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ABSTRACT 

Matrices A and B are said to be unitarily similar if U*AZJ = B for some unitary 

matrix U. This expository paper surveys results on canonical forms and invariants for 
unitary similarity. The first half gives a detailed description of methods developed by 
several authors (Brenner, Littlewood, Mitchell, McRae, Radjavi, Sergeichuk, and 
Benedetti and Cragnolini) using inductively defined reduction procedures to trans- 
form matrices to canonical form. The matrix is partitioned and successive unitary 
similarities applied to reduce the submatrices to some nice form. At each stage, one 
refines the partition and restricts the set of permissible unitary similarities to those 
that preserve the already reduced blocks. The process ends in a finite number of 
steps, producing both the canonical form and the subgroup of the unitary group that 
preserves that form. Depending on the initial step, various canonical forms may be 
defined. The method can also be used to define canonical forms relative to certain 

subgroups of the unitary group, and canonical forms for finite sets of matrices under 

simultaneous unitary similarity. The remainder of the paper surveys results on unitary 

invariants and other topics related to unitary similarity, such as the Specht-Pearcy 

trace invariants, the numerical range, and unitary reducibility. 

1. INTRODUCTION 

This paper is a survey of results on unitary similarity, particularly 
methods for reducing matrices to special canonical forms via unitary similari- 
ties, and properties or quantities that are invariant under unitary similarity. 
For the equivalence relation of similarity, these problems are fairly well 
understood and there are well-known standard solutions. This is not the case 
for the more specialized relation of unitary similarity, where the situation is 
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more complicated and much of the published work on canonical forms seems 
to be little known. 

We work over C, the field of complex numbers. We use C” to denote the 
vector space of column vectors of length n over C, with the usual inner 
product (x,y> = C~=,x,~, and norm ]]x]] = (x,x)“” The set of m x n com- 
plex matrices will be called C(m, n), while C(n) will denote the set of n x n 
complex matrices. If A is a matrix, A’ means the transpose of A, and A* 
denotes the conjugate transpose. Two n X n matrices, A and B, are said to 
be similar if S- ‘AS = B for some nonsingular matrix S; if there is a unitary 
matrix U such that UP ‘AU = U*AU = B, then we say A and B are unitarily 
similar. 

The algebra C(n) may be viewed as the set of linear transformations on 
the finite dimensional Hilbert space C”; it is also an example of a C*-algebra. 
While we deal mainly with the finite dimensional case, some of the results 
discussed have generalizations to bounded, linear operators on Hilbert 
spaces. The term operator will always mean a bounded, linear operator. 

An m X n matrix A represents a linear transformation from C” to C”’ 
with respect to a choice of bases for C” and C”‘. One can phrase the 
statements and proofs either in matrix language or in terms of vector spaces 
and choice of bases. Unless otherwise noted, we usually use the standard 
bases of unit coordinate vectors. If m = n, we may view the similar matrices 
A and S’AS as representations of the same linear transformation with 
respect to two different bases; the nonsingular matrix S tells us how to 
change to the new basis. In the canonical form problem for the equivalence 
relation of similarity one tries to find a basis in which the linear transforma- 
tion has a particularly nice matrix representation. If we restrict ourselves to 
unitary similarity, the new basis determined by the unitary matrix U in 
U*AU must be orthonormal. Thus in the canonical form problem for unitary 
similarity, one wants to find an orthonormal basis in which the transformation 
has a nice matrix representation. Unitary transformations preserve the inner 
product and thus preserve important geometric information. They are also 
important in numerical methods for stability reasons [122]. Since the equiva- 
lence relation of unitary similarity is more restrictive than similarity, each 
similarity class of matrices will generally contain many different equivalence 
classes of unitarily similar matrices. 

Another familiar equivalence relation on the set of n X n matrices is 
congruence-we say A and B are congruent if there is some nonsingular P 
such that B = P*AP. This arises naturally in the study of real quadratic and 
bilinear forms; symmetric matrices A and B represent the same bilinear 
form, relative to different bases, if and only if they are congruent. The 
transforming matrix P represents the change of basis. The complex analogue 
of this relation is conjunctivity-we say complex matrices A and B are 
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conjunctive if there exists a nonsingular P such that B = P*AP. This arises 
in the theory of conjugate, bilinear forms; Hermitian matrices A and I3 
represent the same conjugate-symmetric, conjugate-bilinear form, relative to 
different bases, if and only if they are conjunctive. If U is unitary, then 
U* = U-l, so U*AU = U’AU is both a similarity and a conjunctive transfor- 
mation. 

The equivalence relation of unitary congruence, where A and B are said 
to be unitarily congruent if UTAU = B for some unitary matrix U, has also 
been studied [43-46, 1241. 

In general, one can study an equivalence relation in several ways. One 
approach is to find a canonical form-i.e., determine a “nice” set of canoni- 
cal matrices such that each equivalence class corresponds to exactly one 
canonical matrix. Two matrices are then equivalent if and only if they have 
the same canonical form. For the equivalence relation of similarity, the 
rational canonical form, which applies over any field, and the Jordan canoni- 
cal form, which applies over an algebraically closed field, are two standard 
solutions to this problem. Alternatively, one might seek a set of invariants 
that completely specify the equivalence class, so that two matrices will be 
equivalent if and only if they have the same set of invariants. For the 
similarity relation, one may use determinantal divisors, invariant factors, or 
elementary divisors. Note that if one knows any one of these sets of 
invariants, one can find either of the other sets of invariants. Furthermore, 
the invariants tell one the Jordan and rational canonical forms of the matrix, 
and conversely, one can read off the invariants from the canonical form. 

These canonical forms and invariants for similarity classes of matrices are 
well known. Many algebra and linear algebra texts [33, 39, 48, 50, 61, 65, 
1211 discuss the theory of determinantal divisors, elementary divisors, invari- 
ant factors, Jordan canonical form, and rational canonical form; the subject 
also arises as an application of the structure theorem for finitely generated 
modules over principal ideal domains. For symmetric and Hermitian matri- 
ces, congruence and conjunctivity are also well understood, and many texts 
discuss diagonalization, reduction to sums of squares, rank and signature, and 
Sylvester’s inertia theorem. However, the equivalence relation of unitary 
similarity is less well understood. More information is needed to specify a 
matrix up to unitary similarity than to determine it simply up to similarity, 
and more invariants are needed to completely specify an equivalence class. 
Thus, any canonical form for unitary similarity must display more information 
than the Jordan form, and hence can be expected to be more complicated. 

A normal matrix can be diagonalized with a unitary similarity, but in the 
general case the form is much more complicated. Except for Schur’s result 
[97] that any complex matrix can be put in triangular form via a unitary 
similarity, and the trace invariants found by Specht [l lo], much of the 
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literature on this subject seems to be little known. Many authors [9, 12, 18, 
52, 59, 62, 69, 81, 89, 90, 92, 991 h ave studied the problem of finding a 
canonical form for unitary similarity and proposed methods for reducing a 
matrix to a canonical form under unitary similarity. As we shall see, these 
reduction methods are based on inductive procedures that involve partition- 
ing the matrix into blocks and successively applying unitary transformations 
to reduce the blocks to some nice form. The final “canonical form” is usually 
not easily visualized. Recent workers seem to be unaware of some of the 
work done by earlier authors, and the basic ideas used in the reduction 
procedures seem to have been rediscovered several times. Several ap- 
proaches have been proposed, but they share several common ideas. In this 
survey we try to give a unified presentation of the known results. 

Schur’s theorem [97], which appears in a 1909 paper, seems to be the 
most widely known result on unitary similarity. Roseler’s 1933 Ph.D. disser- 
tation [92] studies the problem of finding normal forms for matrices under 
unitary similarity and uses Schur’s theorem to deal with some special cases. 
Currie’s 1950 abstract [18] describes a triangular canonical form, but Currie 
does not seem to have published these results. Brenner [12] gives an 
inductive definition of A canonical form in his 1951 paper on this problem; 
the basic ideas of Brenner’s induction argument reappear in later work. 
Brenner suggests that the nonuniqueness of the triangular form established 
in Schur’s theorem makes this an unsuitable starting point, and proposes an 
alternative method based on the structure of A*A. However, Littlewood [59], 
in his 1953 paper, does begin with Schur’s theorem, first using it to describe 
a canonical fomr for matrices with distinct eigenvalues, and then developing 
methods to deal with the general case. Although Littlewood’s description of 
the actual reduction procedure seems a bit sketchy, his method of treating 
the triangular form reappears in more recent work. Mitchell’s 1954 paper 
[69] deals with the nonderogatory case and also proposes a triangular 
canonical form; McRae’s 1955 dissertation [62], among other things, proposes 
a general scheme for defining various canonical forms under unitary similar- 
ity, including the approach proposed by Brenner. McRae also discusses 
triangular fomis, but seems to be unaware of the Littlewood and Mitchell 
papers. In 1962, Radjavi [89] d escribed an algorithm for constructing a 
canonical form; Radjavi’s approach is related to Brenner’s work but develops 
a detailed reduction process reducing a matrix to canonical form. Radjavi 
gives a different reduction method in a 1968 paper [go]. Recent papers 
(1984) by Sergeichuk [99] and B enedetti and Cragnolini [9] propose schemes 
for reducing a general matrix to a triangular canonical form. Some of the key 
ideas of these 1984 papers can actually be found in Littlewood’s paper, as 
well as in the work of Riiseler, McRae, and Mitchell. These earlier papers, 
however, seem to be unknown to the recent authors, as they do not appear in 
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the references of either of the I984 papers. Sergeichuk [99] and Benedetti 
and Cragnolini [9] do precisely specify the actual reduction procedure. 

Sections 2-5 contain a fairly detailed account of the known results on the 
canonical form problem. Since the key ideas and arguments appear in several 
versions and notations in the literature, and seem to have been rediscovered 
several times by authors who were unaware of earlier versions, it seems 
worthwhile to give a fairly complete account of the methods and proofs in 
this survey. Sections 6-8 deal with issues related to unitary similarity such as 
unitary invariants, the numerical range, and unitary reducibility. These 
sections have fewer details and proofs. Unlike the situation for similarity, 
where one can determine the canonical form from the invariants and vice 
versa, there seems to be little connection between the known canonical forms 
and sets of invariants for matrices under unitary similarity. Only in the 2 X 2 
case does one get a completely satisfying picture of the situation. 

