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Abstract

We study the average case approximation of the Boolean mean by quantum algorithms. We

prove general query lower bounds for classes of probability measures on the set of inputs. We

pay special attention to two probabilities, where we show specific query and error lower

bounds and the algorithms that achieve them. We also study the worst expected error and the

average expected error of quantum algorithms and show the respective query lower bounds.

Our results extend the optimality of the algorithm of Brassard et al.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Quantum computers can solve certain problems significantly faster than classical
computers. One of these problems is the approximation of the mean of a Boolean
function or, equivalently, the approximation of the mean of n Boolean variables.
Suppose that the input is presented as a black-box or an oracle, which the algorithm
queries [2]. Classical algorithms require Yðnð1� eÞÞ evaluations (or queries) in the
worst case, for error at most e: Classical randomized algorithms solve this problem
faster by requiring Yðminfe�2; ngÞ evaluations. Quantum algorithms solve the
problem in the worst case with high probability and are superior because they

require only Yðminfe�1; ngÞ queries. More specifically, Brassard et al. [4] exhibited
an algorithm achieving accuracy e with a number of queries proportional to

minfe�1; ng: This algorithm is based on Grover’s quantum search algorithm; see [9]
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for a description of Grover’s algorithm and for details about quantum computing.
The lower bounds of Nayak and Wu [10] establish the asymptotic optimality of the
algorithm of Brassard et al. in the worst case.
Instead of the worst case error, we can consider the average error

of quantum algorithms with respect to a probability measure on the
class of the inputs. The average case is important for two reasons. The first one is
that it may reduce the query complexity. The second is that if we know
that the query complexity is not reduced then the worst case results and the
optimality of known algorithms is extended. It is also important to derive classes of
measures for which similar complexity results hold. In this paper we deal with these
issues.
In particular, for the approximation of the mean of n Boolean variables with

uniform distribution on the set of inputs, the average error of any quantum

algorithm, with T queries of order oðnÞ; is Oðminfn�1=2;T�1gÞ: The query

complexity is zero as long as e is oðn�1=2Þ:1 When e ¼ Yðn�1=2Þ the query complexity
remains zero as long as the asymptotic constant is large, but when this constant is

small the query complexity is Oðn1=2Þ: The query complexity becomes asymptotically
equal to that of the worst case when e is oðn�1=2Þ: On the other hand, if all possible
values of the mean are uniformly distributed then the average error of any algorithm

is OðT�1Þ: In this case, the query complexity is asymptotically equal to that of the
worst case for all values of e:
We generalize our results by showing conditions on classes of measures under

which the query complexity is asymptotically equal to that of the worst case as long
as e is appropriately small. Our results extend the optimality of the quantum
algorithm of Brassard et al. when high accuracy is important.
Quantum algorithms are probabilistic in nature. For a given input, they can

produce various outcomes, each with a certain probability. Typically, we

want them to achieve a given accuracy with probability greater than 1
2
and,

therefore, we study their probabilistic error. On the other hand, we can study the
expected error of a quantum algorithm by considering its average error with respect
to all outcomes resulting from a given input. Therefore, for a class of inputs we study
the worst expected error. This is also an intuitive error criterion and is similar to the
way we measure the error in Monte Carlo integration. We show that any algorithm

with worst expected error at most e must make Oðe�1; nÞ queries. Therefore, the
algorithm of Brassard et al. with repetitions as described in [6] is asymptotically
optimal.
We also show that the query lower bounds that hold for the average case remain

valid when we consider the average expected error of quantum algorithms. In this
case we consider a probability measure on the set of inputs, and for each
input we consider the expected error of the algorithm with respect to all possible
outcomes.
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Finally, it is easy to see that an algorithm approximating the Boolean mean can be
used to approximately count the number of ones among n Boolean variables.
Therefore, all our results directly extent to approximate counting and we exhibit the
corresponding query and error lower bounds.

2. Problem definition

Let Bn ¼ f0; 1gn denote all tuples of n Boolean variables. We assume that any
X ¼ ðx1;y; xnÞABn is given by an oracle or a black box, which on input i outputs
xi: Oracle access of this type is called a query. We want to compute the mean of X ;
i.e.,

aX ¼ jX j
n

with jX j ¼
Xn

i¼1
xi:

In this paper we consider the quantum query model of Beals et al. [2], where the
cost of an algorithm is the number of its queries. A quantum algorithm applies a
sequence of unitary transformations, which include queries, to an initial state, and at
the end the final state is measured. See [2,5,9] for the details of the model of
computation, which we summarize below to the extent necessary for this paper.
A quantum algorithm has the form

UT QX UT�1QX?U1QX U0jc0S ¼: jcS;

where U0;y;UT are unitary transformations that do not depend on the input X ; the
operator QX is also a unitary transformation and corresponds to a query to the
oracle, the integer T is the number of times QX is applied, that is the number of
queries, jc0S is the initial state on which the sequence of transformations is applied,
and jcS is the final state of the algorithm which is measured. The states jc0S and

jcS are unit vectors of Hm ¼ C2#?#C2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m

; for some appropriately chosen mAN:

