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Abstract

We prove that the coinvariant ring of the irreducible Coxeter group of type H4 has the strong Lefschetz
property.
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1. Introduction

The strong Lefschetz property (Definition 1) is an abstraction of the hard Lefschetz theorem,
which describes the behavior of the multiplication map by the Kähler form in the cohomology
ring of a non-singular algebraic variety. We show that the coinvariant ring of the irreducible Cox-
eter group of type H4 has the strong Lefschetz property (Theorem 5). This study is a supplement
to [MNW06], which determines the set of all strong Lefschetz elements of the coinvariant rings
of the irreducible Coxeter groups of types other than H4, in terms of corresponding root systems
(see Remark 4). For the coinvariant ring of type H4, Stanley (below Theorem 3.1 of [Sta80]) and
Hiller [Hil81, Remark on p. 70] left comments on the difficulty in proving the strong Lefschetz
property for H4. To the authors’ knowledge it has not been proved up to now.
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The difficulty is caused by the complicated structure of the Coxeter group of type H4, and
computer algebra systems cannot give the answer under the natural realization of the coinvariant
ring as a quotient ring of K[x1, x2, x3, x4]. The key to our main theorem is to transform the
variables so that the last variable will be a Lefschetz element. By this technique, we obtain the
theorem without heavy computation except for only a single computation of a Gröbner basis.
The computation is executed by the computer algebra system Macaulay2 [GS]. The essence of
the technique above is paraphrased as Lemma 2, which is a condition for the Lefschetz properties.

Note that to determine the set of all strong Lefschetz elements is much more difficult than to
find a strong Lefschetz element, and we will study the set of the strong Lefschetz elements for
type H4 in a forthcoming paper.

This paper is organized as follows: In Section 2 we prove Lemma 2, which is the essence of
the technique used in our main theorem. In Section 3 we show the main theorem. In Section 4
we summarize the techniques used in the computation from the viewpoint of computer algebra
systems.

2. A condition for the Lefschetz properties

In this section we give a necessary and sufficient condition for graded rings to have the
strong Lefschetz property (Lemma 2). This lemma is the essence of a technique in proving
our main theorem. The strong or weak Lefschetz property is studied in [Wat87,Wat89,HW03,
HW04,HMNW03], for instance, and there are also other conditions for the Lefschetz properties
in terms of generic initial ideals or initial ideals by Wiebe [Wie04]. We see the relation between
our lemma and Wiebe’s conditions in the end of this section.

Let A be the polynomial ring K[x1, x2, . . . , xn] over a field K , and fix a term order on A. For
an ideal I of A, let in(I ) be the initial ideal of I , which is the monomial ideal generated by the
initial monomials of the polynomials in I . If a monomial in A is not contained in the initial ideal
in(I ), then the monomial is called a standard monomial with respect to I . Note that the image
of the set of the standard monomials, under the natural surjection A → A/I , forms a linear basis
of A/I .

We recall the Lefschetz properties.

Definition 1. (See Watanabe [Wat87], Iarrobino [Iar94].) Let R be a graded ring over a field K ,
and R = ⊕

i�0 Ri its decomposition into homogeneous components with dimK Ri < ∞. The
graded ring R is said to have the strong (respectively weak) Lefschetz property, if there exists
an element l ∈ R1 such that the multiplication map ×ls :Ri → Ri+s (f �→ lsf ) is full-rank for
every i � 0 and s > 0 (respectively s = 1). In this case, l is called a Lefschetz element.

Suppose that the Hilbert function of the graded ring R is symmetric, that is, R = ⊕c
i=0 Ri

and dimK Ri = dimK Rc−i for i = 0,1, . . . , �c/2�. In this case, it is clear that R has the strong
Lefschetz property if and only if there exists l ∈ R1 and ×lc−2i : Ri → Rc−i is bijective for every
i = 0,1, . . . , �c/2�. Remark that the coinvariant ring of type H4, which is studied in the following
section, has a symmetric Hilbert function.

The following lemma is the essence of a technique in proving our main theorem.

