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Abstract

The notion of a formally smooth bimodule is introduced and its basic properties are analyzed. In particular it is proven that a
B–A bimodule M which is a generator left B-module is formally smooth if and only if the M-Hochschild dimension of B is at
most one. It is also shown that modules M which are generators in the category σ [M] of M-subgenerated modules provide natural
examples of formally smooth bimodules.
c© 2007 Elsevier B.V. All rights reserved.

MSC: Primary: 16D20; secondary: 14A22

1. Introduction

The notion of a (formally) smooth algebra was introduced in [15]. It has been recognized in [6] that smooth
(or quasi-free) algebras can be interpreted as functions on non-commutative nonsingular (smooth) affine varieties
or as analogues of manifolds in non-commutative geometry. This point of view was then developed further in [10],
where an approach to smooth non-commutative geometry was outlined. In [11] this gave rise to the introduction of
formally smooth objects, morphisms and functors as main building blocks of non-commutative algebraic geometry.
Following on, the non-commutative geometric aspects of smooth algebras (or, more generally, R-rings or smooth
algebra extensions) such as tangent and cotangent bundles or symplectic structures were discussed in [7] (cf. [17]),
in the framework of double derivations. A general algebraic approach to formal smoothness in monoidal abelian
categories, including the cohomological aspects, was recently proposed in [2,3].

The aim of this paper is to find a common ground for the notions of formal smoothness which have attracted so
much attention in recent literature. The basic idea for this goes back to [16], where it is observed that properties of
an extension of algebras, such as separability, can be encoded more generally as properties of bimodules rather than
algebra maps. We thus propose the definition of a formally smooth bimodule, and show that this notion encodes smooth
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algebras and smooth extensions (which can be understood as smooth algebras in the monoidal category of bimodules).
Furthermore we show that a smooth bimodule can be interpreted as a smooth object in the sense of [11]. The definition
of a smooth bimodule is presented within the framework of relative homological algebra, making specific use of
tools recently developed in [2], and, in particular, developing the module–relative-Hochschild. cohomology. With
these tools we show that separable bimodules can be understood as (non-commutative, relative) “bundles of points”
(objects with zero relative-Hochschild dimension), while the formally smooth (generator) bimodules can be viewed
as (non-commutative, relative) “bundles of curves” or “line bundles” (objects with relative-Hochschild dimension at
most one). On a more module-theoretic side, we show that given a left B-module M with endomorphism ring S, M is
a separable B–S bimodule if and only if it is a generator of all left B-modules. On the other hand, if M is a generator
in the category σ [M] of M-subgenerated left B-modules, then M is a formally smooth B–S bimodule.

Module-theoretic conventions. By a ring we mean a unital associative ring. BM, MA, BMA denote categories of
(unital) left B-modules, right A-modules and B–A bimodules. Morphisms in these categories are respectively denoted
by BHom(−, −), HomA(−, −) and BHomA(−, −). For a B–A bimodule M we often write B M , MA, B M A to indicate
the ring and module structures used. The arguments of left B-module maps are always written on the left. This induces
a composition convention for the endomorphism ring S := BEnd(M) of B M , which makes M a B–S bimodule. Given
bimodules B M A and B N T , we view the abelian group BHom(M, N ) as an A–T bimodule with multiplications defined
by

(m)(a f t) := (ma) f t, for all f ∈ BHom(M, N ), a ∈ A, m ∈ M, t ∈ T .

For a B–A bimodule M , ∗M denotes the dual A–B bimodule BHom(M, B).

2. Relative projectivity and separable functors

2.1. Relative projectivity and injectivity

A convenient description and conceptual interpretation of formally smooth or separable bimodules is provided by
relative cohomology. In this introductory section we recall the basic properties of relative derived functors. Most of
the material presented here can be found in [8, Chapter IX].

Let C be a category and let H be a class of morphisms in C. An object P ∈ C is called f -projective, where
f : C1 → C2 is a morphism in C, if

C(P, f ) : C(P, C1) → C(P, C2), g 7→ f ◦ g

is surjective. P is said to beH-projective if it is f -projective for every f ∈ H.
The closureH of the class of morphismsH is defined by

H := { f ∈ C | if an object P ∈ C isH-projective, then P is f -projective} .

Obviously,H containsH as a subclass andH is said to be closed ifH = H. A closed classH is said to be projective
if, for each object C ∈ C, there is a morphism f : P → C inH where P isH-projective.

If C is an abelian category andH is a closed class of morphisms in C, then a morphism f ∈ C is calledH-admissible
if in the canonical factorization f = µ ◦ ξ, where µ is a monomorphism and ξ is an epimorphism, ξ is an element of
H. An exact sequence in C is calledH-exact if all its morphisms areH-admissible. Finally, anH-projective resolution
of an object C ∈ C is anH-exact sequence

· · · −→ Pn
dn

−→ Pn−1
dn−1
−→ · · ·

d2
−→ P1

d1
−→ P0

d0
−→ C −→ 0,

such that Pn is H-projective, for every n ∈ N. If H is a projective class of epimorphisms in C, then every object in C
admits anH-projective resolution.

Let B, C be abelian categories and let H be a projective class of epimorphisms in B (so that every object in B
admits an H-projective resolution). Given a contravariant additive functor T :B → C and given an H-projective
resolution in B

P• −→ B −→ 0
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of B, the object Hn(T(P•)) depends only on B and yields an additive functor

Rn
HT : B → C, Rn

HT(B) := Hn(T(P•)).