The measurement produces one of M outcomes. Outcome jAf0;y;M � 1g occurs
with probability pX ð jÞ; which depends on j and the input X :
In principle, quantum algorithms may have many measurements applied between

sequences of unitary transformations of the form above. However, any algorithm
with many measurements and a total of T queries can be simulated by an algorithm
with only one measurement that has 2T queries [5]. Hence, without loss of generality
we consider the cost of algorithms with a single measurement.
Given an outcome j; we approximate aX by a number âX ð jÞ: Note that âX ð jÞ

depends on the input X and the outcome of the measurement. Given a

probability p41
2
; the error of a quantum algorithm with T queries on input X is

defined by

eðX ;T ; pÞ ¼ inf g:
X

j:jaX�âX ð jÞjpg

pX ð jÞXp

8<
:

9=
;:
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The worst probabilistic error of a quantum algorithm with T queries in the class Bn

is defined by

ewpðBn;T ; pÞ ¼ max
XABn

eðX ;T ; pÞ:

As we have mentioned, Brassard et al. [4] show a quantum summation algorithm
(QS) for computing the Boolean mean and study its properties using this error

criterion. The query lower bound Oðminðe�1; nÞÞ of Nayak and Wu [10] also holds in
the worst case.
In this paper, we consider the average probabilistic error of a quantum algorithm

in the class Bn which we define by

eapðBn;T ; pÞ ¼
X

XABn

eðX ;T ; pÞmðX Þ;

where m is a probability measure on the set of inputs Bn:
In the next section we exhibit conditions for classes of probability measures and

prove the corresponding query lower bounds. We will pay special attention to the
following two measures

m1ðXÞ ¼ 2�n; 8XABn;

m2ðXÞ ¼ 1

ðn þ 1Þ
n

k


 �; for XABn with jX j ¼ k:

The first measure corresponds to the case where all inputs are equally likely, while
the second measure corresponds to the case where all possible values of the mean are
equally likely.
We now define the worst expected error of a quantum algorithm with T queries in

the class Bn as

eðqÞðX ;TÞ ¼
XM�1

j¼0
jaX � âX ð jÞjqpX ð jÞ

( )1=q

;

eweðq;Bn;TÞ ¼ max
XABn

eðqÞðX ;TÞ; with 1pqoN;

where the summation is over all possible outcomes. Note that in this case we

consider all the outcomes and not just outcomes that occur with probability p41
2:

We also consider the average with respect to the inputs of the expected error, with
respect to the outcomes, of a quantum algorithm with T queries in the class Bn: We
call this the average expected error and we define it by

eaeðq;Bn;TÞ ¼
X

XABn

eðqÞðX ;TÞmðXÞ; with 1pqoN;

where m is a probability measure on the set of inputs Bn:
Finally, Nayak and Wu [10] show query lower bounds for a number of different

problems. One of them is the computation of a D-approximate count, i.e., a number t̂X

such that jtx � t̂X joD; where tX ¼ jX j ¼ n � aX for XABn: This problem is directly
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related to the approximation of the Boolean mean. We study it on the average by
appropriately defining the error of a quantum algorithm. In particular, we set

e1ðX ;T ; pÞ ¼ n � eðX ;T ; pÞ;

e
ap
1 ðBn;T ; pÞ ¼ n � eapðBn;T ; pÞ;

ewe1 ðq;Bn;TÞ ¼ n � eweðq;Bn;TÞ; with 1pqoN;

eae1 ðq;Bn;TÞ ¼ n � eaeðq;Bn;TÞ; with 1pqoN:

Our results concerning the mean directly extend to approximate counting by setting
D ¼ ne:

3. Average probabilistic error

Kwas and Woźniakowski [7] show that the QS algorithm has zero worst probabilistic

error when the number of its queries is greater than 32pn; for pp 8
p2: Trivially, QS also has

zero average probabilistic error in that case. Therefore, we study the error of quantum
algorithms when the number of their queries is of order oðnÞ:
It is convenient to deal with arbitrary measures first and then use the results in the

study of m1 and m2: So we begin by defining classes of probability measures and
deriving the corresponding query lower bounds. Roughly speaking, all the measures
m in a class satisfy the same lower bound for mðXÞ as long jX j belongs to a certain
subset I of f0;y; ng: This lower bound depends on jX j; on I and, particularly, on its

cardinality jI j: For example, for the set I ¼ fn
2
�

ffiffiffi
n

p
;y; n

2
þ

ffiffiffi
n

p
g; which has

cardinality jI j ¼ 2
ffiffiffi
n

p
þ 1; we can use c½

ffiffiffi
n

p n
jX j

� �
��1; (where c40 is a constant and

jX jAI ;) as the lower bound defining the class of measures. Observe, that due to
Lemma A.1 in Appendix A m1 asymptotically satisfies this lower bound on I :

Similarly, for the set I ¼ fn
4
;y; 3n

4
g; which has cardinality jI j ¼ n

2
þ 1; we can use

c½n n
jX j

� �
��1 (where c40; is a constant and jX jAI) as the lower bound in the definition

of the class of measures. Note that m2 asymptotically satisfies this lower bound on I :
Clearly these two choices of I distinguish two classes of probability measures. The
cardinality of the set I as a function of n is important in our analysis. We will assume
that jI j-N as n-N as in the previous two examples. We also consider the number
of queries T and the desired accuracy e as functions of n and carry out an asymptotic
analysis. In this and in the following sections the implied asymptotic constants are
absolute constants.

