ε + b2)2
�

2∑
i=0

di

ε + C0‖u‖2
&∞

=
∑

i di

ε + C0‖u‖2
&∞

. (95)

Using straightforward computations we also obtain

|ai − ãi | = di
2ε + bi + b̃i

(ε + bi)2(ε + b̃i)2
|bi − b̃i | � 2

di

ε3
|bi − b̃i |. (96)

From (8), we obtain

|bi − b̃i | � C1‖u+ ũ‖&∞‖u− ũ‖&∞, (97)

whereC1 > 0, constant independent onu andũ, and therefore∑
i

|ai − ãi | � 2C1
∑

i di

ε3

(‖u‖&∞ + ‖ũ‖&∞
)‖u− ũ‖&∞ . (98)

Combining (95) and (98), we therefore obtain∥∥S(u) − S(ũ)
∥∥
&∞ �

[
8C1

ε3

(‖u‖&∞ + ‖ũ‖&∞
)(
ε +C0‖u‖2

&∞
)]‖u − ũ‖&∞, (99)

which concludes the proof.✷
We can thus apply the results of Section 4 to derive the following result.

Theorem 8. In the case of the WENO four point interpolatory techniques, defined in(3), with the weights
satisfying(8), the subdivision scheme isL∞ stable andCs stable for all s < −(log(ρ∞(S1)))/log2≈
0.6601499.
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Appendix A

We shall briefly sketch some smoothness and stability results in the spacesLp and Bs
p,q which

generalize those obtained in Sections 3 and 4. The Besov spacesBs
p,q roughly represent the function

with s derivatives inLp. They can be defined through thenth orderLp modulus off ,

ωn(f, t)Lp
= sup

|h|�t

∥∥∆n
hf
∥∥
Lp

, (A.1)

where∆n
hf is the usualnth order finite difference operator

∆n
hf =

n∑
m=0

(−1)m
(

n

m

)
f (· + hm).

Forp,q � 1, s > 0, the Besov spacesBs
p,q consists of the functionsf ∈ Lp such that(

2sjωn

(
f,2−j

)
Lp

)
j�0 ∈ &q. (A.2)

Heren is an integer strictly larger thans. A natural norm for such a space is then given by

‖f ‖Bs
p,q

:= ‖f ‖Lp
+ ∥∥(2sjωn

(
f,2−j

)
Lp

)
j�0

∥∥
&q
.

Remark 2. For q = ∞, (A.2) simply means that‖∆n
hf ‖Lp

� Chs . In particular, one hasCs = Bs∞,∞
whens is not an integer. More generally, one hasWs,p = Bs

p,p if s is not an integer andHs = Ws,2 = Bs
2,2

for all s.

We can study the convergence of quasilinear subdivision schemes inLp according to the following
natural definition.

Definition 7. A subdivision scheme is calledLp convergent if, for every finite set of initial control poin
v0 ∈ &p(Z), there exists a functionf ∈ Lp, called the limit function, such that

lim
j→∞

∥∥f j − f
∥∥
Lp

= 0, (A.3)

wheref j is the function defined in (12).

One easily checks that we have∥∥f j
∥∥
Lp

� 2−j/p
∥∥vj

∥∥
&p
. (A.4)

Therefore, similar convergence and smoothness results can be obtained, based on the scheme&p study
of theSn. We assume boundedness ofS in the&p sense which means that for allv ∈ &p(Z),∥∥S(v)∥∥

&p
� B, (A.5)

where‖A‖&p := sup{‖Aw‖&p; ‖w‖&p = 1}, and we define the&p joint spectral radius

ρp(S) := lim sup
j→∞

sup
(u0,...,uj−1)∈(&p(Z))j

∥∥S(uj−1
)
, . . . , S

(
u0
)∥∥1/j

&p
. (A.6)

It can easily be checked that Proposition 2 extends to the&p joint spectral radius, i.e.,ρp(Sn+1) �
ρp(Sn)/2. Note that convergence of the subdivision scheme impliesρp(S) � 21/p since otherwise
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the sense
S∞v0 = 0 for all initial datav0 in view of (A.4). Therefore, the above result shows that we alw
have

ρp(Sn) � 21/p−n. (A.7)

With such definitions, we have the following results, similar to Theorems 1 and 2.

Theorem 9. LetS be a quasilinear subdivision scheme which reproduces constants. Ifρp(S1) < 21/p then
S is Lp-convergent. Moreover, the limit functionf belong toBs

p,q for all s < −(log(ρp(S1)))/log 2+
1/p.