The functor Rn
HT is called the n-th right H-derived functor of T.

As in the absolute case, one can show that any shortH-exact sequence

0 → B1 → B2 → B3 → 0

in B yields a long exact sequence

0 → R0
HT (B3) → R0

HT (B2) → R0
HT (B1) → R1

HT (B3) → · · ·

· · · → Rn
HT (B3) → Rn

HT (B2) → Rn
HT (B1) → Rn+1

H T (B3) → · · ·

ofH-derived functors (cf. [8, Theorem 2.1, page 309]).
Let B, C be abelian categories and let H be a projective class of epimorphisms in B. A contravariant functor

T : B → C is said to be left H-exact if, for every H-exact sequence B1 → B2 → B3 → 0, the sequence
0 → T (B3) → T (B2) → T (B1) is exact. By [8, pages 311–312] a contravariant leftH-exact functor T : B → C, is
additive and naturally isomorphic to R0

HT. Furthermore, Rn
HT (P) = 0, for every n > 0 and for every H-projective

object P.

We now provide the main example of a closed projective class that we are interested in.
With any functor H : B → A we associate the class of H-relatively split morphisms:

EH := { f ∈ B | H( f ) splits in A}.

Theorem 2.1 ([2, Theorem 2.2]). Let (T, H) be an adjunction between the categories A and B, with counit
ε : TH → IdB . For any object P ∈ B, the following assertions are equivalent:

(a) P is EH-projective.
(b) Every morphism f : B → P in EH has a section.
(c) The counit εP : TH(P) → P has a section.
(d) There is a splitting morphism π : T(X) → P for a suitable object X ∈ A.

In particular all objects of the form T(X), X ∈ A, are EH-projective. Moreover EH is a closed projective class.

Thus EH is a projective class. Note that since, for any object Y ∈ B, the morphism H (εY ) is split by ηH(Y ), the
counit of adjunction εY is in the class EH. To apply the derived functors one needs to determine when EH is a class
of epimorphisms (in which case any object in B admits an EH-projective resolution). The necessary and sufficient
conditions for this are given in the next proposition, which is the only (mildly) new result in this section.

Proposition 2.2. Let (T, H) be an adjunction, where H : B → A is a covariant functor. Let ε : TH → IdB be the
counit of the adjunction.

The following assertions are equivalent:

(a) EH is a class of epimorphisms.
(b) The counit εY : TH(Y ) → Y is an epimorphism for every Y ∈ B.
(c) H : B → A is faithful.

Proof. (a) ⇒ (b) For all objects Y ∈ B, εY ∈ EH. Since EH is assumed to be a class of epimorphisms, εY is an
epimorphism.

(b) ⇔ (c) This is a standard description of a right adjoint faithful functor; see e.g. [13, Section 2.12, Proposition 3].
(c) ⇒ (a) It follows by the fact that faithful functors reflect epimorphisms. �

By Theorem 2.1, EH is always a projective class, and it is a class of epimorphisms, provided the equivalent
conditions of Proposition 2.2 hold. In this case any object in B admits an EH-projective resolution which is
unique up to a homotopy. Thus, for every B ′

∈ B, one can consider the right EH-derived functors R•

EHFB′ of
FB′ := B(−, B ′) : B → Ab. These functors play a special role in what follows.
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Definition 2.3. Let A, B be abelian categories. Let (T, H) be an adjunction, where H : B → A is a covariant functor.
If EH is a class of epimorphisms and the functor FB′ := B(−, B ′) is left EH-exact for every B ′

∈ B, then for every
B, B ′

∈ B, we set

Ext•EH(B, B ′) = R•

EHFB′(B).

The study of relative injectivity can be carried out in a dual way, i.e. working in the opposite category of C (note
that if a category is abelian, so is its opposite category). In particular, the dual of Theorem 2.1, [2, Theorem 2.3], states
that the class of relatively cosplit morphisms,

IT := {g ∈ A | T(g) cosplits in B},

is a closed injective class. Dualizing Proposition 2.2 one concludes that IT is a class of monomorphisms iff T is a
faithful functor.

2.2. Separable functors

The notion of a separable functor was introduced in [12]. Following the formulation in [14], a covariant functor
H : B → A is said to be separable if and only if the transformation B(−, −) → A(H(−), H(−)), f 7→ H( f ), is a
split natural monomorphism.

As explained in [12, Lemma 1.1], any equivalence of categories is separable, and a composition of separable
functors is separable. Furthermore if a functor H ◦ T is separable, then so is T. By [12, Proposition 1.2], a separable
functor reflects split monomorphisms and split epimorphisms. This then implies that, for a pair of functors T : A → B
and H : B → C, with H separable, the class of H ◦ T-relatively split morphisms (resp. H ◦ T-relatively cosplit
morphisms) is the same as the class of T-relatively split morphisms (resp. T-relatively cosplit morphisms), i.e.

EH◦T = ET ( resp. IH◦T = IT).

A particularly useful criterion of separability of a functor with an adjoint is provided by the Rafael theorem:

Theorem 2.4 ([14, Theorem 1.2]). Let T be a left adjoint of a covariant functor H.

(1) T is separable if and only if the unit of the adjunction is a natural section.
(2) H is separable if and only if the counit of the adjunction is a natural retraction.

Combining Theorem 2.4 with Theorem 2.1 (and its dual) we obtain

Corollary 2.5. Let T : A → B be a covariant functor with right adjoint H.