In Section 2, we discuss matrices with distinct eigenvalues and the 2 X 2 
case. In these special cases, the triangular canonical form is fairly easy to 
describe and understand, and also helps to introduce some of the basic 
problems and ideas involved in the general case. Section 3 contains prelimi- 
nary results that will provide the basic tools for describing and developing 
canonical forms. These results also show that the method used for matrices 
with distinct eigenvalues applies to nonderogatory matrices, as shown by 
Mitchell in [69]. In Section 4, we develop the technical details needed to 
deal with the general case and describe the reduction procedure for the 
triangular type canonical forms of Littlewood [59], Sergeychuk [99], and 
Benedetti and Cragnolini [9]. The general treatment is somewhat compli- 
cated. Section 5 deals with nontriangular forms and the alternative ap- 
proaches proposed by Brenner [12] and Radjavi [89,9O]. We then move on to 
the question of invariants in Section 6. The main result here is a theorem of 
Specht [llO], which gives a complete set of unitary invariants in terms of 
traces of certain matrices. The Specht theorem has been refined by Pearcy 
[83], and also generalized to certain classes of operators on Hilbert space [83, 
85, 86, 19, 221. Section 7 discusses the field of values, including a result of 
Arveson 12, 41, which shows that a generalization of the field of values, called 
the matrix range, classifies compact operators up to unitary similarity. 
Section 8 gives some results on unitary reducibility. 

2. SPECIAL CASES 

Before discussing canonical forms for general matrices, we use Schur’s 
theorem to examine some special cases. As often happens with such prob- 
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lems, matrices with distinct eigenvalues are easier to handle. While the 
arguments are simpler for this case, they serve to introduce the basic ideas 
used to analyze the general situation. We also look at 2 x 2 matrices, where 
one can give a fully understood and satisfying canonical form. 

We say an m X n matrix A is upper triangular if aij = 0 whenever i > j, 
that is, if all entries below the main diagonal are zero. If all entries above the 
main diagonal are zero, we say A is lower triangular. Results about triangular 
matrices can be stated and proved in either an upper or lower triangular 
version. As we mainly use the upper triangular form, we shall use the term 
“triangular” to mean “upper triangular.” 

Schur’s theorem [97], which says that any square matrix is unitarily 
similar to a triangular matrix, is probably the best-known result concerning 
unitary similarity. Many texts [33, 39, 48, 61, 651 include this result. 

THEOREM 2.1 (Schur [97]). IfA is in C(n), then there is an n X n unitary 
matrix U such that U *AU is upper triangular. 

The typical proof of this uses induction on n. Let (Ye be an eigenvalue of 
A with corresponding unit eigenvector u,. Use u1 as the first vector of an 
orthonormal basis. Equivalently, let U, be a unitary matrix with ur as the 
first column. Then the first column of U,*AU, has LY, in the first position and 
zeros in the remaining n - 1 positions. Now apply the induction hypothesis 
to the lower right hand block of size n - 1 to complete the proof. One can, of 
course, obtain a similar result for lower triangular matrices. Note that the 
diagonal entries of the resulting triangular form must be the eigenvalues of 
A, and that the unitary matrix U may be chosen so that the eigenvalues 
appear in any desired order along the diagonal of A. 

Mumaghan and Wintner [75] g’ rve a version of Schur’s theorem for real 
matrices under orthogonal similarity; they show that if A is a real matrix, 
then there is a real, orthogonal matrix 0 such that O’AO is block triangular, 
with 1 x 1 and 2 X 2 diagonal blocks. The real eigenvalues of A appear on the 
diagonal. The nonreal eigenvalues of a real matrix must occur in conjugate 
pairs; such a conjugate pair gives a 2 X 2 block on the diagonal. 

The triangular matrix T = U*AU of Theorem 2.1 will be diagonal if and 
only if A is normal, as can be shown by noting that T is normal if and only if 
A is normal, and then comparing the entries in the matrix equation T*T = 

TT*. Alternatively, one can apply the following result of Schur. 

THEOREM 2.2 (Schur [97]). Let A b 

eigenvalues 
e an n X n matrix with entries ai, and 

cyI, a2,. . , 0,. Then Z~=,la,l’< E~~=1C:‘=,Iai,j12, and equality 
holds aj-and only if A is normal. 
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This follows from Theorem 2.1, the fact that Ey= I En= 1 1 aij(’ is the trace 
of A*A, and the fact that if B = U*AU, where U is unitary, then B*B and 
A*A have the same trace. 

If A is normal, then A is unitarily similar to a diagonal matrix (Toeplitz, 
[119]), and this will be the canonical form. In general, however, A is unitarily 
similar only to a triangular matrix, and while the diagonal entries must be the 
eigenvalues of A, the entries above the diagonal are not uniquely determined 
by A. The basic approach of Littlewood [59], Sergeichuk [99], and Benedetti 
and Cragnolini [9] is to specify further the entries above the diagonal in order 
to obtain a unique canonical form. While this analysis is somewhat compli- 
cated for a matrix with repeated eigenvalues, a simpler treatment, described 
by Riiseler [92] and Littlewood [59], applies if A has distinct eigenvalues. 
Mitchell [69] also showed that nonderogatory matrices may be handled the 
same way; we discuss this in Section 4. 

Let A be an n X n matrix with n distinct eigenvalues ol,oZ,. . ., a,, in 
some fixed order. Schur’s theorem tells us that A is unitarily similar to a 
triangular matrix T with diagonal entries tii = oi. While T is not unique, the 
following theorem tells us that it is determined up to transformation by a 
diagonal unitary matrix. Theorem 2.3 has been observed by Roseler [92] and 
Littlewood [59], and is a special case of a more general result (Theorem 3.7) 
stated in Section 3. 

THEOREM 2.3. Let S and T be n X n triangular matrices with the same 

diagonal entries sii = tii = CY~ and with (Y~ z aj for i z j. Suppose U is a 

unitary matrix such that U*TU = S. Then U must be diagonal. 

Proof. Suppose U is unitary and U*TU = S. Then TU = US. Now com- 
pare the entries on the two sides. From the n, 1 entry, we have o,u,i = (~~u,,r. 
Since ay, z (Ye, we have u,, = 0. Now move to the n - 1,l entry to obtain 

%l-l~,-l,l= UlU,--l,l, so u,-1,l = 0. In a silnilar fashion, one shows that 

ui 1 = 0 for i > 1. Applying the same argument to entries in columns 2,3,. . . , 
n - 1, or using an induction proof, shows that U is triangular. But U is 
unitary, so U must actually be diagonal. n 

Suppose A has distinct eigenvalues and U*AU = S and V*AV = T, where 
U and V are unitary and S and T satisfy the hypothesis of Theorem 2.3. Then 
S = U*(VTV*)U = (V*U)*T(V*U) and V*U is unitary, so V*U must be 
diagonal. Thus, once we specify the order in which the eigenvalues appear 
on the diagonal of the triangular T, the only unitary similarities preserving 
this form are diagonal. Since the diagonal entries of a diagonal unitary matrix 
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must be of the form eie for some angle 0 < 8 < 2~, we have 

u = &g[ eiel, eiez, eie3,. . , e”-]. 

For B = V*AU we have bjk = ei(‘k-“~)ajk and so lbjkl = lajkl. Thus, when A 
has distinct eigenvalues, the magnitudes of the entries in the triangular 
matrix T = U*AU are uniquely determined. In particular, note that the 
positions of the zero entries are uniquely determined. We can now choose 
the angles eij in order to make certain nonzero entries of T positive real 
numbers; this will lead to a uniquely determined T. There are several ways 
to do this. Since we can remove a scalar factor from U without affecting 
anything, we can assume the first diagonal entry of U is 1, or 8, = 0. Put 
D = diag[l, ei82, eie3,. . ., eien 1; then the j, k entry of D*TD is eicekdehjk, and 
we are free to choose the rz - 1 angles 8,, 8,, . . . ,8,. For example, one might 
choose the ej’s in order to transform the entries t,,, t,,, . . . , t,, in the first 
row of T into nonnegative reals. If t,,, t,,, . . . , t,, are all nonzero, then this 
will completely specify the D, and thus give a unique canonical form. 
However, if tlj = 0 for some j, then ej will still be undetermined and we 
can thus choose ej to make some other entry positive. Another approach 
might be to change the n - 1 superdiagonal entries into nonnegative real 
numbers, and again, if these are nonzero, then D is uniquely determined and 
we are done. However, if some of these entries are zero, then it will be 
possible to make other entries real by choosing the as yet unspecified entries 
of D. The basic idea is to create as many positive entries as possible. 

To specify a unique canonical form, one can order the positions above the 
diagonal and then proceed to successively create real entries in that order. 
Littlewood chooses to order the entries by row: t,,, t,,, . . . , tin, 

t23,t241...,t2n,t34,t35,...,t3n, . . . . tfl-2,“_l,tn-2,“,t”-l,n. In general one ex- 
pects to make n - 1 of the entries positive by specifying the n - 1 angles 

fla, f3 a,. . . ,8, of D. However, the zero-nonzero pattern of the entries above 
the diagonal of T will play an important role here. The following example 
shows that it is not always possible to create positive entries in tr - 1 
positions, even if T has n - 1 nonzero entries above the diagonal. 

EXAMPLE 2.1. Let n = 4, and suppose T has the form below, where an 
asterisk signifies a nonzero entry: 

I 0 0 0 1 2 0 0 * 0 3 * * 0 4 0 0’ I 
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We can then choose 0, and 8, to make the 1,2 and 1,3 entries positive. 
However, the argument of the 2,3 entry will then be fixed, since it depends 
only on 8, and 6s and is not affected by 8,. Alternatively, we could choose 
t?a and 8, to make the 1,2 and 2,3 entries positive, but then the argument of 
the 1,3 entry would be determined. 

For the distinct eigenvalue case, the canonical form is then an upper 
triangular matrix in which we have fixed the ordering of the diagonal entries 
(the eigenvalues) and have then created as many positive entries above the 
diagonal as possible by choosing the entries of the diagonal D. While this 
does give a unique canonical matrix in each equivalence class, the final result 
has some drawbacks. The canonical form is specified by describing a proce- 
dure for reducing a given matrix to canonical form, but we don’t know 
exactly what it will look like until we obtain the triangular matrix T and then 
apply the diagonal, unitary similarity. In general, we hope to have positive 
entries in the first row, or in the “first” n - 1 nonzero positions in the 
ordered list, but this will not always be possible. One must examine the 
positions of the zero entries in order to know exactly which entries can be 
made positive. Another drawback is that the canonical form depends on an 
ordering imposed on the superdiagonal positions. Ordering them by row, by 
column, or along successive diagonals is possible, but one could use any 
well-defined ordering. As we shall see, these problems persist and become 
more complicated in the general case. All of the proposed canonical forms 
depend on inductive definitions, and on some sort of imposed ordering 
scheme. 

One case with a completely satisfying solution is when n = 2. 

THEOREM 2.4. Let A be a 2 x 2 matrix with eigenvalues (Y, and a2, 
which may or may not be distinct. Let 

trace( A*A) - loI)’ - 1~~1~ , where r-20. 

Then A is unit&y similar to a triangular matrix T with czl and cx2 on the 
muin diagonal and r in the superdiagonal position. Furthermore, if A is 
unitarily similar to any triangular mutrix S with CY, and a2 on the muin 
diagonal, then Is,~/ = r. 