Lemma 2. Let I ⊂ A = K[x1, x2, . . . , xn] be a homogeneous ideal. Take the graded reverse
lexicographic order as a term order on A. Then the following two conditions are equivalent:
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(i) The graded ring A/I has the strong (respectively weak) Lefschetz property, and xn mod I is
a Lefschetz element.

(ii) The graded ring A/ in(I ) has the strong (respectively weak) Lefschetz property, and
xn mod in(I ) is a Lefschetz element.

Proof. When xn is not necessarily a Lefschetz element, we claim

in
(
I : xs

n

) = in(I ) : xs
n, (1)

for s > 0. It is obvious that in(I : xs
n) ⊂ in(I ) : xs

n, and we prove the other inclusion. For a
monomial m ∈ in(I ) : xs

n, we can take a homogeneous polynomial h such that mxs
n + h ∈ I ,

where degh = deg(mxs
n) and each term of h is smaller than mxs

n. Thanks to the graded re-
verse lexicographic order, h is divisible by xs

n, and hence m + h/xs
n ∈ I : xs

n. This shows that
in(I : xs

n) ⊃ in(I ) : xs
n. We thus have proved (1).

When xn is not necessarily a Lefschetz element, we have the following formula using (1).

rank
(×xs

n : (A/I)i → (A/I)i+s

) = dimK(A/I)i − dimK

(
I : xs

n/I
)
i

= dimK Ai − dimK

(
I : xs

n

)
i

= dimK Ai − dimK

(
in(I ) : xs

n

)
i

= rank
(×xs

n :
(
A/ in(I )

)
i
→ (

A/ in(I )
)
i+s

)
,

where the ith homogeneous components are denoted as (A/I)i and so on. For a homogeneous
ideal J of A, the quotient ring A/J has the strong (respectively weak) Lefschetz property with
a Lefschetz element xn, if and only if the linear map ×xs

n : (A/J )i → (A/J )i+s is full-rank for
every i � 0 and s > 0 (respectively s = 1). Therefore it follows from the formula above that (i)
and (ii) of the lemma are equivalent, using the fact that dimK(A/J )i = dimK(A/ in(J ))i . �

In the rest of this section, we clarify the relation between the lemma and other conditions for
the Lefschetz properties due to Wiebe. We recall the definition of generic initial ideals. Fix any
term order on A = K[x1, x2, . . . , xn]. For a homogeneous ideal I of A, there exists a Zariski
open subset U ⊂ GL(n;K) such that the initial ideals of ϕ(I) are equal to each other for any
ϕ ∈ U . This initial ideal is uniquely determined, called the generic initial ideal of I , and denoted
by Gin(I ) (see, e.g. [Eis95, 15.9]). The following proposition gives other conditions for the
Lefschetz properties.

Proposition 3. (See [Wie04, Lemma 2.7, Propositions 2.8 and 2.9].) Let I ⊂ A = K[x1, x2,

. . . , xn] be a homogeneous ideal. We have the following:

(i) The graded ring A/I has the strong (respectively weak) Lefschetz property if and only if
A/Gin(I ) has the strong (respectively weak) Lefschetz property with respect to the graded
reverse lexicographic order. In this case, xn mod Gin(I ) is a Lefschetz element of A/Gin(I ).

(ii) The graded ring A/I has the strong (respectively weak) Lefschetz property if A/ in(I ) has
the strong (respectively weak) Lefschetz property with respect to any term order.

The conditions in Proposition 3 and the condition in Lemma 2 relate as follows: Lemma 2 is
more practical than Proposition 3(i), since our lemma does not need generic initial ideals. Our
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lemma gives a necessary and sufficient condition in contrast to Proposition 3(ii). In particular,
our lemma can be used for checking that an element is not a Lefschetz element.

3. The coinvariant ring of type H4

The irreducible Coxeter group of type H4 is of order 14,400 and its root system consists of
120 roots (see [Hum90] for details). In this section, we show that the coinvariant ring R of the
irreducible Coxeter group of type H4 has the strong Lefschetz property. To be concrete, we show
that an element is a strong Lefschetz element of R by results calculated with the computer algebra
system Macaulay2.