(1) If H separable, then any object in B is EH-projective.
(2) If T separable, then any object in A is IT-injective.

3. Module–relative-Hochschild cohomology

In this section we introduce and compute (in a special case) the Hochschild cohomology relative to a bimodule.
This cohomology is used in the description of separable and formally smooth bimodules.

Let A, B and T be rings. Given a bimodule B M A, consider the following adjunction:

LT : AMT → BMT , RT : BMT → AMT

LT (X) = M ⊗A X, RT (Y ) = BHom(M, Y ).

Note that the counit εT of this adjunction is, for all Y ∈ BMT ,

εT
Y : M ⊗A BHom(M, Y ) → Y, m ⊗A f 7→ (m) f.

We would like to compute the cohomology relative to the class

EM,T := ERT = { f ∈ BMT | BHom(M, f ) splits in AMT }

To apply the derived functors we need to determine when EM,T is a class of epimorphisms.
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Proposition 3.1. Let εT
: LT RT → IdBMT be the counit of the adjunction (LT , RT ). The following assertions are

equivalent:

(a) EM,T is a class of epimorphisms for every ring T .
(a

′

) EM,B is a class of epimorphisms.
(a

′′

) EM,Z is a class of epimorphisms.
(b) The counit εT

Y : LT RT (Y ) → Y is an epimorphism for every ring T and for every Y ∈ BMT .

(b
′

) The counit εB
Y : LBRB (Y ) → Y is an epimorphism for every Y ∈ BMB .

(b
′′

) The counit εZY : LZRZ(Y ) → Y is an epimorphism for every Y ∈ BMZ = BM.
(c) RT : BMT → AMT is faithful for every ring T .
(c

′

) RB : BMB → AMB is faithful.
(c

′′

) RZ : BM→ AM is faithful.
(d) The evaluation map

evM : M ⊗A
∗M → B, evM (m ⊗A f ) = (m) f,

where ∗M := BHom (M, B) is an epimorphism (of B-bimodules).
(e) M is a generator in BM.

Proof. The equivalences (a) ⇔ (b) ⇔ (c), (a′) ⇔ (b′) ⇔ (c′) and (a′′) ⇔ (b′′) ⇔ (c′′) follow by Proposition 2.2.
The implication (c) ⇒ (c′) is obvious, while (a′) ⇒ (d) follows by identifying evM with the counit of adjunction (at
B) εB

B ∈ EM,B . The latter is in the class EM,B , and hence is an epimorphism (by assumption (a′)). The equivalences
(c′′) ⇔ (d) ⇔ (e) are standard characterizations of generators in the category of modules (cf. [19, 13.7]). Finally,
since, for all f ∈ BHomT (Y, Y ′), RZ (f) = BHom (M, f ) = RT ( f ), the condition (c′′) implies (c). �

Clearly, for every Y ′
∈B MB, the functor FY ′ := BHomB(−, Y ′) : BMB → Ab is left EM,B-exact so, in view of

equivalent conditions in Proposition 3.1 we can propose the following:

Definition 3.2. Let M be a B–A bimodule which is a generator as a left B-module, and let EM,B be the class of all
B-bimodule maps f , such that BHom(M, f ) splits as an A–B bimodule map. The M-Hochschild cohomology of B
with coefficients in a B-bimodule N is defined by

H•

M (B, N ) := Ext•EM,B
(B, N ),

(cf. Definition 2.3 for the explanation of the relative Ext-functor).
If the number

min
{

n ∈ N ∪ {0} | Hn+1
M (B, N ) = 0 for every N ∈ BMB

}
exists, then it is called the M-Hochschild dimension of B and is denoted by HdimM (B). Otherwise B is said to have
infinite M-Hochschild dimension.

Similarly to the non-relative case, M-Hochschild cohomology can be equivalently described as the cohomology
of a complex associated with the standard resolution. The standard resolution can be described in general as follows.
Start with an additive functor H : B → A of abelian categories with a left adjoint T. This defines a comonad F := TH
on B with the counit given by the counit of adjunction (T, H), ε : TH → IdB. For an object B ∈ B, one considers
the associated augmented chain complex

· · ·
d3

−→ F3(B)
d2

−→ F2(B)
d1

−→ F(B)
d0

−→ F0(B) := B → 0,

where

dn =

n∑
i=0

(−1)i F i (
εFn−i (B)

)
(see [21, 8.6.4, page 280]).
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Proposition 3.3. Let A, B be abelian categories. Let H : B → A be a faithful covariant functor with a left adjoint
T. For all objects of B, the associated augmented chain complex is an EH-exact sequence.

Proof. Let ε : TH → IdB be the counit of the adjunction and let η : IdA → HT be the unit of the adjunction. For all
integers n ≥ −1, define

sn := ηHFn+1(B) : HFn+1(B) → HFn+2(B).