Theorem 3.1. Consider the approximation of the Boolean mean. Let IDf0;y; ng be a

set of consecutive indices, such that its cardinality jI j is oð1Þ as a function of n: Assume

that kðn � kÞ is Yðn2Þ for every kAI : Let m be a probability measure on Bn such that

mðX Þ ¼ OðjI j�1Þ 1

n

jX j


 �; for every XABn with jX jAI :
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Then for any e40 of order oðjI jn�1Þ; the condition eapðBn;T ; pÞpe implies that T must

be Oðminðe�1; nÞÞ:

Proof. We will prove the theorem for eX1=n: The case eo1=n will then follow
immediately.
Consider a quantum algorithm with T queries that has error eapðBn;T ;PÞpe:

Using the lower bound on mðX Þ in the assumption of this theorem, we have

eX
X

XABn

eðX ;T ; pÞmðXÞX c

jI j
X
kAI

1

n

k


 � X
X : jX j¼k

eðX ;T ; pÞ;

where c40 is a constant.
We multiply both sides of the inequality by n and define D ¼ c�1ne and DðkÞ ¼

n
P

jX j¼k eðX ;T ; pÞ= n
k

� �
and use the Markov inequality to obtain

DX
1

jI j
X
kAI

DðkÞ

¼ 1

jI j
X

k: DðkÞo2D
DðkÞ þ

X
k: DðkÞX2D

DðkÞ

8<
:

9=
;

X
1

jI j 2Dnþ;

where nþ is the number of indices for which DðkÞX2D: Clearly nþp1
2
jI j and,

therefore, n� :¼ jI j � nþX
1
2
jI j: Thus for at least half of the indices in I we have

DðkÞo2D:We define J to be the set of all these indices. Note that D is oðjI jÞ because e
is oðjI jn�1Þ:Without loss of generality we assume that D is an integer, since otherwise
we can replace it by its ceiling, which does not change its order of magnitude.
Now consider kAJ so that DðkÞo2D and let dðX ; kÞ ¼ neðX ;T ; pÞ for jX j ¼ k:

Then for mX2; which we will further specify later, we have

2D4
1

n

k


 � X
jX j¼k

dðX ; kÞ

¼ 1

n

k


 � X
jX j¼k: dðX ;kÞo2mD

dðX ; kÞ þ
X

jX j¼k: dðX ;kÞX2mD

dðX ; kÞ

8<
:

9=
;

X
1

n

k


 � 2mDñþ;

where ñþ is the number of strings X with jX j ¼ k; for which dðX ; kÞX2mD: Clearly
ñþp n

k

� �
m�1 and, therefore, ñ� :¼ n

k

� �
� ñþXð1� m�1Þ n

k

� �
: Thus for at least ñ� many

strings X we have dðX ;T ; pÞ :¼ dðX ; kÞo2mD:
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Since jI j is oð1Þ we claim that for sufficiently large n there exist k1; k2AJ that are at
least 4mD apart whose distance does not exceed OðDÞ; i.e., jk1 � k2jX4mD and
jk1 � k2j is OðDÞ: Indeed, if we assume otherwise, we have that jk1 � k2jo4mD or
jk1 � k2j is oðDÞ: Consider the indices in I in ascending order. Let i1AI be the first
index that belongs to the set J (recall that at least half of the indices in I belong to J).
Based on our assumption, the next index (greater than i1) that belongs to J is either
at a distance less than 4mD away from i1 or at a distance oðDÞ away from i1: We
group together all the indices that are at a distance less than 4mD away from i1:
Clearly there are no more than 4mD indices in the group. Now we consider the first
index i2AI that belongs to J and is at a distance oðDÞ away from i1: We repeat the
same procedure using i2 in the place of i1; and we form a second group of indices that
belong to J and are at a distance less than 4mD away from i2: As we iterate this
procedure we form groups of indices that belong to J; where each group is at a
distance oðDÞ away from the group before it. We stop when we exhaust the indices in
J: It is clear that between every two groups we have oðDÞ elements of I that do not
belong to J: It is also clear that we have to repeat the above procedure at least
jJj=ð4mDÞXjI j=ð8mDÞ times in order to exhaust the indices in J: Considering the
indices between the consecutive groups that do not belong to J we conclude that the
cardinality of I must be at least oðDÞ½jI j=ð8mDÞ� ¼ oðjI jÞ; which is a contradiction.
Now we use the algorithm that approximates the mean to derive another

algorithm that approximates the partial Boolean function

fk1;k2ðXÞ ¼
1 if jX j ¼ k1;

0 if jX j ¼ k2;

�
where, without loss of generality, we can assume that k14k2:
The description of the new algorithm A is as follows: On input X ; where jX j ¼ k1

or k2; we run the algorithm that approximates the mean and if the value of the result
âX ð jÞ satisfies jk1 � nâX ð jÞjo2mD then the new algorithm outputs 1: It outputs 0
otherwise.
Let’s look at the success probability PrfAðX Þ ¼ fk1;k2ðXÞg of the new algorithm

for the different inputs for which fk1;k2 is defined. If jX j ¼ k1 we haveX
jX j¼k1

PrfAðXÞ ¼ fk1;k2ðXÞg ¼
X

jX j¼k1

PrfAðXÞ ¼ 1g

X

X
jX j¼k1; dðX ;T ;pÞo2mD

PrfAðXÞ ¼ 1g

¼
X

jX j¼k1; dðX ;T ;pÞo2mD

Prfjk1 � nâX ð jÞjo2mDg

X ð1� m�1Þ
n

k1


 �
p;

because dðX ;T ; pÞo2mD is equivalent to eðX ;T ; pÞo2mDn�1; which implies that

jk1=n � âX ð jÞjo2mDn�1 holds with probability at least p: The fact that ñ�Xð1�

m�1Þ n
k1

� �
yields the final inequality. Therefore, the probability that algorithm A fails
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on any input X for which jX j ¼ k1 satisfies

X
jX j¼k1

PrfAðXÞafk1;k2ðXÞg ¼
X

jX j¼k1

PrfAðXÞ ¼ 0gp
n

k1


 �
1� p þ p

m

� �
: ð1Þ

Let c2 ¼ 1� p þ p=m: We choose m in a way that c2o1
2
:

From [2] we know that the acceptance probability qðX Þ ¼ PrfAðX Þ ¼ 1g of a
quantum algorithm A is a real multilinear polynomial of degree at most 2T ;
where T is the number of its queries. Recall that the symmetrization of q is the
polynomial

qsymðXÞ ¼
P

p qðxpð1Þ;y; xpðnÞÞ
n!