The coinvariant ring R has the natural realization

R[x1, x2, x3, x4]/
(
I2k(x1, x2, x3, x4)

∣
∣ k = 1,6,10,15

)
,

where I2k(x1, x2, x3, x4) are the polynomials defined as the sum of the 2kth powers of 60 positive
roots, and I2, I12, I20, I30 are the fundamental invariants of H4 [Meh88, 2.7]. Note that the root
system of type H4 can be realized in R1 = Rx1 + Rx2 + Rx3 + Rx4. Let

ν1 = x1,

ν2 = τ 2x1 + x2,

ν3 = τ 4x1 + τ 2x2 + x3,

ν4 = (
τ 3 + τ

)
x1 + τx2 + x4,

where τ is a root of τ 2 − τ − 1. We take our candidate λ of a strong Lefschetz element of R as

λ = ν1 + ν2 + ν3 + ν4.

Remark 4. When one realizes the root system of type H4 in R1, the polynomials ν1, ν2, ν3
and ν4 span the fundamental Weyl chamber with positive coefficients. In particular, λ is in the
fundamental Weyl chamber. We also remark that [MNW06] proves that the set of all strong
Lefschetz elements is equal to the union of all Weyl chambers for the irreducible Coxeter groups
of types other than H4, and for type H4 [MNW06] only proves that any strong Lefschetz element,
if it exists, is in a Weyl chamber.

If we use the natural realization of the coinvariant ring as above, then our computation
is too complicated for computer algebra systems to give the answer. Thus we transform the
ideal (I2k(x1, x2, x3, x4) | k = 1,6,10,15) by the transformation defined by R[x1, x2, x3, x4] →
R[v1, v2, v3, l] ((ν1, ν2, ν3, λ) �→ (v1, v2, v3, l)), and let I be the obtained ideal. The ideal I is
generated by

I2
(
v1, v2 − τ 2v1, v3 − τ 2v2, l − v3 − (τ + 1)v2 − (τ + 1)v1

)
,

I12
(
v1, v2 − τ 2v1, v3 − τ 2v2, l − v3 − (τ + 1)v2 − (τ + 1)v1

)
,

I20
(
v1, v2 − τ 2v1, v3 − τ 2v2, l − v3 − (τ + 1)v2 − (τ + 1)v1

)
,

I30
(
v1, v2 − τ 2v1, v3 − τ 2v2, l − v3 − (τ + 1)v2 − (τ + 1)v1

)
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in the polynomial ring A = R[v1, v2, v3, l]. Note that the coinvariant ring R is isomorphic to A/I

as graded rings.
We take the reverse lexicographic order such that v1 > v2 > v3 > l as a term order on A. Let

S be the set of standard monomials with respect to I , and Si the set of monomials of degree i

in S. By Lemma 2 and the second paragraph of Definition 1, it is enough to show that

l60−2iSi = S60−i for all i < 30. (2)

We would like to prove Eq. (2), but it is difficult to compute Gröbner bases due to inter-
mediate coefficient swells. To avoid this bottleneck, we use the finite field F132 , i.e., the field
obtained by adjoining a root τ of τ 2 − τ − 1 to F13. Namely we prove Eq. (2) for the ideal I in
F132 [v1, v2, v3, l], and the following Macaulay2 session verifies Eq. (2):

i1: K = GF(ZZ/13[tau]/(tau^2-tau-1), Variable => tau);
i2: A = K[v1, v2, v3, l];
i3: v4 = l-v1-v2-v3;
i4: x1 = v1;
i5: x2 = v2 -tau*tau*v1;
i6: x3 = v3 -tau*tau*v2;
i7: x4 =v4 -tau*v2 -tau*v1;
i8: INVs = { 2*x1, 2*x2, 2*x3, 2*x4,