Then, H (d0) ◦ s−1 = H (εB) ◦ ηH(B) = IdH(B). Furthermore, for all n ≥ 0, dn = εFn(B) − F (dn−1), so that

H (dn+1) ◦ sn = H
(
εFn+1(B)

)
◦ ηHFn+1(B) − HF (dn) ◦ ηHFn+1(B)

= H
(
εFn+1(B)

)
◦ ηHFn+1(B) − ηHFn(B) ◦ H (dn)

= IdHFn+1(B) − sn−1 ◦ H (dn) ,

where the second equality follows by the naturality of the unit of adjunction. Hence s• is a contracting homotopy
for the complex (H(F•(B)), H(d•)), which implies that the augmented chain complex (F•(B), d•) is an EH-exact
sequence. �

In the case of the adjunction (LB, RB), the comonad is F = M ⊗A BHom(M, −). Application of the functor
BHomB(−, N ) : BMB → Ab to the associated augmented chain complex results in the cochain complex

(BHomB(F•(B), N ), d•
:= BHomB(d•, N )),

whose cohomology is H•

M (B, N ).
The M-Hochschild cohomology has a particularly simple description in the case where M is a progenerator left

B-module. In this case it can be identified with a (relative-)Hochschild cohomology of the endomorphism ring of M .
This can be described as follows.

Given a ring extension A → S (or an A-ring S), the A-relative-Hochschild cohomology of S with values in an
S-bimodule W [9], H•(S|A, W ), is defined as the cohomology of the cochain complex

0 → AHomA(A, W )
b0

→ AHomA(S, W )
b1

→ AHomA(S⊗A 2, W )
b2

→ AHomA(S⊗A 3, W )
b3

→ · · · ,

where, for all f ∈ AHomA(S⊗A n, W ), n = 0, 1, 2, . . . ,

bn( f ) = µl
W ◦ (S ⊗A f ) +

n∑
i=1

(−1)i f ◦ (S⊗i−1
⊗A mS ⊗A S⊗n−i ) + (−1)n+1µr

W ◦ ( f ⊗A S).

Here µl
W , µr

W denote left and right S-multiplication, respectively, on W and mS : S ⊗A S → S is the product
map. Also, in the case n = 0, the obvious isomorphisms A ⊗A S ' S ⊗A A ' S are implicitly used. H•(S|A, W )

can be understood as the Hochschild cohomology of the algebra S in monoidal category of A-bimodules (cf. [3,
Theorem 4.42]). The Hochschild dimension of S over A is then defined by

Hdim(S|A) := min
{

n ∈ N ∪ {0} | Hn+1 (S|A, W ) = 0 for every W ∈S MS

}
,

provided that the minimum on the right hand side exists.

Theorem 3.4. Let A, B be rings. Consider a bimodule B M A such that B M is a progenerator. Let S be the
endomorphism ring of the left B-module M. Then, for all B-bimodules N,

H•

M (B, N ) = H•
(
S|A, ∗M ⊗B N ⊗B M

)
.

Furthermore, for a fixed n ∈ N, the following assertions are equivalent:

(a) Hn
M (B, N ) = 0, for every B-bimodule N.

(b) Hn (S|A, W ) = 0, for every S-bimodule W .

In particular

HdimM (B) = Hdim(S|A).
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Proof. Since M is a finitely generated and projective left B-module, the functor RB is isomorphic to ∗M ⊗B (−)B .

The comonad comes out as

F (N ) = LBRB (N ) ≡ C ⊗B N , for all N ∈ BMB,

where C := M ⊗A
∗M ≡ LBRB (B). The counit of adjunction at B is simply the evaluation map evM : M ⊗A

∗M →

B, m ⊗A f 7→ (m) f . Using the standard isomorphisms C ⊗B B ' C , and applying the Hom-functor to the
augmented chain complex associated with B, we can identify H•

M (B, N ) with the cohomology of the cochain complex

0 → BHomB(B, N )
d∗

0
→ BHomB(C, N )

d∗

1
→ BHomB(C⊗B 2, N )

d∗

2
→ BHomB(C⊗B 3, N )

d∗

3
→ · · · ,

where, for all f ∈ BHomB(C⊗B n, N ), n = 0, 1, 2, . . . ,

d∗
n ( f ) =

n∑
i=0

(−1)i f ◦ (C⊗B i
⊗B evM ⊗B C⊗B n−i ).

Since M is a finitely generated and projective left B-module, S can be identified with ∗M ⊗B M . Under this
identification, the product is given by ∗M ⊗B evM ⊗B M and the unit is the dual basis element

∑
a∈I

∗ea ⊗B ea .
Furthermore, one can consider the isomorphisms

Φn : BHomB(C⊗B n+1, N ) → AHomA(S⊗A n, ∗M ⊗B N ⊗B M),

defined by

[Φn ( f )] (x) =
(
∗M ⊗B f ⊗B M

)
(1S ⊗A x ⊗A 1S), for every x ∈ S⊗A n .

Using the definitions of cochain maps and above identification of S, one easily checks that these isomorphisms fit into
the commutative diagrams

BHomB(B, N )
d∗

0
−→ BHomB(C, N )

'↓ ↓ Φ0

N B
= {n ∈ N | bn = nb, ∀b ∈ B}

b−1

−→ AHomA(A, ∗M ⊗B N ⊗B M)

and

BHomB(C⊗B n, N )
d∗

n
−→ BHomB(C⊗B n+1, N )

Φn−1 ↓ ↓ Φn

AHomA(S⊗An−1, ∗M ⊗B N ⊗B M)
bn−1

−→ AHomA(S⊗An, ∗M ⊗B N ⊗B M)

This immediately implies that

H•

M (B, N ) = H•
(
S|A, ∗M ⊗B N ⊗B M

)
,

as required.
It remains to prove that the statements (a) and (b) are equivalent. The implication (b) ⇒ (a) is obvious. To prove

the converse, take any S-bimodule W and define a B-bimodule N = M ⊗S W ⊗S
∗M . Then

∗M ⊗B N ⊗B M =
∗M ⊗B M ⊗S W ⊗S

∗M ⊗B M = S ⊗S W ⊗S S ' W.