Proof. By Schur’s theorem, A is unitarily similar to a triangular matrix S 
with or and o2 on the main diagonal; let sr2 = reie be the superdiagonal 
entry of S. Since A and S are unitarily similar, trace(A*A) = trace(S*S) = 
lorI* + lo212 + r2. For V = diag[l, e-“I, we have V*SV = T. n 
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The number r in Theorem 2.4 can also be described in terms of the field 
of values, or numerical range. The numerical range of a 2 X2 matrix is an 
ellipse with foci corresponding to the eigenvalues [I19], where we identify an 
eigenvalue A = a + ib with the real point (a, h). The number r is the length 
of the minor axis of this ellipse [73]. 

Paulsen [81] gives a different, nontriangular canonical form for 2 X2 
matrices. Paulsen studies the problem of whether or not there exist continu- 
ous canonical forms for unitary similarity. He shows that the answer is no for 
n 2 3, but gives a continuous canonical fonn for the case n = 2. 

As a special case of the canonical form problem one might ask when a 
matrix is unitarily similar to its Jordan canonical form. Vesilic [123] has 
solved this problem for nilpotent matrices. 

3. PRELIMINARY RESULTS 

This section presents some of the results needed to describe and establish 
the canonical forms developed by Brenner [12], Littlewood [59], Mitchell 
[69], McRae [62], Radjavi [89], Sergeychuk [99], and Benedetti and Cragnolini 
[9]. These results are of independent interest; we also hope to clarify the 
exposition by presenting this preliminary material first and later focusing on 
the mechanics of the reduction to canonical form. Many of the theorems in 
this section are well known and can be found in standard texts such as [33, 
39, 48, 61, 65, 1211 as well as in [9, 12, 59, 62, 69, 89, 92, 991. We include 
them here for completeness and for the convenience of the reader. There are 
also some less well-known theorems showing that a matrix can be trans- 
formed to a special triangular form [9, 59, 62, 89, 991, determined by the 
Weyr characteristic, via a unitary similarity. One can present and prove these 
results in a variety of ways, and we shall try to indicate these different points 
of view. Some proofs will be included, others merely outlined. 

We frequently deal with matrices that are partitioned into submatrices. 
Thus, if A is an n X n matrix, we may partition the rows of A into t sets 
consisting of the first n, rows, the next n, rows, and so on, finishing with the 
last n, rows, where n, + n2 + . . . + n, = n. Partitioning the columns of A in 
the same manner breaks up the matrix A into blocks A,,, where Aii is the 
submatrix specified by the ith set of rows and the jth set of columns. Note 
that Aij has size 11~ X nj and that the diagonal blocks are square and have 
sizes hi X ni. If all blocks below the diagonal blocks are zero (Aij = 0 
whenever i > j), then we say A is block triangular. 

DEFINITION 3.1. If A is an n X n block triangular matrix with t 
square blocks on the diagonal of sizes n 1, n2,. . . , n,, where t >, 1 and 
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n, + n2 + . . . + rat = n, then we say A is T(n,,.. .,n,). If Ai denotes the ith 
diagonal block, we shall also say A is T(A,, A,,. . . , A,) and write A = 

T(A,, A,, . . ., A,). 

A square matrix in which both the blocks above and those below the 
diagonal blocks are zero is said to be block diagonal; thus a block diagonal 
matrix is just a direct sum of its diagonal blocks. 

DEFINITION 3.2. If A is an n x n block diagonal matrix with t square 
blocks on the diagonal of sizes n,,n,,.. .,nt, where t > 1 and n1 + n, 
+ . . . + nt = n, then we say A is D(n,,...,n,). If A, denotes the ith 
diagonal block, we shall also say A is D(A,, A,,.. ., A,) and write A = 
D(A,,A,, . . . , A,). 

Essentially the same argument used to prove Schur’s theorem (Theorem 
2.1) establishes the following result about sets of matrices. 

THEOREM 3.1 (Mitchell [69]). Suppose & is a nonempty set of n X n 
matrices that can be put simultaneously in triangular form by a similarity S. 

Then there is a unitary similarity U that simultaneously triangularizes the 

set d. 

The fact that JZ’ can be simultaneously triangularized implies that the 
matrices in & have a common unit eigenvector ui; the rest of the proof is 
essentially the same as the proof of Schur’s :!reorem. Mitchell’s proof [69] 
uses the following result, attributed to Schmidt [86]. 

THEOREM 3.2. If S is a nonsingular matrix, then there exists a triangular 

matrix T such that U = ST is unitary. 

Thus, if S 'AS is triangular, so is T- ‘(S- ‘AS)T, which is equal to U*AU. 
Since the matrix equation U = ST may be viewed as the Gram-Schmidt 
orthogonalization process applied to the columns of S, we see that this proof 
is really based on the same idea as the other. 

Sets of matrices that can be simultaneously triangularized by a similarity 
transformation were characterized by McCoy [60]; see also [24, 114, 70, 441. 

Theorem 3.1 extends to block triangular matrices. 

THEOREM 3.3 (Specht [109]). A nonempty set of n X n matrices that can 

be put simultaneously in block triangular f&m T(n,, n2,. . , , n,) by a similarity 
transformation S can be put simultaneously in this form by a unitary 

similarity U. 
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Again, one can prove this by induction. Since the matrices can be 
simultaneously put in block triangular form, they have a common invariant 
subspace of dimension ni. Now use an orthonormal basis for this subspace as 
the first ni columns of U, and then apply the induction hypothesis. Altema- 
tively, one can use Theorem 3.2 and note that since T is triangular, 
T-‘(S-‘AS)T will still be T(n,, n,,.. . , n,). 

Sets of matrices that can be put simultaneously in block triangular form 
via a similarity or unitary similarity are studied in [7, 31, 55, 57, 100, 102, 
109, 1271. 

Mitchell [69], Littlewood [59], SergeTchuk [99], and Benedetti and 
Cragnolini [9] all b ase their canonical forms on the Schur theorem. Although 
the diagonal entries of the triangular matrix found in Theorem 2.1 must be 
the eigenvalues of the matrix, and hence are uniquely determined, up to 
ordering, by the original matrix, the entries above the main diagonal are not 
uniquely determined. The basic idea in [59, 69, 99, 91 is to specify more 
precisely the entries above the main diagonal in the triangular form by 
applying further unitary similarities that still preserve the triangular form. In 
preparation for this analysis, we need information about similarity transfor- 
mations that preserve certain block triangular forms. We first need the 
following well-known theorem [33, 61, 651. 

THEOREM 3.4 (Sylvester [113]). Let A be in C(n) and let B be in C(m). 

Then the matrix equation AX - XB = 0 has a nontrivial solution X in C(n, m) 

if and only if A and B have a common eigenvalue. 

Various proofs of Theorem 3.4 can be found in the literature. One 
approach [41, 65, 76, 1171 is to use the pair A, B to define a linear operator 
L(A, B) on the space C(n, m) as follows: L(A, B)(X) = AX - XB. The opera- 
tor L(A, B) can then be represented by the mn X mn matrix Z@A - BT@Z. 
The eigenvalues of this matrix are the numbers (Y( - pj, where oi is an 
eigenvalue of A and flj is an eigenvalue of B, and hence L(A, B) has a 
nontrivial null space if and only if A and B have a common eigenvalue. 

We now investigate similarity transformations that preserve block trian- 
gular structure. The statements and proofs of Theorems 3.5 through 3.7 
either appear in or are suggested by similar results in [9, 12, 59, 62, 69, 92, 
991. 

Theorems 3.5 and 3.6 are not explicitly stated in [9, 59, 69, 92, 991, but 
these papers certainly contain all of the ingredients for their proofs. 

THEOREM 3.5. Suppose A is T(n,,n,,..., n,) with diagonal blocks Ai, 
where Ai and A j have no common eigenvalues if i # j. Suppose S is 
nonsingular and B = S-‘AS. Then B is also T(n,, n2,. . . , nl), with diagonal 
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blocks Bi, where, for each i, the blocks Ai and Bi have the same eigenvalues, 
if and only if S is T(nr,n,,. ..,n,). 

Proof. Suppose B is T(n,,n,,. . ., n,), with diagonal blocks Bi, where, 
for each i, the blocks Ai and Bi have the same eigenvalues. The numbers ni 
specify partitions of A and B into submatrices Aij and Bij; partition S in a 
similar manner. Now compare the two sides of the‘ matix equation AS = SB, 
using block matrix multiplication. Looking at the t, 1 block on each side, we 
have A,S,r = StlB1. Since A, and B, have no common eigenvalue, Theorem 
3.4 tells us that S,r = 0. Now look at the t - 1,1 block to find that A,_ ,S,_,,, 

= S,_,,lB1, so that S,_,,, is also zero. Continue in this fashion to show that 
Sir = 0 for all i > 1. Either use induction, or repeat the same argument on 
subsequent columns of blocks to show that Sij = 0 whenever i > j. 

Conversely, suppose S is T(n,,n,, . . ., n,). Then S-‘AS = B must also be 

T(n,,n,,..., n,). The block triangular form of S yields S,‘AiSii = Bi, so that 
Ai and Bi must be similar and have the same eigenvalues. n 

Our main interest will be the special case in which each A, has a single 
eigenvalue oi of multiplicity ni and the matrix S is unitary. 

Let A have t distinct eigenvalues or, (Ye,. . . , a,, where oi has multiplic- 
ityn,.LetJbetheJordancanonicalformofA,andwriteJ=D(/,,J,,...,J,), 
where the ni x ni block Ji is the direct sum of all of the Jordan blocks 
belonging to the eigenvalue cri. Using Schur’s theorem 2.1, we assume A is 
already in triangular form with o1 in the first nr diagonal positions, (~a in the 
next n, diagonal positions, and so on. Thus, we have A = T(A,, A,, . . . , A,), 
where each ni x ni diagonal block Ai is triangular with oi in each diagonal 
entry. We now want to apply a further unitary similarity to transform the 
diagonal blocks Ai into a special form determined by the Jordan canonical 
form of A. We first note that Ji must be the Jordan canonical form of Ai. 

THEOREM 3.6. Let A be an n X n matrix with t distinct eigenvalues 
2,. . . , CY~ where cq has multiplicity ni. Let J = D(]r,Jz,. . . , J,) be the 

7’: or n canonical form of A, where the ni X ni block Ji is the direct sum of all 
of the Jordan blocks belonging to the eigenvalue oi. Suppose that A = 

T(A,,A,,..., A,), where Ai is of size n,, and (Y~ is the only eigenvalue of Ai. 
Then Ji is the Jordan canonical form of Ai, and A is similar to 
DU,, A,, . . . , A,). 