x1+x2+x3+x4, x1+x2+x3-x4, x1+x2-x3+x4, x1+x2-x3-x4,
x1-x2+x3+x4, x1-x2+x3-x4, x1-x2-x3+x4, x1-x2-x3-x4,
tau*x1+(1/tau)*x2+x3, tau*x1+(1/tau)*x2-x3,
tau*x1-(1/tau)*x2+x3, tau*x1-(1/tau)*x2-x3,
tau*x1+(1/tau)*x3+x4, tau*x1+(1/tau)*x3-x4,
tau*x1-(1/tau)*x3+x4, tau*x1-(1/tau)*x3-x4,
tau*x1+(1/tau)*x4+x2, tau*x1+(1/tau)*x4-x2,
tau*x1-(1/tau)*x4+x2, tau*x1-(1/tau)*x4-x2,
tau*x2+(1/tau)*x4+x3, tau*x2+(1/tau)*x4-x3,
tau*x2-(1/tau)*x4+x3, tau*x2-(1/tau)*x4-x3,
(1/tau)*x1+x2+tau*x3, (1/tau)*x1+x2-tau*x3,
(1/tau)*x1-x2+tau*x3, (1/tau)*x1-x2-tau*x3,
(1/tau)*x1+x3+tau*x4, (1/tau)*x1+x3-tau*x4,
(1/tau)*x1-x3+tau*x4, (1/tau)*x1-x3-tau*x4,
(1/tau)*x1+x4+tau*x2, (1/tau)*x1+x4-tau*x2,
(1/tau)*x1-x4+tau*x2, (1/tau)*x1-x4-tau*x2,
(1/tau)*x2+x4+tau*x3, (1/tau)*x2+x4-tau*x3,
(1/tau)*x2-x4+tau*x3, (1/tau)*x2-x4-tau*x3,
x1+tau*x2+(1/tau)*x3, x1+tau*x2-(1/tau)*x3,
x1-tau*x2+(1/tau)*x3, x1-tau*x2-(1/tau)*x3,
x1+tau*x3+(1/tau)*x4, x1+tau*x3-(1/tau)*x4,
x1-tau*x3+(1/tau)*x4, x1-tau*x3-(1/tau)*x4,
x1+tau*x4+(1/tau)*x2, x1+tau*x4-(1/tau)*x2,
x1-tau*x4+(1/tau)*x2, x1-tau*x4-(1/tau)*x2,
x2+tau*x4+(1/tau)*x3, x2+tau*x4-(1/tau)*x3,
x2-tau*x4+(1/tau)*x3, x2-tau*x4-(1/tau)*x3 };
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i9: I2 = k ->(sum (set apply(INVs, lf-> lf^(2*k))));
i10: I = ideal (I2(1), I2(6), I2(10), I2(15));
i11: R = A/I;
i12: S = apply(61,k -> first entries(basis({k},R)));
i13: scan(30,i ->(

S’ = apply(S_i, m -> m*(l^(60-2*i)) );
<< " l^" << 60-2*i << " S_" << i << " = S_" << 60-i;
<< " is " << ( S’ == S_(60-i) ) << endl;

));

In this session, we compute the following: In i1, we define the field K obtained by adjoining
a root τ of τ 2 − τ − 1 to F13. In i2, we define the polynomial ring A. From i3 to i10, we
define the ideal I . In i11, we define the coinvariant ring R = A/I . In i12, we define the set Sk

of the standard monomials of degree k. In i13, for each i < 30, we calculate S′ = l60−2iSi and
compare S′ with S60−i .

It is easy to see that the strong Lefschetz property for the coefficient ring F132 yields that
for Z[τ ], and then that for R. Thus we have our main result.

Theorem 5. The coinvariant ring of the irreducible Coxeter group of type H4 has the strong
Lefschetz property.

4. Final remarks

Here we summarize the techniques that we used for the computation of the main theorem. As
stated in Section 3, the main technique is to take a Lefschetz element as the last variable under the
graded reverse lexicographic order. By this technique we do not need heavy computations except
for a single computation of a Gröbner basis. Otherwise we need many reductions of polynomials
of degrees up to 60 and computations of large determinants with rational entries. In addition,
we use the finite field F132 instead of the rational number field, which is a common technique
in computer algebra systems. When we use none or one of these techniques, the computation is
too complicated for computers. The computer algebra system Macaulay2 returns the answer only
when we use both techniques, and the computation takes less than 10 seconds in this case.
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