; X ¼ ðx1;y; xnÞABn; ð2Þ

where the sum is over all permutations of the integers 1;y; n: Minsky and
Papert [8] show that there is a representation of qsym as a univariate polynomial in
jX j of degree at most that of qsym: For simplicity, with a slight abuse of
notation, we denote this univariate polynomial using the same symbol, i.e.,
qsymðjX jÞ:
In particular, for jX j ¼ k1 we have qðX Þ ¼ 1� PrfAðXÞ ¼ 0g; which implies

PrfAðXÞ ¼ 0g ¼ 1� qðX Þ ¼ fk1;k2ðX Þ � qðX Þ: Thus,

X
jX j¼k1

PrfAðXÞ ¼ 0g ¼
n

k1


 �
�
X

jX j¼k1

qðX Þ

¼
n

k1


 �
�

n

k1


 �
qsymðjY jÞ

¼
n

k1


 �
½ fk1;k2ðYÞ � qsymðjY jÞ�; 8jY j ¼ k1; YABn:

The second equality holds because when X has k1 ones in particular locations and
n � k1 zeros in the remaining locations then the k1!ðn � k1Þ! permutations of X

(when only the k1 ones or the n � k1 zeros are permuted) yield tuples that are
identical to X : Therefore, every term in

P
jX j¼k1

qðXÞ appears k1!ðn � k1Þ! times in
the

P
p qðxpð1Þ;y; xpðnÞÞ of all permutations. Thus considering (2) we haveP

p qðxpð1Þ;y; xpðnÞÞ ¼ k1!ðn � k1Þ!
P

jX j¼k1
qðXÞ:

Using (1) and the last equality concerning the probability of failure of A

we obtain

c2Xfk1;k2ðX Þ � qsymðjX jÞ; 8jX j ¼ k1: ð3Þ
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We work similarly when jX j ¼ k2: We haveX
jX j¼k2

PrfAðXÞ ¼ fk1;k2ðXÞg ¼
X

jX j¼k2

PrfAðXÞ ¼ 0g

X

X
jX j¼k2; dðX ;T ;pÞo2mD

PrfAðXÞ ¼ 0g

¼
X

jX j¼k2; dðX ;T ;pÞo2mD

Prfjk1 � nâX ð jÞjX2mDg

X

X
jX j¼k2; dðX ;T ;pÞo2mD

Prfjk2 � nâX ð jÞjo2mDg

X 1� 1

m


 �
n

k2


 �
p;

because dðX ;T ; pÞo2mD is equivalent to eðX ;T ; pÞo2mDn�1; which implies that

jk2=n � âX ð jÞjo2mDn�1 holds with probability at least p: The fact that ñ�Xð1�

m�1Þ n
k2

� �
yields the final inequality. Therefore, the probability that algorithm A fails

on any input X for which jX j ¼ k2 satisfies

X
jX j¼k2

PrfAðXÞafk1;k2ðXÞg ¼
X

jX j¼k2

PrfAðXÞ ¼ 1gp
n

k2


 �
1� p þ p

m

� �
: ð4Þ

In terms of qðXÞ and its symmetrization the last inequality becomes

n

k2


 �
c2X

X
jX j¼k2

qðXÞ ¼
n

k2


 �
qsymðjY jÞ; 8jY j ¼ k2; YABn;

where the inequality is obtained from (4) with c2 ¼ 1� p þ p=m; and the equality
holds for the same reasons as those concerning the permutations of only ones or
zeros in X which we explained before. This implies

c2XqsymðjY jÞ ¼ j fk1;k2ðY Þ � qsymðjY jÞj; 8jY j ¼ k2: ð5Þ

We combine (3) and (5) to obtain

j fk1;k2ðX Þ � qsymðjX jÞjpc2o1
2
;

for all the X for which this partial Boolean function is defined. Recall that
symmetrization does not increase the degree of a polynomial, which implies that 2T

is greater than or equal to the degree of qsym: Using the results of Nayak and Wu [10]
concerning lower bounds for the degree of polynomials approximating the partial

Boolean function fk1;k2 ; and our assumption that kðn � kÞ ¼ Yðn2Þ; for all kAI ; we
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obtain that the degree of qsym is

O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

jk1 � k2j

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðn � kÞ

p
jk1 � k2j

 !
;

where kAfk1; k2g which maximizes jn2� kj: Therefore, the number of queries of the
original algorithm is OðnD�1Þ; which, in turn, is Oðe�1Þ: &

Theorem 3.1 extends the optimality properties of QS to the average probabilistic
case when high accuracy is important. It shows that QS is asymptotically optimal in
computing the Boolean mean as long as m satisfies certain properties. The range of
possible values of e has to be appropriately small and this depends on the class of
measures through the cardinality of the set I : The larger this set is the larger the
range of e for which Theorem 3.1 holds and QS is asymptotically optimal. On the
other hand, as we are about to see, when there is demand for relatively low accuracy
there can be other algorithms faster than QS.
Let us now consider m1 where all elements XABn are equally likely having

probability 2�n: Kwas and Woźniakowski [7] show that, with probability

p ¼ 1; the algorithm that outputs 1
2
on any input without any queries at all, i.e.,

T ¼ 0; has error

eapðBn; 0; 1Þ ¼ ð2pnÞ�1=2ð1þ oð1ÞÞ: ð6Þ

However, reducing the error further requires Oðn�1=2Þ queries, as we see below.