Proof. Let S be a nonsingular matrix such that S- ‘AS = J. The result 
then follows from Theorem 3.5 and by noting that S; ‘AiSi = Ji. n 
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A unitary matrix that is T(n,, n2,.. . , n,) must actually be D(n,,n,, . . . ,n,), 
with unitary diagonal blocks. A similar result holds for normal matrices. 
Thus, if N = T(n,, n2,. . ., n,) is normal, then comparing the traces of the 
diagonal blocks in the equation N*N = NN*, and using the fact that the 
trace of NiT Nij is nonnegative and is zero only if Nij = 0, shows that N must 
be D(n,, n2,. . , n,) with normal diagonal blocks. This is also a special case of 
the following theorem of Parker [SO]: If N is a partitioned normal matrix and 
the characteristic polynomial of N is the product of the characteristic 
polynomials of the diagonal blocks, N,, N2,. . , N,, of N, then N must be 
block diagonal D( N,, N,, . . . , N, ). 

Theorem 3.5, together with the fact that a unitary matrix that is 

T(n,,n,,..., n,) must actually be D(n,,n,,...,n,) with unitary diagonal 
blocks, yields out next result, which appears in [q, 59, 92, 991. 

THEOREM 3.7. Let A be an n X n matrix with t distinct eigenvalues 

~l>ffZ>~“>~,, where CY~ has multiplicity ni. Suppose that A = T(A,, A,, . . . , A,) 
where Ai is triangular of size ni and has (Y~ in each diagonal entry. If U is 

unitary and U*AU also has this form, then U must be D(n,, n2,. , n,). 

REMARK. If A has n distinct eigenvalues, the U of Theorem 3.7 will be 
diagonal with diagonal entries of the form eis. Thus, Theorem 2.3 is a special 
case of Theorem 3.7. 

Let Vi denote the ith diagonal block of the U in Theorem 3.7. The next 
step is to choose Vi so that Ui*AiUi has a special form determined by Ji. To 
avoid double subscripts, consider a k X k matrix B with a single eigenvalue 
p, and let J be the Jordan form of B. Then J is a direct sum of Jordan blocks 
ofsizes k,,k, ,..., k,, where each block has /3’s in the diagonal positions, l’s 

along the superdiagonal, and O’s elsewhere. We order the k,‘s so that 
k, > k, > +. . > k,. The numbers k,, k,, . ., k, form a partition of k, called 
the Segre characteristic belonging to p [33, 61, 1211. The Jordan form of a 
matrix is completely specified by its eigenvalues and their corresponding 
Segre characteristics. An alternative description can be given by the Weyr 
characteristic [61, 121, 1311. Th e matrix N = J - PI is nilpotent, and if p is 
the index of N (the smallest power of N that is zero) then p = k,. Let 
g,, g, + g,, g, + g, + g,, . . . , gr + g, + g, + . . . + gf, be the nullities of 
N, N2, Ns,. . ., NP. That is, for i = 1,2,. . . , p, the dimension of the null space 
of N” is g, + g, + * *. + gi. The list of numbers g,, g,, . . . , g,,, is called the 
Weyr characteristic corresponding to 6. Since the nullity of N’ exceeds that 
of N’-’ by precisely the number of Jordan blocks of size at least i, the 
number gi is the number of Jordan blocks of size greater than or equal to i. 
Thus the numbers of the Weyr characteristic form the conjugate partition of 
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the Segre characteristic [121, pp. 79-801, and the Jordan form of a matrix is 
also completely specified by its eigenvalues and their corresponding Weyr 
characteristics. Note also that g, >/ g, > 1 . . > gP. 

Viewing B as a linear transformation of Ck, consider the null spaces, or 
kernels, of the maps (B - BZ)‘. For convenience of notation, assume B = 0; 
thus B is nilpotent of index p = k,. Since the kernel of B’ contains that of 
B’-‘, we can build a special orthonormal basis for Ck as follows. Start with 
an orthonormal set of g, vectors that are a basis for the kernel of B, then 
extend this to an orthonormal set of g, + g, vectors that form a basis for the 
kernel of B2, and so on, until we have k orthonormal vectors such that the 
first g, + g, + * f 1 + gi vectors in the set give an orthonormal basis for 
the null space of B’. Notice that if v is one of the vectors added at stage i, 
then Bv is in the kernel of B’-’ and hence is a linear combination of the first 

g, + g, + . . * + gi_, vectors in the basis. Using these basis vectors as the 
columns of a k X k unitary matrix U, we see that U*BU = T(Z,,Z,, . . . Z,>, 
where the gi X gi block Zi is zero. Furthermore, we can say something 
about the blocks in the superdiagonal positions. 

DEFINITION 3.3. Let B be a block triangular matrix, T(B,, B,, . . . , B,), 
where Bi is gi X g,. Assume B is the only eigenvalue of B. Then we shall say 
B is in Weyr form if: 

(1) g, a g, >, . . . a gp. 
(2) For each i, the diagonal block Bi is the scalar matrix BZgi. 
(3) Each superdiagonal block Bi i+ 1 has rank gi+ 1, and thus, since Bi,i+l 

has size gj X gi+,, each superdiagonal block has linearly independent 
columns. 

THEOREM 3.8. Suppose B is T(g,, g2,. . , g,,> and has a single eigen- 
value p. of B is in weyr form, then g,, g,,.. ., gr, mat be the Weyr 

characteristic of B. 

Proof. Since N = B - PZ is also in Weyr form and has the same Weyr 
characteristic as B, it suffices to prove the result for the nilpotent matrix N. 
Since each of the superdiagonal blocks N,,, N2a,. . . , NP_i,P has linearly 
independent columns, and the first g, columns of N are zero, N has rank 

g2+ g,+ . . . + g, and nullity g,. The matrix N2 has zero blocks in the 
diagonal and super-diagonal positions, while the next diagonal line contains 
the products N,,N,,, N2sNs4? . . . , NP_2,P_-1NP_-l,P. But the product 

Ni,i+iNi+l,i+e also has linearly independent columns, and hence has rank 

gi+2. So N2 has rank g, + g, + . . * + gp and nullity g, + g,. In general, 
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N’ has blocks of zeros along the diagonal lines up to the rth superdiagonal 
line, which contains products of r consecutive Ni,i + i’s The linear indepen- 
dence of the columns in each Ni, i+ I then guarantees that N” has rank 

g r+1+ g,+!2 + *. . + gp and nullity g, + g, + e.. + g,. Hence, N and Z3 
have Weyr characteristic g,, g,, . . . , gP. n 

Although Littlewood, Sergeichuk, and Benedetti and Cragnolini do not 
mention the Weyr characteristic, they all describe and use some version of 
the special triangular matrices defined in Definition 3.3. Benedetti and 
Cragnolini do discuss the connection between these special triangular matri- 
ces and the Jordan form, and point out that the block sizes g,, g,, . . . , g,, 
form the conjugate partition of the Segre characteristic. Radjavi also defines 
these special triangular matrices, but does not mention the superdiagonal 
blocks. McRae describes an inductive procedure that leads to matrices in 
Weyr form-although he does not mention the superdiagonal blocks, one can 
show that his construction does lead to a matrix in Weyr form. Similarly, 
although none of these authors associates the block sizes with the Weyr 
characteristic, Littlewood, Sergeichuk, and Benedetti and Cragnolini all have 
versions of Theorems 3.9 and 3.12, or their natural extensions to matrices 
with more than one eigenvalue. 

THEOREM 3.9. Let B be a k x k matrix with a single eigenvalue p. Then 

B has We y characteristic g I, g,, . . . , g,, if and only if B is unitarily similar to 

a matrix C that is T(g,, g,, , . ., gP) and in Weyr fMm. 

Proof. Suppose B has Weyr characteristic g,, g,, . . . , gP. Then, since 
B - /?I is nilpotent, the discussion preceding Definition 3.3 shows that B is 
unitarily similar to a matrix C that is T(g,, g,, . . . , gp) and in which the 
diagonal blocks are the scalar matrices /3Z,,. The nilpotent matrix N = C - PZ 
also has Weyr characteristic g,, g,, . . . , gP. Recalling that g, is the nullity of 
N, we see that N has rank k - g, = g, + g, + * * * + gp. Since the first g, 
columns of N are all zero, the remaining columns must be linearly indepen- 
dent. This tells us that N,, has linearly independent columns, and hence has 
rank g,. But N2 has blocks of zeros in both the diagonal and superdiagonal 
blocks, while the next line of diagonal blocks has the products Ni,i+ ,Ni+ i, i+2. 
Since the rank of N2 is g, + g, + *. . + g,, and since the first g, + g, 
columns of N2 are zero, the remaining columns must be linearly indepen- 
dent. In particular, N,,N,, must have linearly independent columns, and so 
N2s must have linearly independent columns and thus have rank g,. In 
general, examination of N’ shows that the product Ni, Na3Ns4 . * * N,,,+ , 
must have linearly independent columns, so an induction argument shows 
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that Nr,r+l has linearly independent columns and thus rank gr+ r. Therefore, 
C has Weyr form. 

Conversely, if B is unitarily similar to a matrix C that is T(g,, g,, . . . , gP) 
and in Weyr form, the Theorem 3.8 tells us that g,, g,, . . ., gr, is the Weyr 
characteristic of B. n 

REMARK. Theorem 3.9 also holds if one replaces “unitarily similar” with 
“similar,” and one can use this to obtain another canonical form for similarity 
[131,132]. Like the Jordan form, it is a direct sum of diagonal blocks, where 
the blocks correspond to the distinct eigenvalues (or, as,. . . , at and the size 
of the ith block is the multiplicity of (Y~. Each such block is a Weyr form 
block with diagonal scalar blocks of sizes given by the Weyr characteristic of 
CX~, superdiagonal blocks consisting of an identity matrix of size gi followed 

bY gi+1 - gi rows of zeros, and zero blocks elsewhere. 

Benedetti and Cragnolini’s versions of Definition 3.3 and Theorem 3.9 
are the same as presented here-the fact that the block sizes must corre- 
spond to the Weyr characteristic guarantees that their special triangular type 
is the same as we have used here. Sergeichuk’s version is slightly different 
because SergeTchuk works with lower triangular matrices. Thus, SergeTchuk 
states a rank condition on the blocks immediately below the main diagonal, 
and for this formulation the rows of these subdiagonal blocks are linearly 
independent. Littlewood’s version is based on the ranges (or column spaces) 
of the powers of B, rather than the kernels. This results in having block sizes 
that increase (rather than decrease) in size, and thus the superdiagonal 
blocks have linearly independent rows rather than columns. For complete- 
ness, we outline Littlewood’s approach. 