Proof. By similar arguments as in the proof of Theorem 1, we establish that∥∥f j+1 − f j
∥∥
Lp

� C2−j/p
∥∥∆vj

∥∥
&p

� Cρj2−j/p
∥∥∆v0

∥∥
&p
, (A.8)

for ρ such thatρp(S1) < ρ < 21/p, from which we obtain theLp convergence off j to somef ∈ Lp. If
|h| � 1 andj is such that 2−j−1 < |h| � 2−j , we have∥∥f − f (· + h)

∥∥
Lp

� 2
∥∥f − f j

∥∥
Lp

+ ∥∥f j − f j (· + h)
∥∥
Lp

� Cρj2−j/p
∥∥∆v0

∥∥
&p

+ 2−j
∥∥(f j

)′∥∥
Lp

� C
(
ρj2−j/p

∥∥∆v0
∥∥
&p

+ 2−j/p
∥∥∆vj

∥∥
&p

)
� Cρj2−j/p

∥∥∆v0
∥∥
&p

� C|h|s∥∥∆v0
∥∥
&p

with s = −(logρ)/log 2 + 1/p. Thereforef ∈ Bs
p,∞ for all s < −(log(ρp(S1)))/log2 + 1/p. Since

Bt
p,∞ ⊂ Bs

p,q when t > s, it follows that we also havef ∈ Bs
p,q for all s < −(log(ρp(S1)))/log2 +

1/p. ✷
Theorem 10. LetS be a quasilinear subdivision scheme which reproduces polynomials up to degreN . If
ρp(Sn+1) < 21/p−n for somen � N , the limit functionf is in Bs

p,q for all s < −(log(ρp(Sn+1)))/log 2+
1/p.

Proof. We use exactly the same arguments as those used in the proof of Theorem 2. Forn = 0, the
result is proved by Theorem 9. Forn = 1, we recall the sequencewj := 2j∆vj and the function
gj :=∑

k∈Z
w

j

k ϕ̃(2
j ·−k). We get thatg := S̃∞∆v0 belongs toBs

p,q for s < −(log(ρp(S̃1)))/log2+ 1/p
and satisfiesf ′ = g. Thereforef ∈ Bs

p,q for all s < −(logρ∞(S2))/log2. Iterating this argument fo
n > 1, we obtain the general result.✷

We finally want to generalize the stability results given in Theorems 3 and 4 to theLp norm andBs
p,∞

norm. A first possibility is to proceed in a similar way as in the proof of these results, replacin
assumptions on the spectral radius ofS1 or Sn in &∞ by assumptions of their spectral radius in&p similar
to those in Theorems 9 and 10, and to assume continuous dependency with respect to the data in
where∥∥S(vj

)− S
(
ṽj
)∥∥

&p
� C

∥∥f j − f̃ j
∥∥
Lp

= C2−j/p
∥∥vj − ṽj

∥∥
&p
.

However, this last assumption is too restrictive in view of the factor 2−j/p . In particular, it is not
fulfilled by the WENO point value subdivision scheme. In the following, we show thatLp (respectively,
Bs

p,∞) stability can be obtained by combining theL∞ (respectively,Cs) stability with the fact that the
subdivision scheme is local.
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Theorem 11. Let S be a quasilinear subdivision scheme which reproduces constants and wh
continuously dependent on the data in the sense of(15). Assume thatρ∞(S1) < 1. Then we have∥∥S∞v0 − S∞ṽ0

∥∥
Lp

< C
∥∥v0 − ṽ0

∥∥
&p
, (A.9)

whereC depends in a continuous nondecreasing way onmax{‖v0‖&∞,‖ṽ0‖&∞}.

Proof. For all j > 0, we have∥∥f j − f̃ j
∥∥p
Lp

� 2−j
∥∥vj − ṽj

∥∥p
&p

= 2−j
∑
k∈Z

∥∥vj − ṽj
∥∥p
&p(Z∩[2j k,2j (k+1))). (A.10)

We also have

2−j
∥∥vj − ṽj

∥∥p
&p(Z∩[2j k,2j (k+1))) �

∥∥vj − ṽj
∥∥p
&∞(Z∩[2j k,2j (k+1))). (A.11)

Using theL∞ stability result established in Theorem 3, together with the fact that our scheme is
we obtain that∥∥vj − ṽj

∥∥
&∞(Z∩[2j k,2j (k+1))) � C

∥∥v0 − ṽ0
∥∥
&∞(Z∩[k−2M,k+2M]), (A.12)

whereC depends in a continuous nondecreasing way on max{‖v0‖&∞,‖ṽ0‖&∞}. Taking thepth power of
the last estimate, we thus obtain from (A.10) that∥∥f j − f̃ j

∥∥
Lp

� C
∥∥v0 − ṽ0

∥∥
&p
, (A.13)

whereC depends in a continuous nondecreasing way on max{‖v0‖&∞,‖ṽ0‖&∞}. The claim follows by
letting j tend to+∞ in the above inequality. ✷

We finally give a stability result in Besov norms.