Lemma 3.1. Consider the measure m1: There exists a constant c40 such that the

condition eapðBn;T ; pÞpcn�1=2; p41
2
; implies that T is Oðn1=2Þ:

Proof. The proof is very similar to that of Theorem 3.1. We point out the differences
and we refer to the proof of Theorem 3.1 for the identical parts.
Recall that in the proof of Theorem 3.1, Eq. (1) lead us to select mX2 such that

1� p þ p=mo1
2
: Consider any such m here.

We set c ¼ e�6ðmþ1Þ2�2ð2pÞ�1=2: We consider the sets I1 ¼ fn
2
þ m

ffiffiffi
n

p
;y; n

2
þ ðm þ

1Þ
ffiffiffi
n

p
g and I2 ¼ fn

2
� ðm þ 1Þ

ffiffiffi
n

p
;y; n

2
� m

ffiffiffi
n

p
g: Note that for the indices kAI1,I2

we have kðn � kÞ ¼ Yðn2Þ:
Assume that

cn�1=2
X

X
XABn

eðX ;T ; pÞm1ðX ÞX2�n
X
jX jAIj

eðX ;T ; pÞ; j ¼ 1; 2;

since m1ðX Þ ¼ 2�n; for every XABn: From Lemma A.1, in Appendix A, we

have that n
jX j

� �
2�n4cn�1=2; when jX jAI1,I2; XABn: We multiply by n both sides

of the inequality above, and define D ¼ cn1=2 and DðkÞ ¼ n
P

jX j¼k eðX ;T ; pÞ= n
k

� �
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to obtain

D4n�1=2
X
kAIj

DðkÞ; j ¼ 1; 2:

Thus, there exist kjAIj; such that DðkjÞoD; j ¼ 1; 2: Let dðX ; kjÞ ¼
n eðX ;T ; pÞ; jX j ¼ kj; j ¼ 1; 2: Then we have

D4
1

n

kj


 � X
jX j¼kj

dðX ; kjÞ

¼ 1

n

kj


 � X
jX j¼kj : dðX ;kjÞomD

dðX ; kjÞ þ
X

jX j¼kj : dðX ;kjÞXmD

dðX ; kjÞ

8<
:

9=
;

X
1

n

kj


 �mDñj;þ; j ¼ 1; 2;

where ñj;þ is the number of strings X with jX j ¼ kj; for which dðX ; kjÞXmD: Just like
in the proof of Theorem 3.1 we conclude that the number of strings X for which

dðX ; kjÞomD satisfies ñj;�Xð1� m�1Þ n
kj

� �
; j ¼ 1; 2:

Now we use the algorithm that approximates the mean to derive another
algorithm that approximates the partial Boolean function

fk1;k2ðXÞ ¼
1 if jX j ¼ k1;

0 if jX j ¼ k2:

�

From this point on the proof is identical to the proof of Theorem 3.1 and we omit
the details. The conclusion is that the algorithm that approximates fk1;k2 and,

therefore, the original algorithm must make Oðn=DÞ or, equivalently, Oðn1=2Þ
queries. &

Thus we need to study the error of the algorithm when the number of queries is

Oðn1=2Þ: The following theorem deals with this case and also summarizes our results
with respect to m1:

Theorem 3.2. Consider that approximation of the Boolean mean and the average

probabilistic error of a quantum algorithm with respect to m1: The following two

statements hold.

1. Let T be oðnÞ: Then the error of any quantum algorithm with T queries satisfies

eapðBn;T ; pÞ ¼ Oðminfn�1=2;T�1gÞ:
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2. Let e40 be oðn�1=2Þ: Then the number of queries TðeÞ for error at most e satisfies

TðeÞ ¼ Oðminfe�1; ngÞ:

Proof. The second statement directly follows from Theorem 3.1. Indeed, in the proof

of Lemma 3.1 we saw a lower bound for m1ðXÞ when jX j belongs to sets of n1=2 many
indices close to n=2 (sets like I1 and I2). Thus the conditions of Theorem 3.1 hold for
m1 and the query lower bound is immediate.
Now we prove the first statement. From Lemma 3.1 we know that error less than

cn�1=2 requires Oðn1=2Þ queries. Hence, when the number of queries is oðn1=2Þ then the
error is bounded from below by a quantity proportional to n�1=2:

Let us now consider T to be Oðn1=2Þ: Then T�1 is Oðn�1=2Þ and minfn�1=2;T�1g ¼
YðT�1Þ: We prove the first statement by contradiction. Assume that n is

sufficiently large. Suppose that the error lower bound is not Oðminfn�1=2;T�1gÞ
but that eapðBn;T ; pÞpðTgðTÞÞ�1; where g is a function such that gðTÞ ¼ oð1Þ:
Set e ¼ ðTgðTÞÞ�1 and observe that e is oðn�1=2Þ: Then use the second
statement of this theorem conclude that T must be OðTgðTÞÞ; which is a
contradiction. &

Kwas and Woźniakowski [7] show that for m1; the average probabilistic error of
QS is Oðminfn�1=2;T�1gÞ when the number of its queries is divisible by four. Using
Theorem 3.2 we conclude:

* QS is an asymptotically optimal error algorithm.
* QS makes an asymptotically optimal number of queries for accuracy e; when e is

oðn�1=2Þ:
* QS requires at least four queries for error Oðn�1=2Þ when e is oðn�1=2Þ; while the
optimal number of queries is zero, and is achieved by a constant algorithm.