Again, for convenience, consider a k X k matrix B with a single eigen- 
value p and let N be the nilpotent matrix B - /3Z. Let p be the index of N, 
and consider the powers N’, where i runs from 0 to p - 1. Since the range of 
N i contains that of N’+ ‘, we can construct an orthonormal basis for Ck by 
starting with an orthonomral basis for the range of NP-‘, extending it to an 
orthonormal basis for the range of N P-2, then extending to an orthonormal 
basis for the range of Npe3, and so on, until we have an orthonormal basis 
for the range of N; we then extend that to an orthonormal basis for Ck. If mi 
is the number of vectors added at stage i of this process, then the number 
m,+m,+ a** + mi = ri is the rank of NP-‘. The nullity of N’ is then 
k -cm, + m2 + . * * + m,_,) = mp_i+l + mp_i+2 + . . . + mp, since rp = k. 
But this means that the numbers m, are the numbers of the Weyr character- 
istic written in reverse order, from smallest to largest. If U is the k x k 

unitary matrix whose columns are the vectors of the orthonormal basis 
constructed above, then C=U*BU will be T(m,,m,,...,m,), with the ith 
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diagonal block C, being the scalar matrix /?Z and with the pni x m,, , 
superdiagonal block Ci i + 1 having linearly independent rows and rank mi. 

This approach leads to the following result, which is similar to Theorem 3.9 
and is proved the same way. 

THEOREM 3.10. Let B be a k x k matrix with a single eigenvalue p. Then 

B has Weyr characteristic g!, g,, . . , g,, $and only if B is unitarily similar to 

a matrix C that is T(gl,, gf,_ ,, . . . , g,, g,, gl) and of the following form: 

(1) The i th diagonal block, Ci, is the scalar matrix /3 I. 

(2) The gP_i+ 1 x gp_i superdiagonal block Ci. i + , has linearly indepen- 

dent rows and rank g,_i + 1. 

Theorems 2.1 and 3.9 show that if A is an n X n matrix with t distinct 
eigenvalues aI, cyB,. . , at, where (Y~ has multiplicity ni, then A is unitarily 
similar to a triangular matrix of form T(A,, A,, . . . , A,), where the n, X n, 

block Ai corresponds to (Y~ and is in Weyr form. We now see what type of 
similarity transformation will preserve Weyr form. Littlewood, SergeTchuk, 
and Benedetti and Cragnolini all give the following theorem for the case of 
unitary similarity, but the same argument establishes the result for similarity. 

THEOREM 3.11. Let B be a k X k matrix with a single eigenvalue /3 and 

Weyr characteristic g,, g,, . , gl,. Suppose B is in Weyrform. Then C = S- ‘BS 

is also in Weyr form if and only af S is T(g,, g,, . . . , 6,). 

Proof. Assume that C = S-‘BS is in Weyr form. Since C is similar to B, 

we know from Theorem 3.8 that C must have the same block sizes as B. 

Without loss of generality, we may assume /? = 0, so that B is nilpotent with 
diagonal blocks of zeros. Partition S into blocks of the same size, and 
consider the block entries in both sides of SC = BS. On the left hand side, 
the first column of blocks is all zero. Thus, examining the p - 1,l block on 
the right hand side, we see that B,,_, ,,Spl = 0. Since B,_ 1 I, has linearly 
independent columns, S,, = 0. Now go to the p -2,1 block to see that 

qJ-5!,,-1S,-1,1 = 0, so the linear independence of the columns of B,_,,,_ 1 
forces S, _ 1 , 

’ 
= 0. Moving up the first column in this way shows that Si. = 0 

for i=2,3 , . . . , p. The same argument applied to the other columns (or, more 
formally, an induction proof) then shows that S is T(g,, g,, . . . , gP). 

Conversely, suppose S is T(g,, g,, . . . , 6,). Let C = S-‘BS. Then C is 

also T(g,,g,,..., gP) with diagonal blocks Ci = S;‘BiSi. Since Bi is a scalar 
matrix, Ci = Bi. Computing the superdiagonal blocks, we have Ci,i+, = 

SilBi,i+lSi+l for i=l,...,p-1, so Cii+l and Bii+l have the same rank, 
and thus the superdiagonal blocks of C have linearly independent columns. 

n 
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The fact that a unitary matrix is T(g,, g,,. . . , gJ if and only if it is 

D(g,> g,, . . . > gJ now yields the following “unitary” version of Theorem 3.11. 

THEOREM 3.12. Let B be a k x k matrix with a single eigenvalue p and 

We yr characteristic g 1, g, , . . , , gp. Suppose B is in Weyr form. Then a unitary 

matrix U has the property that C = U- ‘BU is also in Weyr form if and only if 

Uis D(g,,g2,...,g,). 

Again, although not stated in terms of the Weyr characteristic, the result 
of Theorem 3.12 appears in [9, 59, 991. 

REMARK. When B is nonderogatory, the Segre characteristic of B is just 
the single number k, and the Weyr characteristic is 1, 1,. . . , 1. The diagonal 
blocks of a Weyr form for B are then 1 X 1 blocks, and the U of Theorem 3.12 
must be a diagonal matrix. Combining this with Schur’s triangularization 
theorem and Theorem 3.7 thus establishes that Theorem 2.3 also holds for 
nonderogatory matrices. Mitchell gives a more direct proof in [69], and thus 
shows that a triangular canonical form can be found for nonderogatory 
matrices by using the same procedure described for matrices with distinct 
eigenvalues. 

EXAMPLE 3.1. For any triple (x, y, Z) of positive numbers, let M(r, y, z> 
be the matrix 

i 0 0 0 0 x 0 Y z. 0 1 
Then M(x, y, Z) is nonderogatory, so only a diagonal unitary similarity can 
preserve this form. Hence, since x, y, and z are positive, two different 
matrices of this form cannot be unitarily similar. Note, however, that all 
matrices of this form are similar. 

Once B is in Weyr form, we can apply an additional unitary similarity to 
further specialize the superdiagonal block, as done in [9]. 

DEFINITION 3.4. If m > n and A is an m X n matrix of rank r, we say A 
is in row form. if the first m - r rows of A are zero. 

Observe that if A is in row form, so is AQ for any nonsingular matrix Q. 
The following theorem is based on a similar result of Benedetti and Cragno- 
lini for unitary matrices. 
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THEOREM 3.13. Suppose A is an m X n matrix of rank r in row form. Let 

P and Q be nonsingular matrices of sizes m X m and n X n, respectively. Then 

PAQ is in row form if and only if PT is T(m - r, r), so that P is lower block 

triangular with diagonal blocks of sizes m - r and r. 

Proof. If PT is T(m - r, r), then computing PA using block multiplica- 
tion shows that PA is in row form, and hence PAQ must be in row form. 

Conversely, suppose that PAQ is in row form. Since Q is nonsingular, 
the first m - r rows of PA must be zero, so PA must be in row form. 
Partition P conformally with A, into diagonal blocks P, and P2 of sizes 

m - r and r, respectively, and off-diagonal blocks P,, and P,, of sizes 
(m - r)X r and r X(m - t-1. Letting A, denote the r X n matrix in the last 
r rows of A, the first m - r rows of PA are given by P,,A,. Since PA is 
in row form, P,,A, = 0, so P,, = 0 because A, has linearly independent 
rows. Hence P is lower block triangular with diagonal blocks of sizes m - r 

and r. n 

We shall want the unitary version of Theorem 3.13, given in [9]. 

THEOREM 3.14. Let A be an m X n matrix of rank r with m 2 n. Then 

there exists a unitary matrix P such that PA is in row form. Furthermore, af A 
itself is already in row form, then P and Q are unitary matrices such that PAQ 

is also in row form if and only if P is D(m - r, r-1. 

Proof. For the first part, find a set of m - r orthonormal vectors that 
are orthogonal to the columns of A, and use these m - r vectors as the first 

m - r rows of a unitary matrix P. For the second statement, apply Theorem 
3.13 and use the fact that a block triangular unitary matrix must actually be 
block diagonal. n 

Similarly, we have column versions of Definition 3.4 and Theorems 3.13 
and 3.14. 

DEFINITION 3.5. If n > m and A is an m X n matrix of rank r, we say A 
is in column form if the first n - r columns of A are zero. 

THEOREM 3.15. Suppose A is an m X n matrix of rank r in column fm. 

Let P and Q be non-singular matrices of sizes m X m and n X n, respectively. 
Then PAQ is in column fnm zf and only zf Q is T(n - r, r-1. 
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THEOREM 3.16. Let A be an m X n matrix of rank r with n > m. Then 
there exists a unitay matrix Q such that AQ is in column form. Furthermore, 
if A itself is already in column fm, then P and Q are unitary matrices such 
that PAQ is also in row fm rfand only if Q is D(n - r, r>. 

Although we use different notation and terminology, Definitions 3.6 and 
3.7, as well as Theorems 3.17 and 3.18, are based on [9]. 

DEFINITION 3.6. We shall say a block triangular matrix B = 

T(B,, B,, . . . , BP) is in special Weyr fm if B is in Weyr form and, in 

addition, each super-diagonal block Bi,i + 1 is in row form. 

DEFINITION 3.7. Suppose g, 2 g, B . * * 2 g, are positive integers. 

Then (gl, g,, . . . , g,)* will denote the list of positive integers obtained from 

(g,,g,,..., gp) by replacing the number gi with the pair of numbers 

gi - gi+ry gi+r, whenever gi > gi+r. 

For example, if we start with the list (7,5,5,3,1, l), then 7 is replaced by 
2,5, the second 5 is replaced by 2,3, and the 3 is replaced by 2,1 to yield 

(7,5,5,3,1,1)*=(2,5,5,2,3,2,1,1,1). 

THEOREM 3.17. Suppose B=T(g,,gz,...,g,) is in special Wey folm 
and v is unitary. Then V *BV is also in special We yr fMm if and only if V is 

D(( g,, gsy.+.T gr>*>. 

Proof. Suppose V*BV is in special Weyr form. Then V*BV is in Weyr 
form, so Theorem 3.12 tells us V must be D(g,, g,,.. ., gr). Let C = V*BV; 
then Ci,i+l = Vi*Bi,i+lVi+l. Since Bi,i+l and Ci,i+l are both in row form, 
Theorem 3.14 tells us that whenever gi > gi+r, the matrix Vi* must be 

D(gi-gi+r,gi+r). So Vi is D(gi-gi+l,gi+l) whenever gi>gi+l, and 
hence U has the desired form. 

Conversely, if U has the desired block diagonal form, U is also 

D(g,, g,, *. . , g,), so V*BV is in Weyr form. Since Vi is D(g, - gi+r,gi+r) 

whenever gi > gi + r, Theorem 3.14 tells us the superdiagonal blocks of 
V*BV will still be in row form, and hence V*BV is in special Weyr form. n 

THEOREM 3.18. Let B be a k x k matrix with a single eigenvalue /3 and 
Weyr characteristic g 1, g, , . . . , 
that is T(g,,g,,..., 

g,,. Then B is unitarily similar to a matrix C 
gp) and in special Wey fm. Furthermore, V is a 
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unitary matrix such that U *CU is also in special Weyr form if and only zf U is 

Dk,, g,, . . ., g,,)*. 