This completes the proof. �

4. Separable bimodules

The aim of the section is to supplement (and extend) the functorial description of separable bimodules in
[4, Corollary 5.8] with the cohomological description of such bimodules. First recall from [16] the following:
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Definition 4.1. Let A, B be rings. A B–A bimodule M is said to be separable, or B is said to be M-separable over
A if the evaluation map

evM : M ⊗A
∗M → B, evM (m ⊗A f ) = (m) f,

is a split epimorphism of B-bimodules.

Throughout this section, M is a B–A bimodule, and LT , RT , EM,T are the functors and the class of morphisms
(associated with M) described at the beginning of Section 3.

Proposition 4.2. The following assertions are equivalent for a B–A bimodule M.

(a) M is a separable bimodule.
(b) For all rings T , RT : BMT → AMT is a separable functor.
(c) RB : BMB → AMB is a separable functor.
(d) RZ : BM→ AM is a separable functor.
(e) Any B-bimodule is EM,B-projective.
(f) B is EM,B-projective.
(g) M is a generator in BM and Hn

M (B, N ) = 0, for every N ∈ BMB and for every n ≥ 1.

(h) M is a generator in BM and H1
M (B, N ) = 0, for every N ∈B MB .

(i) M is a generator in BM and HdimM (B) = 0.

Proof. (a) ⇒ (b) For any B–T bimodule Y , there is a (natural in Y ) A–T bimodule map

ξ̂ :
∗M ⊗B Y → BHom(M, Y ), ∗m ⊗B y 7→ [m 7→ (m) ∗m y],

(cf. [1, Proposition 20.10]). Tensoring this map with M , we obtain a B–T bimodule map

ξ : M ⊗A
∗M ⊗B Y → M ⊗A BHom(M, Y ).

It is clear from the definition and naturality of ξ̂ that, for all x ∈ (M ⊗A
∗M)B

:= {x ∈ M ⊗A
∗M | ∀b ∈ B, xb = bx},

the map ξ(x ⊗B −) : Y → M ⊗A BHom(M, Y ) is natural in Y and B–T bilinear.
If M is a separable bimodule, then there exists s ∈ (M ⊗A

∗M)B such that evM (s) = 1B . One easily checks that
ξ(s ⊗A −) is a natural splitting of the counit of the adjunction (LT , RT ). Hence, by Rafael’s theorem (Theorem 2.4),
RT is a separable functor.

Implications (b) ⇒ (c) and (e) ⇒ (f) are obvious, while the equivalence (a) ⇔ (d) is proven in [4, Corollary 5.8].
The implication (c)⇒ (e) follows by Corollary 2.5.

Since evM is the same as the counit of adjunction (LB, RB) evaluated at B, the implication (f) ⇒ (a) follows by
Theorem 2.1. Thus, if B is EM,B-projective, then evM is an epimorphism, and hence M is a generator in BM by Propo-
sition 3.1. Therefore, the equivalences between (f), (g), (h) and (i) follow by the definitions of M-Hochschild coho-
mology of B with coefficients in N and M-Hochschild dimension of B, and by the properties of Ext•EM,B

(−, −). �

Recall that a ring morphism A → S is called a separable extension if the product map mS : S ⊗A S → S has an
S-bimodule section.

Proposition 4.3 ([16, Theorem 1]). Let A, B be rings. Consider a bimodule B M A such that M is a finitely generated
and projective left B-module. Let

S = BEnd (M) = RA (M) '
∗M ⊗B M.

The following assertions are equivalent:

(a) B M A is a separable bimodule.
(b) M is a generator in BM and the canonical morphism i : A → S, a 7→ [m 7→ ma] is a separable extension.

Proof. By Proposition 4.2, a separable bimodule M is a generator in BM. Thus, in both cases, M is a progenerator
and, by Theorem 3.4, HdimM (B) = Hdim (S|A). Since the extension A → S is separable if and only if Hdim (S|A) =

0 (cf. [3, Theorem 4.43]), the assertion follows by Proposition 4.2.
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The proposition can also be proven directly as follows. In both cases M is a progenerator left B-module, and hence
S is isomorphic to ∗M ⊗B M (B M is finitely generated and projective) and B is isomorphic to M ⊗S

∗M (B M is a
generator). These isomorphisms allow one to identify the product mS in S with ∗M ⊗B evM ⊗B M , and evM with
M ⊗S mS ⊗S

∗M . With these identifications, the mutual equivalence of statements (a) and (b) is clear. �

Remark 4.4. For a left B-module M , let S = BEnd (M). For the B–S bimodule M , the map i of Proposition 4.3 is
the identity and hence it trivially defines a separable extension. Still B M S needs not be a separable bimodule unless
B M is a generator in BM (see Corollary 5.11).

5. Formally smooth bimodules

In this section we introduce the notion of a formally smooth bimodule, give a cohomological interpretation and
describe examples of such bimodules. Throughout this section, M is a B–A bimodule, and, for any ring T , LT , RT ,
EM,T are the functors and the class of morphisms (associated with M) described at the beginning of Section 3.