We now consider m2 which corresponds to the case that all values of the
mean are equally likely. As we shall see, computing the mean in the average
probabilistic case with m2 is just as hard as computing the mean in the worst
probabilistic case.

Theorem 3.3. Consider the approximation of the Boolean mean and the average

probabilistic error of a quantum algorithm with respect to m2: The following two

statements hold.

1. Let T be oðnÞ: Then the error of any quantum algorithm with T queries satisfies

eapðBn;T ; pÞ ¼ OðT�1Þ:

2. Let e40 be oð1Þ: Then the number of queries TðeÞ for error at most e satisfies

TðeÞ ¼ Oðminfe�1; ngÞ:
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Proof. Trivially m2 satisfies the conditions of Theorem 3.1 for a set I of YðnÞ many
consecutive indices, e.g., I ¼ fn

4
;y; 3

4
ng: Therefore, the second statement is

immediate.
We show the first statement by contradiction. If T is Oð1Þ then the error is

bounded from below by a constant. Indeed, if we assume that eapðBn;T ; pÞp1=gðnÞ
for some function g satisfying gðnÞ ¼ oð1Þ; then Theorem 3.1 yields that T ¼
OðgðnÞÞ; which is a contradiction. In contrast to m1; the measure m2 does not make
the problem easier.

When T is oð1Þ; suppose that eapðBn;T ; pÞ is oðT�1Þ: Let n be sufficiently large.

Then there exists a function g with gðTÞ ¼ oð1Þ such that eapðBn;T ; pÞpðTgðTÞÞ�1:
Set e ¼ ðTgðTÞÞ�1 and observe that e ¼ oð1Þ; as the second statement of the theorem
requires. This leads us to conclude that T must be OðTgðTÞÞ and, therefore, we get a
contradiction. &

For m2; Theorem 3.3 and the results of [4,7] ( for the worst probabilistic error of
QS) imply that QS is an asymptotically optimal error and query algorithm. Hence, in
terms of error and number of necessary queries, computing the Boolean mean on the
average with m2 is as difficult as in the worst probabilistic case.
We end this section by extending our results to D-approximate count. We present

three corollaries. We omit their proofs since they are immediate from the
corresponding theorems above.

Corollary 3.1. Consider D-approximate count. Let IDf0;y; ng be a set of consecutive

indices, such that its cardinality jI j; as a function of n; is oð1Þ; and kðn � kÞ is Yðn2Þ
for every kAI : Assume that m is a probability measure on Bn such that

mðX Þ ¼ OðjI j�1Þ 1

n

jX j


 �; for every jX jAI ; XABn:

Then for any D40 of order oðjI jÞ; e
ap
1 ðBn;T ; pÞpD implies that T ¼ Oðminðn=D; nÞÞ:

Corollary 3.2. Consider D-approximate count and the average probabilistic

error of a quantum algorithm with respect to m1: The following two statements

hold.

1. Let T be oðnÞ: Then the error of any quantum algorithm with T queries satisfies

e
ap
1 ðBn;T ; pÞ ¼ Oðminfn1=2; n=TgÞ:

2. Let D40 be oðn1=2Þ: Then the number of queries TðDÞ for error at most D satisfies

TðDÞ ¼ Oðminfn=D; ngÞ:
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Corollary 3.3. Consider D-approximate count and the average probabilistic

error of a quantum algorithm with respect to m2: The following two statements

hold.

1. Let T be oðnÞ: Then the error of any quantum algorithm with T queries

satisfies

e
ap
1 ðBn;T ; pÞ ¼ Oðn=TÞ:

2. Let D40 be oðnÞ: Then the number of queries TðDÞ for error at most D satisfies

TðDÞ ¼ Oðminfn=D; ngÞ:

4. Worst expected error

In this section we consider quantum algorithms with a worst expected error
criterion. We show query lower bounds for any quantum algorithm computing the
Boolean mean and for any quantum algorithm computing a D-approximate
count.

Theorem 4.1. Consider any algorithm that computes the Boolean mean with worst

expected error satisfying eweðq;Bn;TÞpe; for a fixed qA½1;NÞ: Then the number of

queries of this algorithm satisfies

TðeÞ ¼ Oðminfe�1; ngÞ:

Proof. Consider eweðq;Bn;TÞpe and raise both sides to the power q and multiply
them by nq: Then set D ¼ ne and DðX ; jÞ ¼ njaX � âX ð jÞj to obtain

Dq
X

XM�1

j¼0
DðX ; jÞq

pX ð jÞ; 8XABn:

For any d40 using the Markov inequality we have

Dq
Xdq

X
DðX ;jÞXd

pX ð jÞ; 8XABn:

Choose a number a42 and set d ¼ aD and p ¼ 1� a�q; pAð1
2
; 1Þ:Define plossðX Þ ¼P