Proof. By Theorem 3.9, B is unitarily similar to a block triangular 
matrix F = T(g,, g,,. . , gr,> that is in Weyr form, and by Theorem 3.12, 
U*FU is also in Weyr form whenever U is D(g,, g2,. . , gl,). Theorem 3.14 
tells us that for each superdiagonal block Fi, i + 1 of F, we can find a gi X gi 
unitary matrix Vi such that Vi Fi, i + 1 is in row form. Let U = D(U,, U,, . . . , U,). 
Then the superdiagonal blocks of U *FU are Vi Di, i + r Ui + r and hence are in 
row form, so C = U*FU is in special Weyr form and is unitarily similar to B. 

The second part of the theorem follows from Theorem 3.17. n 

For ease of notation, we defined Weyr form and special Weyr form for 
matrices with only one eigenvalue, but the definitions extend naturally to the 
general case. 

DEFINWION 3.8. Let A be an rr X n matrix with t distinct eigenvalues 

ffr> ff B,“‘, (Ye, where (Y~ has multiplicity n,. Suppose A = T(A,,Az,...,A,), 
where Ai has size ni, and (Y~ is the only eigenvalue of Ai. We say A is in 
Weyrform if each diagonal block Ai is in Weyr form (Definition 3.31, and we 
say A is in special Weyr form if each diagonal block Ai is in special Weyr 
form (Definition 3.6). 

Theorems 2.1 and 3.18 show that any matrix is unitarily similar to a 
matrix in special Weyr form. 

THEOREM 3.19. If A is an n X n matrix, then there exists a unitary matrix 

U such that U*AU is in special Weyr form. 

We now have the main results needed to determine the diagonal blocks 
in the triangular canonical form. These diagonal blocks are scalar matrices of 
sizes determined by the Weyr characteristic, and hence by the similarity 
class of the matrix. The next step is to treat the blocks above the diagonal in 
order to establish a unique canonical form. The main tool used here is the 
singular value decomposition [ 14, 251, which is closely related to the polar 
decomposition [6, 135, 1361. These are both well known, especially for the 
nonsingular case, and are treated in many texts [33, 48, 611; proofs are also 
included in [9, 12, 59, 62, 92, 991. One can first establish the polar decompo- 
sition and then use it to derive the singular value decomposition, or, vice 
versa, derive the polar decomposition from the singular value decomposition. 
We start with the singular value decomposition. 
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Let A be in C(m, n), and let r be the rank of A. Then A*A and AA* are 
positive semidefinite Hermitian matrices of rank r having the same eigenval- 
ues; furthermore the r nonzero eigenvalues have the same multiplicites. 
These nonzero eigenvalues must be positive; denote them as a;, ai,. . . , a,?, 
where oi >, a, > * * . > u,. > 0. The positive numbers (+i, a,, . . . , a,. are called 
the singular values of A. Thus, the singular values of A are the positive 
square roots of the nonzero eigenvalues of A*A or, equivalently, of AA*. We 
first deal with the case where r = m = n, that is, where A is nonsingular. 

THEOREM 3.20 (Singular value decomposition: Browne [14]; Eckart and 
Young [25]). Let A be a nonsingular n x n matrix. Then there exist unitary 

matrices V and V, and a diagonal matrix D with positive diagonal entries, 

such that A = VDV. Furthermore, in any such factorization, the diagonal 

entries of D must be the singular values of A. 

Proof. Let a;2, ai,. . , u,f be the eigenvalues of A*A, where ui > 0; let 
D be the diagonal matrix with ai in the ith diagonal entry. Let xi be an 
eigenvector corresponding to a,; since A*A is Hermitian, we can assume 

x1,x 2>...,xn are orthonormal. Let X be the unitary matrix with columns 
x . Then A*AX = XD’. Since A*A 

i,r$2’A’l (“A*)-iXDaX* = [(A*)-rXD]DX*. 
is nonsingular, D is nonsingular 

Let v=x* and let V = 

(A*)-‘XD. Then V is certainly unitary and VU* = [(A*)-%I][ DX*A-‘I= 

(A*)-1[XD2]X*A-1 = (A*)-‘[A*AXX*]A-’ = I, SO U is unitary. Thus, we 
have A = VDV, and D has positive diagonal entries ui. 

If A = VDV is such a factorization, then A*A = V*D2V, so the diagonal 
entries of D2 must be the eigenvalues of A*A. Since the diagonal entries of 
D are positive, they must then be the singular values of A. n 

We need a singular value decomposition for singular and rectangular 
matrices, and we need to know how much freedom one has in choosing the V 

and the V [9, 12, 54, 993. 

THEOREM 3.21. Let A be an m X n matrix of rank r with singular values 

u1 > u2 > . ’ ’ > CT,, where ui has multiplicity mi. Let D be the m X n 

diagonal matrix that is the direct sum 

Then there exist unitary matrices V and V such that A = UDV. 

Furthermore, V and V are unitary matrices such that UDV = D if any 
only if there is an r x r block diagonal unitary matrix S = D(m,, m,, . . .,m,), 
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and unitary matrices U, and V,, of sizes m - r and n - r, respectively, such 

that U=S@U, and V=S*@Vs. 

Proof. Let X be an m X m unitary matrix in which the last m - r rows 
are orthogonal to the columns of A, and let Y be an n X n unitary matrix 
such that the last n - r columns of Y are orthogonal to the rows of A. Then 
XAY has an r X r nonsingular matrix A, in the upper left hand comer, with 
the remaining m - r rows and n - r columns being zero. Now apply 
Theorem 3.20 to A, to find r X r unitary matrices U, and V, such that 

A, = U, D,V,, where D, is the r x r diagonal matrix a,Z,,,,@oa,Ztnp@ * . . @ 

a,L. Let U= X*(U1@Z,,,_,) and let V=(V,@Z,_,)Y*. Then U and V are 
unit&y and 

A = X*(XAY)Y* = X*(UIDIV,~O~,,,_,,x(,_,))Y* = UDV. 

Now suppose U and V are unitary matrices such that UDV = D. Partition 
U and V conformally with the blocks of D (i.e., according to the m,‘s>, and 
compare corresponding blocks on the two sides of the equation UD = DV*. 

Since distinct diagonal blocks of D have different scalars, U must be 

DCm,,m,,..., m,,m - r) and V must be D(m,,m,,. . , m,,n - r-1. Then since 
the first t diagonal blocks of D are nonzero scalar blocks, we must have 

Ui = vi* for i = 1,2,. . ., t. Putting S = D(U,, Us, . . ., U,), we see that U and V 
must have the desired form, Conversely, it is clear that if U and V have this 
form, then UDV = D. n 

DEFINITION 3.9. The diagonal matrix D of Theorem 3.21 is called the 
singular value form of A. 

We now use the singular value decomposition to establish the polar 
decomposition; one can also prove the polar decomposition first and then 
derive the singular decomposition from it. 

THEOREM 3.22 (Polar decomposition: Autonne [6]; Wintner and Mur- 
naghan [136]). Let A be an n X n matrix. Then there exists a unitary matrix 
U and positive semidefinite matrices H and K such that A = UH = KU. In any 

such representation, the nonzero eigenvalues of H and K must be the singular 

values of A. Furthermore, $A is nonsingular, then H, K, and U are uniquely 
determined by A. 

Proof. From Theorem 3.21 we have A = RDS, where R and S are 
unitary and D is a nonnegative diagonal matrix. Then A = RS(S*DS) = 
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(RDR*)RS. Let U= RS, while H = S*DS and K = RDR*. Then U is uni- 
tary, H and K are positive semidefinite, and A = UH = KU. 

If A = UH = KU is such a representation, then AA* = K2 and A*A = H2, 
so the nonzero eigenvalues of H and K must be the singular values of A. 

Finally, if A is nonsingular, then K must be the unique positive definite 
square root of AA*, while H is the unique positive definite square root of 
A*A, so H and K are uniquely determined. But then U must be AH-’ = 
K-‘A. n 

The polar decomposition is analogous to writing a complex number z as 
reie; the unitary factor plays the role of the eiO, while the positive semidefi- 
nite Hermitian factor is analogous to the modulus r. There are also versions 
of the polar decomposition for nonsquare matrices; see [IO9, 135, 491. 

4. THE REDUCTION PROCESS 

Theorem 3.19 tells us that any matrix can be transformed to special Weyr 
form with a unitary similarity. The next step is to apply further unitary 
similarities to specify the off-diagonal blocks and eventually achieve a unique 
canonical form, a process outlined by Littlewood. The more recent papers by 
SergeIchuk and by Benedetti and Cragnolini differ in some details, but both 
use Weyr form and describe a step-by-step procedure for reducing a matrix 
to canonical form. However, the basic method of the reduction process 
appears in Brenner’s earlier paper, which gives an inductive definition for a 
canonical form. Brenner’s form is not triangular, but his inductive approach 
to the problem is essentially the same as thqe developed in the later papers. 
The idea is to partition the matrix, and then apply a sequence of unitary 
similarities that successively transform the submatrices into a special form; at 
each stage, one uses a unitary transformation that both preserves the form of 
the already reduced submatrices and reduces an additional submatrix to the 
desired form. Each step involves refining the partition of the matrix and 
further restricting the group of unitary transformations to be used in the next 
step; the refinement process guarantees that the construction stabilizes after 
a finite number of steps. 

Thus, at each step, one has a partitioned matrix in which some blocks 
have already been reduced to their final form; the idea is to reduce the 
“next” block while preserving the already treated blocks. A crucial part of 
the argument is to identify the group of unitary transformations that preserve 
the already reduced blocks. One then applies a unitary similarity from that 
group to further refine additional blocks. We also need to specify an ordering 
of the blocks, in order to identify the “next” block to be reduced. Various 
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versions of these ideas are developed in all of the papers [9, 12, 89, 991; the 

specific presentation given here most closely follows [9]. Our notation and 

terminology differ somewhat from the cited papers. We begin with some 

ideas from group theory [93] and then develop some notation. 

Let 9 be a group acting on the set C(n). We say n X n matrices A and 

B are &-equivalent if g(A) = B f or some g in 9. The .#equivalency classes 

are the orbits of 3; the action of 9 partitions C(n) into &orbits. For A in 

C(n), the stnbdizer of A is the subgroup St(A) = {g E 9 1 g(A) = A). 

DEFINITION 4.1. Let 9 be a group acting on the set C(n). A Axnoni- 

cd form is a function 9: C(n) + C(n) such that: 

(1) For any A in C(n), the matrix Y(A) is &equivalent to A. 

(2) F(A) = F(B) if and only if A and B are in the same orbit, i.e., if 

and only if A and B are &equivalent. 

Thus, a canonical form may be viewed as a function that chooses a single 

representative from each orbit. We shall say F(A) is the Scunonicul form 
of A. 