Definition 5.1. Let A, B be rings. A B–A bimodule M is said to be formally smooth or B is said to be M-smooth
over A whenever the kernel of the evaluation map

evM : M ⊗A
∗M → B, evM (m ⊗A f ) = (m) f.

is an EM,B-projective B-bimodule.

Following [11] a pair of functors U∗ : Ā → A, U∗
: A → Ā such that U∗ is fully faithful and left adjoint to U∗ is

called a Q-category. As explained in [11, Section 2.5], with any category C and any class of morphismsH in C which
contains all the identity morphisms, one can associate a Q-category as follows. First construct the category H, whose
objects are elements f , g ofH and morphisms are commutative squares

M //

f
��

N

g

��
M ′ // N ′

where the horizontal arrows are in C. The inverse image functor U∗
: C → H is

U∗
: M 7→ idM ,

(
M

f // N

)
7→


M

f //

idM

��

N

idN

��
M

f // N

 .

The direct image functor U∗ : H → C is defined by

U∗ :


M

f
��

M ′

 7→ M,


M //

f
��

N

g

��
M ′ // N ′

 7→
(

M // N
)
.

We denote this Q-category by AH and call it a Q-category induced by the classH. Following [11, Sections 3.7 & 4.5]
an object P ∈ C is said to be formally AH-smooth if and only if, for every f ∈ H, the mapping C(P, f ) is a strict
epimorphism (i.e. a surjective map) of sets. Thus P is formally AH-smooth if and only if P is H-projective. This
leads immediately to the following lemma, which also explains the choice of the terminology.

Lemma 5.2. A bimodule B M A is formally smooth if and only if Ker(evM ) is a formally smooth object in the
Q-category induced by the class of morphisms EM,B .

The following proposition gives the first examples of formally smooth bimodules.
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Proposition 5.3. A B–A bimodule M is formally smooth whenever one of the following conditions holds:

(1) M is a separable bimodule.
(2) The map evM is injective.

Proof. (1) If M is a separable bimodule, then Proposition 4.2 implies that any B-bimodule is EM,B-projective. In
particular Ker(evM ) is EM,B-projective.

(2) If evM is injective, then Ker(evM ) is trivial, and hence EM,B-projective. �

The cohomological interpretation of formally smooth bimodules is provided by the following:

Proposition 5.4. Let A, B be rings. Take a B–A bimodule M which is a generator in BM. Then the following
assertions are equivalent:

(a) M is a formally smooth bimodule.
(b) Hn

M (B, N ) = 0, for all N ∈ BMB and all n ≥ 2.

(c) H2
M (B, N ) = 0, for all N ∈B MB .

(d) HdimM (B) ≤ 1.

Proof. The equivalences (b) ⇔ (c) ⇔ (d) follow by the definitions of the M-Hochschild cohomology of B with
coefficients in N and the M-Hochschild dimension of B, and by the properties of Ext•EM,B

(−, −) .

(a) ⇔ (c). Write (L , iL) for the kernel of evM , and consider the following exact sequence of B-bimodules:

0 // L
iL // M ⊗A

∗M
evM // B // 0.

Note that evM is surjective as M is a generator in BM. Also, since evM is the same as the counit of adjunction
(LB, RB), evM = εB

B , the map evM is in the class EM,B . Hence the above sequence is EM,B-admissible and, for any
B-bimodule N , gives rise to a long exact sequence, a part of which is

Ext1EM,B
(M ⊗A

∗M, N ) → Ext1EM,B
(L , N ) → Ext2EM,B

(B, N ) → Ext2EM,B
(M ⊗A

∗M, N ).

By Theorem 2.1, M ⊗A
∗M = LB(∗M) is EM,B-projective so that Ext1EM,B

(L , N ) ' Ext2EM,B
(B, N ) = H2

M (B, N ).
Hence the EM,B-projectivity of L = Ker(evM ) is equivalent to the property (c). �

Examples of formally smooth bimodules can be obtained from smooth extensions.

Definition 5.5. Let A, B be rings and let i : A → B be a ring homomorphism. Consider the adjunction

T : AMA → BMB, H : BMB → AMA

T(X) = B ⊗A X ⊗A B, H(Y ) = Y.

Then i is called a formally smooth extension whenever Ker(m B) is EH-projective. Here m B : B ⊗A B → B is the
multiplication map and EH is a class of H-relatively split morphisms as in Theorem 2.1.

By [3, Corollary 3.12], ring extension A → B is formally smooth provided B is formally smooth when regarded
as an algebra in the monoidal category (AMA, ⊗A, A).

Lemma 5.6. Let A, B be rings and let M be a B–A bimodule that is finitely generated and projective as a left
B-module. Let S =B End(M) = RA(M) '

∗M ⊗B M be the endomorphism ring. Write mS : S ⊗A S → S for the
multiplication map and (L , iL) for the kernel of evM . The sequence

0 // ∗M ⊗B L ⊗B M
∗M⊗B iL⊗B M // S ⊗A S

mS // S // 0.

is exact.



1082 A. Ardizzoni et al. / Journal of Pure and Applied Algebra 212 (2008) 1072–1085

Proof. Start with the exact sequence

0 // L
iL // M ⊗A

∗M
evM // B. (∗)

Since M is a finitely generated and projective left B-module, ∗M is a finitely generated and projective right B-module.
By tensoring sequence (∗) on the left with ∗M and on the right with M , we obtain the following exact sequence:

0 // ∗M⊗B L⊗B M
∗M⊗B iL⊗B M // ∗M⊗B M ⊗A

∗M⊗B M
∗M⊗B evM ⊗B M // ∗M⊗B B⊗B M.