DðX ;jÞXd pX ð jÞ for XABn: Then

1� p ¼ a�q ¼ Dq

dqXplossðXÞ:

This implies that pwinðX Þ ¼ 1� plossðXÞXp41
2
; 8XABn:
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Then there exist outcomes j for which d4DðX ; jÞ with probability
pwinðXÞ ¼

X
njaX�âX ð jÞjod

pX ð jÞXp41=2; 8XABn:

Hence, the probabilistic error of d-approximate count is e1ðX ;T ; pÞod; for all
XABn: Now take any X such that jX jðn � jX jÞ ¼ Yðn2Þ and use the results of [10] to
see that the number of necessary queries is

O

ffiffiffi
n

d

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX jðn � jX jÞ

p
d

 !
:

Therefore, the number of queries satisfies

Oðminfe�1; ngÞ: &

It has been recently shown in [6] that if one repeats 2ðJqnþ 1Þ times the QS
algorithm of Brassard et al. (with T queries) then the median of the outputs has

worst expected error of order OðT�1Þ: Using the theorem above we conclude that
this is an asymptotically optimal algorithm.
The following query lower bound for D-approximate count is a direct consequence

of Theorem 4.1.

Corollary 4.1. Consider any algorithm that computes a D-approximate count with

worst expected error satisfying ewe1 ðq;Bn;TÞpD; for fixed qA½1;NÞ: Then the number

of queries of this algorithm satisfies

TðDÞ ¼ Oðminfn=D; ngÞ:

5. Average expected error

In this section we consider the average expected error of quantum algorithms. For
brevity we call this the average expected setting. Recall that we are considering the
average with respect to a probability measure on the set of inputs Bn and for each of
the inputs we consider the expected error of the quantum algorithm with respect to
all possible outcomes. We show query lower bounds for and quantum algorithm
computing the Boolean mean and for any quantum algorithm computing a D-
approximate count.
We deal only with the measures of Theorem 3.1 since m1 and m2 are

special cases that can be dealt with in the same way. In fact, Theorem 3.1
holds for the average expected error as well. The proof is based on that of
Theorem 3.1.

Theorem 5.1. Consider the approximation of the Boolean mean. Let IDf0;y; ng be a

set of consecutive indices, such that its cardinality jI j; as a function of n; is oð1Þ:
Assume that kðn � kÞ is Yðn2Þ for every kAI : Let m be a probability measure on Bn
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such that

mðX Þ ¼ OðjI j�1Þ 1

n

jX j


 �; for every XABn with jX jAI :

Consider a fixed qA½1;NÞ: Then for any e40 of order oðjI jn�1Þ; the condition

eaeðq;Bn;TÞpe implies that T must be Oðminðe�1; nÞÞ:

Proof. The proof is almost identical to that of Theorem 3.1 and we will only point
out the differences.
In particular, for 1pqoN consider a quantum algorithm with average expected

error at most e; i.e.,

eXeaeðBn;TÞ ¼
X

XABn

eðqÞðX ;TÞmðXÞ:

We follow the first part of the proof of Theorem 3.1 replacing eðX ;T ; pÞ by
eðqÞðX ;TÞ and redefining the rest of the quantities accordingly. After the two
applications of the Markov inequality we know that the number of strings X for

which dðX ; kÞo2mD; jX j ¼ k; is ñ�Xð1� m�1Þ n
k

� �
; and mX2: Recall that dðX ; kÞ ¼

neðqÞðX ;TÞ:
Using the Markov inequality as in Theorem 4.1 to derive the probabilistic error

from the expected error, we conclude that the probabilistic error of approximate
count satisfies e1ðX ;T ; pÞo2maD; with probability pX1� a�q41=2 for a chosen
a42:
Now we return to the proof of Theorem 3.1. We have that there exist k1; k2AJ that

are at least 4maD apart whose distance does not exceed OðDÞ; i.e., jk1 � k2jX4maD
and jk1 � k2j ¼ OðDÞ; and e1ðX ;T ; pÞp2maD; jX j ¼ k1; or k2:
We use the original algorithm that approximates the mean to derive a new

algorithm that approximates the partial Boolean function

fk1;k2ðXÞ ¼
1 if jX j ¼ k1;

0 if jX j ¼ k2;

�

where, without loss of generality, we can assume that k14k2:
The description of the new algorithm A is as follows: On input X ; where jX j ¼ k1

or k2; we run the algorithm that approximates the mean and if the value of the result
âX ð jÞ satisfies jk1 � nâX ð jÞjo2maD then the new algorithm outputs 1: It outputs 0
otherwise.
There is one more difference between this proof and the proof of Theorem 3.1. It

concerns the derivation of the success/failure probability of the new algorithm and
we explain this difference below.
Let’s look at the success probability PrfAðX Þ ¼ fk1;k2ðXÞg of the

new algorithm for the different inputs for which fk1;k2 is defined. If jX j ¼ k1
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we haveX
jX j¼k1

PrfAðXÞ ¼ fk1;k2ðXÞg ¼
X

jX j¼k1

PrfAðXÞ ¼ 1g

X

X
jX j¼k1; dðX ;kÞo2mD

PrfAðX Þ ¼ 1g

¼
X

jX j¼k1; dðX ;kÞo2mD

Prfjk1 � nâX ð jÞjo2maDg

X ð1� m�1Þ
n

k1


 �
ð1� a�qÞ;

because we saw that when the expected error satisfies dðX ; kÞo2mD then this implies
that the probabilistic error satisfies e1ðX ;T ; pÞo2maD with probability pX1�
a�q41=2: The fact that ñ�Xð1� m�1Þ n

k1

� �
yields the final inequality. Therefore, the

probability that algorithm A fails on any input X for which jX j ¼ k1 satisfiesX
jX j¼k1

PrfAðXÞafk1;k2ðXÞg ¼
X

jX j¼k1

PrfAðXÞ ¼ 0gp
n

k1


 �
a�q þ 1� a�q

m


 �
:

Let c2 ¼ a�q þ ð1� a�qÞ=m; where a42: Just like in the proof of Theorem 3.1, we

choose m in a way that c2o1
2
: This leads us to the equivalent of (1) of Theorem 3.1.