If 9 is GL(n), the multiplicative group of n X n nonsingular complex 

matrices, acting on C(n) by conjugation, then A and B are GL(n)-equivalent 

if and only if A and B are similar, the GL(n) orbits are the similarity classes, 

and the stabilizer of A is {S E GL(n)( S’AS = A). Thus, for the action of 

conjugation, the stabilizer of A is the set of all nonsingular matrices that 

commute with A. The function x defined by “/(A) is the Jordan canonical 

form of A” satisfies Definition 4.1, as does the function 9 defined by 

“&Z’(A) is the rational canonical form of A.” Now consider U(n), the 

subgroup of GL(n) consisting of the unitary matrices. Then U(n) also acts on 

C(n) by conjugation, and A and B are U(n)-equivalent if and only if A and 

B are unitarily similar. Our main goal here is to obtain a U(n)-canonical 

form. However, as pointed out in [9, 12, 62, 89, 991, the method may also be 

used to construct canonical forms for sets of matrices and to obtain &anoni- 

cal forms where 9 is a certain type of subgroup of U(n). We discuss this 

further in Section 5. in connection with Brenner’s work. 

DEFINITION 4.2. If A and B are unitarily similar, we write A N B. 

We first need to order the complex numbers, so that we may order the 

eigenvalues of the matrices. One may do this in several ways. Following [9] 

and [99], we use the lexicographic ordering; thus, for z = x - iy and w = 

r + it, we say z is greater than w if either x > r, or r = r and y > t. We 

shall write z > w to indicate that z is greater than w in this ordering. 

Littlewood uses a different ordering, based on the polar form reie of a 

complex number. 
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DEFINITION 4.3. Let A be an n x n matrix with t distinct eigenvalues 
(Y,>(Y2> ** - > at of multiplicites nr, n2,. . . , n,. For each i, let n,, > ni2 > 
ni3 2 *. * >, nik be the Weyr characteristic for the eigenvalue oi. The 
ordered sequence 

is called the Weyr characteristic of A and denoted w(A). Let o*(A) be the 
sequence of positive integers obtained by replacing the number nij with the 
pair of numbers nij - ni,j+l,ni,j+l whenever nij > ni,j+l. The sequence 
o*(A) is called the special Weyr characteristic of A. 

REMARK. Although w*(A) is constructed from w(A) and thus is uniquely 
defined by the Weyr characteristic, one cannot necessarily recover the Weyr 
characteristic from the special Weyr characteristic. For example, if o*(A) = 
(l,l, l), then w(A) could be either (2,l) or (l,l, 1). 

Henceforth, when we use the term “Weyr form” or “special Weyr form” 
we assume that the eigenvalues appear along the diagonal in the proper (i.e., 
lexicographic) order, and thus the sizes of the scalar diagonal blocks are 
given by the Weyr characteristic. 

We need some notation to describe various partitions of matrices and 
certain special subgroups of U(n) used in the reduction process. These 
subgroups are identified and named in various ways in [9, 12, 62, 89, 991. We 
use different notation and names, but most of the material in Definitions 4.4 
to 4.14 is based on the definitions in [9]. 

DEFINITION 4.4. Let n be a positive integer. A finite ordered sequence 

nl, n 2,.. .,nt of positive integers such that n1 + n2 + . . . + nt = n is called 
an n-sum and is denoted d(n) = (n,, n2,. . . , n,). 

Thus, an n-sum is simply an ordered partition of the number n. An 
n-sum determines a natural partition of an n X n matrix into blocks. 

DEFINITION 4.5. Let A be an n X n matrix, and let 4(n) = 
(n,,n,,..., n,) be an n-sum. Use the numbers ni to partition the rows, and 
also the columns, of A into sets of the first n, rows, then the next n2 rows, 
and so on. The corresponding partition of A into the submatrices Aij, of 
sizes ni X nj, is called a 4(n)-partition of A or a &partition of A. The 
submatrices Aij are called the +-blocks of A and sometimes denoted 
as Aij(4). 
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DEFINITION 4.6. If 4(n)=(n,,n, ,..., n,) is an n-sum and A is 

T(n,, n2,. . ., n,), we say A is T(+(n)). Similarly, if A is D(n,,n,,. ..,n,), we 

say A is D(+(n)). 

For fixed 4(n), the set of all nonsingular matrices that are T(&(n)) forms 
a subgroup of GL(n), as does the set of all nonsingular matrices that are 
D(+(n)>. We are interested in the subgroup of unitary matrices that are 

D(b(n)). 

DEFINITION 4.7. The set of all unitary matrices that are D(c$(~)) is 
called the 4(n)-subgroup of U(n) and is denoted by U(&n)). 

Note that U(4(n)) is th e d irect sum of the unitary groups U(n,). Radjavi 
[89] uses the term “unrestricted direct group” for U($(n)). 

If A is a &partitioned matrix, if U = D(U,, Us,. . . , U,) is in U(c)(n)), and 
if B = U*AU is also +-partitioned, then Bij(4) = Ui*Aij($)Uj. 

At each step of the reduction procedure we refine the partition of the 
matrix. 

DEFINITION 4.8. Let +(n)=(n,,n,,..., n,) be an n-sum, and for each 
i=l,..., t suppose +&ni) = (nil, ni2,. . . , 

ib;;;,n,i2,:: :,‘,’ 

niki) is an ni-sum. Then the n-sum 

nz2, . . . , nzkzT . . , nt17 %2, . . . , ntk, yr;;;;; > is denoted 
2,. . . , 4t) and is called a refinement of 4(n). We say 

+i is the r-e_&ment of qb in the i th place. 

For example, if 4(9) = (4,3,2) and 4,(4) = (3,1) while 4,(3) = (1,2) and 
&(2) = (2) then th e corresponding refinement is +(4,3,2) = (3,1,1,2,2). 

If dl(n>=9(n,,n2,..., n,) refines 4(n), then U(4,(n)) is a subgroup of 
U(4(n)). Note that the +,-partition of a matrix A refines the c$- 
partition-i.e., each &block Aij(4) is further partitioned by 41 and each 

+,-block Aij(+i) is contained in some &block. 
If A is an n X n matrix with t distinct eigenvalues cri > cx2 > . . * > a, of 

multiplicities n,, n2,. . . , n,, then the Weyr characteristic w(A) is an n-sum 
and is a refinement of the n-sum c$(n) = (n,, n,, . . . , n,). The special Weyr 
characteristic w*(A) is a refinement of o(A). Thus, we may restate Theo- 
rems 3.12, 3.18, and 3.19 as follows. 

THEOREM 4.1. Let A be an n X n matrix with Weyr characteristic 
w(A) = w(n) and special Weyr characteristic w*(A) = w*(n). Then there is a 
matrix A, in special Weyr form such that A - A,,. Furthermore, a? U is 
unitary, then V*A,U is also in Weyr form ajand only al U is in U(o(n)), and 
U*A,U is also in special Weyr for ij-and only g U is in U(o*(n)>. 
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DEFINITION 4.9. If A is a nonsingular matrix with singular values 

a,>a,> ** . > a, of multiplicites ni,n,, . . ..nt. then the n-sum a(n) = 

(n,, na> *. ., n,) is called the singular value characteristic of A and is denoted 

by a(A). 

We may then restate the nonsingular case of Theorem 3.21 as follows. 

THEOREM 4.2. Let A be a nonsingular matrix with singular values 
Crl > a$? > * * * > a, and singular value characteristic a(A) = (n,, na,. . . , n,). 
Then there exist unitary matrices U and V such that UAV = D = a,Z,,@~,l,~ 

. * * @Us I, is the direct sum of the t scalar matrices o.Z ,, Furthernwre, 
utitary ma&es P and Q satisfy the equation PDQ = D if in2 only if P = Q* 
and P is in U(o(A)). 

We now want to define certain subgroups of U(+(n)> in which we 
require some of the diagonal blocks to be equal. We indicate this with a 
“tagging function” that associates the same nonzero “tag number” to blocks 
that are required to be equal, while tagging the unrestricted blocks with the 
number zero. Definition 4.10 comes directly from Benedetti and Cragnolini; 
Brenner and Radjavi [89] give alternative descriptions. 

DEFINITION 4.10. Let 4(n) = (n,, n2,. . ., n,) be an n-sum. A tagging 
function T of 4,(n) is a function from (1,2,. . . , t) to {0,1,2,. . . , p} satisfying 

the following conditions: 

(1) If T(i) + 0, then there is at least one j + i such that r(i) = r(j). 

(2) If r(i) + 0 and r(i) = r(j) then ni = nj. 
(3) The restriction of T to the set of minima (min T-‘(T(~)) 1 T(i) # 0) is 

an increasing map and is onto (1,2,. . . , pI. 

The n-sum 4(n) together with the tagging function T is called a tagged 
n-sum and is denoted by @(n) = (n,.(,),n,.(,),. . .,n,,(,)). If T(i) + 0 and 
T(i)= T(j), we say that i and j, or nj and nj, are linked. 

DEFINITION 4.11. Let 47(n) be a tagged n-sum with 4(n) = 

(n,, n,, . . . , n,). The +~(n)-subgroup of U(n) is 

{U=D(Ui&..., v,) E U( 4( n)) 1 C.J~ = uj whenever i and j are linked} 

and is denoted by U(+r(n)>. 

For example, if n = 22 and ~~(22)=(3,,2~,3,,4,,2,,2,,4,,2,), then 
U(4~(24)) is the set of all block diagonal matrices of the form 
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D(A, B, C, D, B, E, D, B), where A and C are in U(3), while B and E are in 

U(2) and D is in U(4). The numbers of the n-sum 4(n) tell us the sizes of 

the diagonal blocks, and the tagging function r tells us which blocks must be 

the same-all blocks having the same nonzero tag must be the same. 

Brenner calls the groups U( $T( n)) “generalized diagonal unitary groups,” 

while Radjavi [89] uses the term “direct groups.” 

We can also use the tagging function to identify associated submatrices of 

partitioned matrices. Sergeychuk does something similar in his paper, where 

he uses “shaded” and “unshaded” blocks. 

DEFINITION 4.12. Let &r(n) be a tagged n-sum, and let A be an 

+( n)-partitioned matrix. If r(i) + 0 and r(i) = r(j), then Aij is called a 

tagged submatrix or tagged block and we say A is a 47(n)-partitioned 

matrix, or a tagged partitioned matrix. 

Suppose A is a $-partitioned matrix, U = D(U,, U,, . , U,) is in U(4(n)), 

and B = tJ*AU is also &partitioned. Then Bij(4) = U,*Aij<4)Uj. If we use a 

tagged partition, 47(n), then U, = Uj whenever i and j are linked, so any 

tagged block is transformed by a unitary similarity. 

DEFINITION 4.13. Let +7(n) be a tagged n-sum, and let A be a 

+-partitioned matrix. We say Aij is a 4r-stable block if (U*AU)ij = Aij for 

every V in U(45-(n)). 