The isomorphisms ∗M ⊗B B ⊗B M '
∗M ⊗B M ' S allow one to identify the map ∗M ⊗B evM ⊗B M with mS .

Being a multiplication of unital rings the latter is surjective. �

Proposition 5.7. Let A, B be rings and let M be a B–A bimodule that is finitely generated and projective as a left
B-module. Let S = BEnd(M) = RA(M) '

∗M ⊗B M be the endomorphism ring. Write i for the canonical ring map

i : A → S, a 7→ [m 7→ ma].

(1) If the bimodule B M A is formally smooth, then i : A → S is a formally smooth extension.
(2) If M is a generator in BM and i : A → S is a formally smooth extension, then B M A is a formally smooth

bimodule.

Proof. (1) In view of Theorem 2.1, to prove that i : A → S is a formally smooth extension, it suffices to prove
that Ker(mS) is a direct summand (in SMS) of S ⊗A X ⊗A S, for a suitable object X ∈AMA. Write (L , iL) for the
kernel of evM . Since M is formally smooth, L is EM,B-projective. By Theorem 2.1, this means that the counit of the
adjunction (LB, RB) evaluated at L

εB
L : LBRB(L) ' M ⊗A

∗M ⊗B L → L

has a section σ : L → M ⊗A
∗M ⊗B L in BMB . Since M is a finitely generated and projective left B-module, the

functor RB can be naturally identified with the tensor functor ∗M ⊗B −. Furthermore, evM is in the class EM,B , and
hence ∗M ⊗B evM ' RB(evM ) splits in AMB . Thus applying RB to the defining sequence of (L , iL) we obtain the
split exact sequence of A–B bimodules

0 // ∗M ⊗B L
∗ M⊗B iL // ∗M ⊗B M ⊗A

∗M
∗M⊗B evM // ∗M // 0

In particular ∗M ⊗B iL is a section in AMB , and, consequently M ⊗A
∗M ⊗B iL is a section in BMB . Therefore, the

map

α :=

(
L

σ // M ⊗A
∗M ⊗B L

M⊗A
∗ M⊗B iL // M ⊗A

∗M ⊗B M ⊗A
∗M

)
splits in BMB . This implies that,

∗M⊗B L⊗B M
∗ M⊗Bα⊗B M // ∗M⊗B M ⊗A

∗M ⊗B M ⊗A
∗M⊗B M ' S ⊗A S ⊗A S

splits in SMS . In view of Lemma 5.6, Ker(mS) '
∗M ⊗B L ⊗B M , and hence ∗M ⊗B α ⊗B M is the required S-

bimodule section of a map S ⊗A S ⊗A S → Ker(mS).
(2) By [3, Theorem 3.8 & Theorem 4.42], if i : A → S is formally smooth, then Hdim(S|A) ≤ 1. Since M is a

generator in BM, Theorem 3.4 implies that HdimM (B) ≤ 1. Proposition 5.4 then implies that M is a formally smooth
bimodule. �

Proposition 5.8. Let B be an algebra over a commutative ring k. Consider the functor

F :Mk →k Mk :
(
V, µr )

7−→

(
V, µl , µr

)
,
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where the left k-multiplication is defined by µl(λ ⊗k v) := µr (v ⊗k λ), for all λ ∈ k and v ∈ V . Furthermore,
consider the adjunction

T′
:Mk → BMB, H′

: BMB →Mk

T′(X) = B ⊗k F(X) ⊗k B, H′(Y ) = Y.

The following assertions are equivalent.

(a) The bimodule B Mk = B Bk is formally smooth.
(b) Ker(m B) is EH′ -projective.
(c) The extension k → B is formally smooth.

Proof. Clearly the B-module B can be identified with both its dual and its endomorphism ring. With this identification
the evaluation map evB = m B . Hence the equivalence (a) ⇔ (c) follows by Proposition 5.7. The implication (b) ⇒

(c) is an immediate consequence of the observation that any B-bimodule map that splits as a k-bimodule map splits
also as a right k-module map (i.e. EH ⊆ EH′ , where H is a functor in Definition 5.5).

(a) ⇒ (b) We need to show that L := Ker(evB) is EH′ -projective. The counit of the adjunction (T′, H′) is given by
the two-sided multiplication

ε′

N : B ⊗k FH′(N ) ⊗k B → N , for every N ∈B MB .

Note that ε′

N ∈ EH′ as it is the counit. Consider the adjunction

T′′
:Mk →MB, H′′

:MB →Mk

T′′(X) = X ⊗k B, H′′(Y ) = Y.

By the standard argument (cf. e.g. [6, Proposition 2.5]), L '
B
k ⊗k B = T′′ (B/k). The latter is EH′′ -projective by

Theorem 2.1. Since ε′

L ∈ EH′ ⊆ EH′′ we conclude that ε′

L splits inMB , that is ε′

L ∈ EM,B (note that L = FH′(L) as it
is a subbimodule of B ⊗k B). By hypothesis L is EM,B-projective so that ε′

L splits in BMB . By Theorem 2.1 (c)⇒(a),
we thus conclude that L is EH′ -projective. �

In view of Proposition 5.8 a formally smooth algebra B over a field k is a formally smooth (B, k)-bimodule. In
this way one can construct examples of formally smooth bimodules which are not separable. For example, the tensor
algebra Tk(V ) of a vector space V is formally smooth but not separable in view of Proposition 4.3. In fact it is well
known that any separable extension of a field k is finite dimensional over k (cf. [18, Proposition 1.1]).