Theorem 12. LetS be a quasilinear subdivision scheme which reproduces polynomials up to degrN ,
which is continuously dependent of the data in the sense of(15). Assume thatρ∞(S1) < 1 and that for
somen � N , ρp(Sn+1) < 21/p−n. Then we have∥∥S∞v0 − S∞ṽ0

∥∥
Bs
p,q

< C
∥∥v0 − ṽ0

∥∥
&p
, (A.14)

for all s < −(log(ρp(Sn+1)))/log 2 + 1/p, whereC depends in a continuous nondecreasing way
max{‖v0‖&∞,‖ṽ0‖&∞}.

Proof. For n = 0, we proceed as in the proof of Theorem 4. Letρ be such thats < −(logρ)/log 2+
1/p < −(log(ρp(S1)))/log2+ 1/p, i.e.,ρp(S1) < ρ < 21/p − s < 21/p. RecallingFj := f j − f̃ j and
its Lp limit F = f − f̃ , we first establish∥∥Fj+1 − Fj

∥∥p
Lp

� C2−j
∥∥∆vj − ∆ṽ

j
∥∥p
&p
, (A.15)

whereC depends in a continuous nondecreasing way on max{‖v0‖&∞,‖ṽ0‖&∞}, by the same technique a
in the proof of Theorem 1. In order to estimate the right-hand side, we use the same localization te
as in the proof of Theorem 10, i.e.,
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2−j
∥∥∆vj −∆ṽ

j
∥∥p
&p

= 2−j
∑
k∈Z

∥∥∆vj −∆ṽj
∥∥p
&p(Z∩[2j k,2j (k+1))) �

∑
k∈Z

∥∥∆vj −∆ṽj
∥∥p
&∞(Z∩[2j k,2j (k+1)))

� C
∑
k∈Z

2−spj
∥∥v0 − ṽ0

∥∥p
&∞(Z∩[k−2M,k+2M]) � C2−spj

∥∥v0 − ṽ0
∥∥p
&p
.

In the third inequality, we have used the local version of the estimate‖∆vj −∆ṽj‖&∞ � 2−sj‖v0 − ṽ0‖&∞
used in the proof of Theorem 4. It follows that:∥∥F − Fj

∥∥p
Lp

� C2−sj
∥∥v0 − ṽ0

∥∥
&p
, (A.16)

whereC depends in a continuous nondecreasing way on max{‖v0‖&∞,‖ṽ0‖&∞}. For |h| � 1 andj such
that 2−j−1 < |h| � 2−j , we then write

‖∆hF‖Lp
� 4

∥∥F − Fj
∥∥
Lp

+ ∥∥∆hF
j
∥∥
Lp

� C2−sj
∥∥v0 − ṽ0

∥∥
&p

+ 2−j
∥∥(Fj

)′∥∥
Lp

� C2−sj
∥∥v0 − ṽ0

∥∥
&∞ + 2−j/p

∥∥∆vj − ∆ṽj
∥∥
&p

� C2−sj
∥∥v0 − ṽ0

∥∥
&p

� C|h|s∥∥v0 − ṽ0
∥∥
&p
,

which proves the result forq = ∞ and therefore for allq sinceBt
p,∞ ⊂ Bs

p,q whent > s. Forn > 0 we
use exactly the same argument as in Theorem 5.✷

The results of this Appendix can be applied to theLp analysis of ENO and WENO subdivisio
schemes in a similar way as in Section 5. We end this Appendix with a smoothness result in
averages setting. We consider the prediction operator defined in Example 2 of Section 2. An estim
‖S1(u)S1(v)S1(w)‖&1 can be obtained by an explicit computation for each different stencil combina
This leads to the same bound for ENO and WENO interpolation:

ρ1(S1) � sup
u,v,w∈&1

∥∥S1(u)S1(v)S1(w)
∥∥1/3
&1

= 1.2365. (A.17)

As a consequence of Theorem 9, the following result holds.

Theorem 13. In the case of three cell averages ENO interpolation and in the case of three
averages WENO interpolation the quasilinear subdivision operatorS is L1-convergent. Moreover, in
both situations, the limit function, belong toBs

1,q for all s < −(log(1.2365))/log2+ 1 ≈ 0.69371.
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