In the same way we derive the equation concerning the probability of failure of the
new algorithm on input jX j ¼ k2 which corresponds to Eq. (4) of Theorem 3.1.
The remaining steps are identical to those of Theorem 3.1 and complete the

proof. &

Theorem 5.1 shows that QS algorithm with repetitions [6] is asymptotically
optimal in the average expected case when the required accuracy is high. In fact, the
query lower bounds of Section 3 that depend either on Theorem 3.1 directly or have
been derived through as similar proof technique extend to the average expected and
we have seen how this can be accomplished in the proof of Theorem 5.1.
The following corollary for D-approximate count in the average expected case is

immediate.

Corollary 5.1. Consider D-approximate count. Let IDf0;y; ng be a set of consecutive

indices, such that its cardinality jI j; as a function of n; is oð1Þ; and kðn � kÞ is Yðn2Þ
for every kAI : Assume that m is a probability measure on Bn such that

mðX Þ ¼ OðjI j�1Þ 1

n

jX j


 �; for every jX jAI ; XABn:

Consider a fixed qA½1;NÞ: Then for any D40 of order oðjI jÞ; eae1 q;Bn;TÞpD implies

that T ¼ Oðminðn=D; nÞÞ:
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Appendix A

Lemma A.1. For nAN and 1pcp
ffiffiffiffiffiffiffiffi
n=6

p
we have

n

n=27c
ffiffiffi
n

p

 �

4e�6c2�2 2nffiffiffiffiffiffiffiffi
2pn

p :

Proof. From Stirling’s formula [1, p. 257] we have

n! ¼
ffiffiffiffiffiffi
2p

p
nnþ1=2e�nþy=ð12nÞ; 0oyo1:

Thus,

n!pe
ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞn;

and

n!X
ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞn:

Therefore,

ðn=2þ c
ffiffiffi
n

p
Þ!p e

n þ 2c
ffiffiffi
n

p

2e


 �n=2þc
ffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn=2þ c

ffiffiffi
n

p
Þ

q

o e
n þ 2c

ffiffiffi
n

p

2e


 �n=2þc
ffiffi
n

p ffiffiffiffiffiffiffiffi
2pn

p
;

and

ðn=2� c
ffiffiffi
n

p
Þ!p e

n � 2c
ffiffiffi
n

p

2e


 �n=2�c
ffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn=2� c

ffiffiffi
n

p
Þ

q

o e
n � 2c

ffiffiffi
n

p

2e


 �n=2�c
ffiffi
n

p ffiffiffiffiffiffiffiffi
2pn

p
:
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From the inequalities above we obtain

n!

ðn=2þ c
ffiffiffi
n

p
Þ!ðn=2� c

ffiffiffi
n

p
Þ!4

2nnn

e2
ffiffiffiffiffiffiffiffi
2pn

p
ðn þ 2c

ffiffiffi
n

p
Þn=2þc

ffiffi
n

p
ðn � 2c

ffiffiffi
n

p
Þn=2�c

ffiffi
n

p

¼ 2nnn

e2
ffiffiffiffiffiffiffiffi
2pn

p
ðn þ 2c

ffiffiffi
n

p
Þn=2ðn � 2c

ffiffiffi
n

p
Þn=2

n � 2c
ffiffiffi
n

p

n þ 2c
ffiffiffi
n

p

 �c

ffiffi
n

p

¼ 2nnn

e2
ffiffiffiffiffiffiffiffi
2pn

p
ðn2 � 4c2nÞn=2

ffiffiffi
n

p
� 2cffiffiffi

n
p

þ 2c


 �c
ffiffi
n

p

4
2nnn

e2
ffiffiffiffiffiffiffiffi
2pn

p
nn

ffiffiffi
n

p
� 2cffiffiffi

n
p

þ 2c


 �c
ffiffi
n

p

¼ 2n

e2
ffiffiffiffiffiffiffiffi
2pn

p
ffiffiffi
n

p
� 2cffiffiffi

n
p

þ 2c


 �c
ffiffi
n

p

:

Using ffiffiffi
n

p
þ 2cffiffiffi

n
p

� 2c


 � ffiffi
n

p
�2c

¼ 1þ 4cffiffiffi
n

p
� 2c


 � ffiffi
n

p
�2c

oe4c;

we obtain thatffiffiffi
n

p
þ 2cffiffiffi

n
p

� 2c


 �c
ffiffi
n

p

oe4c2
ffiffiffi
n

p
þ 2cffiffiffi

n
p

� 2c


 �2c2

pe6c2 :

Thus,

n!

ðn=2þ c
ffiffiffi
n

p
Þ!ðn=2� c

ffiffiffi
n

p
Þ!4

2n

e6c2þ2
ffiffiffiffiffiffiffiffi
2pn

p : &
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