Let M be a left B-module and write S for its endomorphism ring. Recall that a left B-module N is said to be
M-static provided the evaluation

evM,N : M ⊗S BHom(M, N ) → N , m ⊗A f 7→ (m) f

is an isomorphism (see e.g. [20, 2.3]). Recall further that the image of the evaluation map evM,N is called the trace
of M in N and is denoted by TrM (N ). Finally, denote by σ [M] the full subcategory of BM, whose objects are all
modules subgenerated by M (cf. [19, Section 15]).

Proposition 5.9. Let B be a ring, M be a left B-module and set S =B End (M), so that M is a B–S bimodule. The
following assertions are equivalent:

(a) The evaluation map evM : M ⊗S
∗M → B is injective.

(b) The B-module TrM (B) is M-static.

In particular these conditions hold whenever M is a generator in σ [M].

Proof. Since

BHom(M, TrM (B)) = BHom(M, B),

the equivalence follows by observing that evM,TrM (B) is exactly evM corestricted to its image. The last assertion
follows by [22, Lemma 1.3]. �

Combining Proposition 5.9 with Proposition 5.3 we immediately obtain
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Corollary 5.10. If a left B-module M with endomorphism ring S generates σ [M], then M is a formally smooth B–S
bimodule.

Corollary 5.11. Let B be a ring, M be a left B-module, and let S =B End (M). The following assertions are
equivalent:

(a) B M S is a separable bimodule.
(b) M is a generator in BM.
(c) The evaluation map evM : M ⊗S

∗M → B is an isomorphism.

Proof. The implication (a) ⇒ (b) follows by Proposition 4.2. If M is a generator of BM, then it is also a generator of
σ [M]. By Proposition 5.9, B = TrM (B) is M-static. Hence evM is an isomorphism. This proves that (b) implies (c).
The implication (c) ⇒ (a) is obvious. �

The following proposition explains how two formally smooth bimodules can be combined to give a formally
smooth bimodule, and thus can be seen as module version of [6, Proposition 5.3].

Proposition 5.12. Let A, B and T be rings. Let Y be a T –A bimodule and let X be a B–T bimodule such that the
evaluation map evX : X ⊗T

∗X → B is injective and that X is flat as a right T -module. Assume that one of the
following conditions (1) or (2) is satisfied:

(1) Y is a separable T –A bimodule.
(2) (i) ∗X is flat as a right T -module,

(ii) Y is finitely generated and projective as a left T -module, and
(iii) Y is a formally smooth T –A bimodule.

Then

B M A = B X ⊗T YA.

is a formally smooth bimodule.
In particular, if a left B-module X is a generator of σ [X ], T =B End(X), and either (1) or (2) hold, then

M = X ⊗T Y is a formally smooth B–A bimodule.

Proof. Associate with Y the tensor–Hom adjunction,

T : AMB → TMB, H : TMB → AMB

T(U ) = Y ⊗A U, H(W ) = T Hom(Y, W ),

and denote its counit (the evaluation map) by ε. Use the natural isomorphism

Φ :
∗M = BHom(X ⊗T Y, B) →T Hom(Y, ∗X), f 7→ [y 7→ f (− ⊗T y)],

to write the evaluation map evM : M ⊗A
∗M → B as

evM = evX ◦ (X ⊗T ε∗ X ) ◦ (M ⊗A Φ) .

Since, by assumption, XT is flat and evX is injective, and since Φ is an isomorphism, there is an isomorphism of
B-bimodules

Ker(evM ) ' X ⊗T Ker(ε∗X ). (∗)

Assume that condition (1) is satisfied, i.e. that Y is a separable bimodule. By Proposition 4.2, H is a separable
functor, and hence, by Corollary 2.5, any object in TMB is EH-projective. In particular Ker(ε∗X ) is EH-projective. By

Theorem 2.1, Ker(ε∗X ) is a direct summand in TMB of T (U ) for some U ∈AMB, and hence X ⊗T Ker(ε∗X ) is a
direct summand of

X ⊗T T(U ) = X ⊗T Y ⊗A U = M ⊗A U = LB(U )

in BMB . Theorem 2.1 implies that Ker (evM ) is EM,B-projective, so M is a formally smooth bimodule.
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Assume that conditions (2) hold. Since Y is a finitely generated and projective left T -module, the functor H is
naturally isomorphic to the tensor functor ∗Y ⊗T −, and the counit ε evaluated at W can be identified with evY ⊗T W .
In particular, Ker(ε∗X ) ' Ker(evY ⊗T

∗X). Since ∗X is a flat left T -module, the isomorphism (∗) yields

Ker(evM ) ' X ⊗T Ker(evY ) ⊗T
∗X .

Since T Y A is a formally smooth bimodule, Ker(evY ) is EH-projective, which, as in the case (1), implies that M is a
formally smooth B–A bimodule.

To prove the final statement observe that if B X is a generator of σ [X ] and T = BEnd(X), then by Proposition 5.9,
evX is injective. Furthermore by [19, Section 15.9], XT is flat; hence the main assumptions about X are satisfied. �

In [5, Section 2] several ways of constructing separable bimodules are described. Combined with Proposition 5.12
these can provide a source of examples of smooth bimodules.
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