Thus, the 4r-stable blocks are preserved whenever a unitary similarity 

from U(&r(n)) is applied to A. If i and j are linked, then A,, is 4r-stable if 

and only if U*AijV = Ajj for every V in U(n,), which is possible only if Aij 

is a scalar matrix. Hence, for linked subscripts i and j, the minor Aij 

is @--stable if and only if A,, is scalar. If T does not link i and j, then Ajj is 

4r-stable if and only if UA ijV = Aii for every U in U( n,) and every V in 

U(nj). But then we have VAij = A,V* for every U in U(n,) and every V 
in U(nj), and thus A,, = 0 by Theorem 3.4. So if T does not link i and j, 

then Aij is 4r-stable if and only if Aij = 0. 
Finally, we want to construct refinements of tagged n-sums that preserve 

the original tagging. 

DEFINITIOK 4.14. Let 47(n) = (n,,(l), nzTC2), . . , n,,(,J be a tagged n- 

sum. Let 4(n,,n, ,..., n,)=(4,,4, ,..., 4,) be a refinement of the n-sum 

4(n) such that whenever ni and nj are linked by T, then 4i(ni)= 4j(nj). 
Let p be a tagging function on 4(n 1, n2,. . . , n,) that tags 4i(ni) and 4j(nl) 

exactly the same way whenever ni and nj are linked by T and uses only 

nonzero tags on the numbers in such linked 4Jni> and 4j(ni). In other 

words, linked ni and nj in the original tagged n-sum must induce the same 
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partition and tags in the refinement, so that all of the pieces of the 
refinement preserve the original linkings. Then we say the tagged n-sum 

&G,,nz>..., n,) is a refinement of $7(n) and that +i is the refinement of 

4~ in the ith place. 

For example (2,,3,,2,,3,) . 1s a refinement of (5,,5,), but (2a,3,,2,,3,) is 
not, and (2,,3,,3,,2,) is not. As a consequence of this definition, we see that 
whenever the tagged n-sum 42T2(n) refines 4171(n), then U(4,rJn)) is a 
subgroup of U(4,r,(n>). Hence if A is a +,-partitioned matrix, any +lrl- 
stable minor of A is unchanged by any unitary similarity from U(+,r,(n>), 
and any $,-minor of A contained in a 4,r,-stable minor is necessarily 
4,r,-stable. Also, we may identify an untagged n-sum 4(n) = (n,, n2,. . . , n,) 

with the tagged n-sum +7(n), where T is the trivial tagging function 
T(i) = 0 for all i, and hence any refinement of 4(n,, rz2,. . . , n,) endowed with 
any tagging function p may be considered a tagged refinement of the 

untagged n-sum 4(n). 

At each stage of the reduction process, we have a tagged n-sum 47, a 
+r-partitioned matrix, the subgroup U(+(n)), and a set of &blocks of the 
matrix that are &r-stable. We then apply one of the following four operations 
to the next +-block that is not 4r-stable; Theorems 3.14, 3.16, 3.21, 4.1, and 
4.2 tell us that these operations are possible. The operation increases the 
number of @-stable blocks and determines a refinement of $7 to be used in 
the next step. 

Type 1. If B is m x n with m > n, and B has rank r < m, then we can 
find a unitary matrix U such that UB = B, is in row form. Furthermore, for 
unitary matrices P and Q, the matrix PB,Q is still in row form if and only if 

P is D(m - r,r). 
Type 2. If B is m X n with m < n, and B has rank t, then we can find a 

unitary matrix V such that BU = B, is in column form. Furthermore, for 
unitary matrices P and Q, the matrix PBoQ is still in column form if and 
only if Q is D(n - r, r). 

Type 3. If B is nonsingular with singular value characteristic a(B), 

then we can find a pair of unitary matrices U and V such that UBV = D, 

where D is the singular value form of B. Furthermore, for unitary matrices 
P and Q, we have PDQ = D if and only if P = Q* and P is in U(c+(B)). 

Type 4. If B is n x n, then we can find a unitary matrix U such that 
U*BU = B, is in special Weyr form. Furthermore, for unitary V, the matrix 
V*BOV is in special Weyr form if and only if V is in U(w*(B)), where o*(B) 

is the special Weyr characteristic of B. 

Benedetti and Cragnolini use these four operations, but other reduction 
schemes are possible. For example, Sergeichuk uses Theorem 3.21, the 
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singular value decomposition for singular and rectangular matrices, to com- 
bine types l-3. 

We can now describe the reduction process. Let A be an n X n matrix 
with special Weyr characteristic o*(A) = o*(n). Using induction on d, we 
show that at stage d one can construct a matrix A(d), and a tagged n-sum 
4gd(n), such that A(d) _ A(d - 1) N A and +d~,l is a refinement of 
~$~_~r~_~. Furthermore, A(d) is in special Weyr form, at least d of the 
+d-blocks of A(d) are +drd-stable, and a unitary similarity V preserves all of 
the r$drd-stable blocks of A(d) only if V is in U(+,r,(n>). Since each matrix 
A(d) is upper triangular, and since the scalar blocks along the main diagonal 
are preserved at each stage, we need be concerned only with reducing the 
submatrices above the diagonal. The submatrices above the diagonal are 
called upper blocks, or upper submatrices. Let y be an ordering of the set 
((i, j) ( i < j}, and for any partitioned matrix, use y to order the upper blocks. 
One may use any ordering, but the canonical form obtained depends on the 
choice of ordering. 

STEP 0. Find a unitary matrix V such that A(O) = V*AV is in special 
Weyr form. Let c#J,,~~ be the tagged n-sum with $q, = w*(A), and ~a the 
trivial tagging function. Notice that all of the scalar diagonal blocks of A(O) 
are preserved by the action of U(+,r,(n)) and thus are &To-stable. Further- 
more, for any pair of consecutive integers nj,j_l, nij in o(n) with ni,j_ 1 > nij, 
the corresponding superdiagonal block of size ni,+ 1 X nij starts with 

ni j-_1- nij rows of zeros that form a zero block of size (ni,+, - nij)X nij, 
which is 4,r,,-stable. From Theorem 4.1, if a unitary similarity V preserves 
special Weyr form it must be in U(w*(A)), so any unitary similarity preserv- 
ing the 4,,r,-stable blocks of A(O) must belong to U(&,T,(~)). 

Assume, as the induction hypothesis, that at Step d - 1 we have a matrix 
A(d - 1) N A(d - 2) and that A(d - 1) is in special Weyr form. Also assume 
that we have a tagged n-sum ~#~~_,r~_r that refines ~$d_~rd-~, and that at 
least d - 1 of the upper submatrices of the 4,1_,-partitioned matrix A(d - 1) 
are c$~_ rrd_ r-stable. Finally, assume that a unitary similarity preserves the 
+d_lrd_l-stable blocks of A(d - 1) only if it is in U(+,_,r,_,(n)). 

If every upper submatrix of A(d - 1) is +d_ ,~d_,-stable, then the 
process ends. If not, continue to Step d. 

STEP d. We know that A(d - 1) has upper blocks that are not 
~#~~_~~~_,-stable. Using the ordering y, let B = A,,(d - 1) be the first 
sdI,;bFz( of A(d - 1) that is not stable. Then B is ni X nj, where 

d ln n,,n 2,. . ., n,). Let r be the rank of B. We must now consider 
several cases. 
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CASE 1. Suppose that ni and nj are linked by T~_~, so that B is a 

tagged block. Then ni = n,, and we perform a type 4 operation on B. Thus, 
find an n, x ni unitary matrix V, such that V,*BV, = B, is in special Weyr 

form. Let v=D(v,,v,,..., V,) be a matrix in U(4,_,r,_,(n)) such that 
vi = U,. Note that we must then have V, = V, whenever k is linked to i by 

rd_ r; in particular, Vi = V,. Let A(d) = V*A(d - l>V. Since V is in 

U($,_ rrd- ,(n)), the matrix A(d) is still in special Weyr form and 
the +d_lrd_,-stable blocks of A(d - 1) are the same in A(d). However, 
Aij(d) = Vi*BVj = V$BV, = B, is in special Weyr form. 

Let w*(n,) = w*(B) = (m,, m2,. . . , m,) be the special Weyr characteristic 
of B, and let dJn> be the n-sum obtained by replacing n, with o*(n,) 
whenever n, is linked to ni by TV_ 1. So 4d is the refinement of 4d_ 1 
obtained by refining +d_ 1 in the ith place, and also in each place linked to i, 
by the n,-sum w*(B). Now define a tagged refinement of +d_l~d_l by 
giving each of the s numbers in the list m,, rns,. . . , m, a different nonzero 
tag, replacing each nk that is rd_,-linked to ni with the newly tagged 
numbers rnh, and then relabeling the tags, if necessary, so that the tagged 
n-sum 4d~d is a tagged refinement of c$d-l~d_l. Then U(4,rJn)) is a 
subgroup of U(4,_,r,_,(n)), so any +d-minors of A(d) contained in the 
r$d_ lrd_ r-stable blocks of A(d - 1) are also 4,rd-stable. Furthermore, the 
scalar, diagonal blocks of the special Weyr form matrix B, are also stable 
under the action of U(4,rJn)). Hence, the new matrix A(d) has at least d 
upper blocks that are 4drd-stable. Furthermore, we know that a unitary 
similarity will preserve the Weyr special form of Aij(d) only if it is 
D(o*(n,)>, so any unitary similarity preserving both the 4d_,-stable blocks 
of A(d) and the new stable blocks in the reduced submatrix Aij(d) must be 
in U( 4d_ rrd_ r( n)) and must have an ith diagonal block of the form 
D(w*(n,)); hence it must be in U(+,r,(n)) by the way we have defined the 
refinement 1$~7~. 

Thus, we have constructed A(d) N A(d - 1) and a tagged n-sum $d~d(n) 
such that A(d) is in Weyr special form, +d~d refines +d_lrd_-l, the matrix 
A(d) has at least d upper blocks that are 4drd-stable, and these 4,r,-stable 
blocks of A(d) are preserved only by unitary similarities from U(4,rJn)). 

CASE 2. Suppose ni and nj are not linked by ni = nj = r. Then we can 
apply a type 3 operation to B. Thus, let V, and V, be unitary matrices in 
U(n,) such that V,*BV, = D, where D is the singular value form of B. 
Choose a matrix V=D(V,,V,,...,V,) in U(+,_rrd_,(n)) such that Vi = V, 
and Vj = V,, and let A(d) = V*A(d - l)V. Then, again, the 4d_1~d_ ,-stable 
blocks of A(d - 1) are not changed by this transformation, but Aij(d) = 
V;A,j(d - l)V,, = UC BV, = D. 
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Let a(~) = a(n,) be the singular value characteristic of B. Let +d be the 

refinement of $d_l obtained by replacing both ni and nj with the n,-sum 

cr(n,), as well as replacing nk with the n,-sum cr(n,) whenever nk is linked 

to either ni or nj by T,~_~. Now define a tagged refinement, $(!T,~, of 

4$_-1~d_I by giving each of the numbers in the ni-sum a(n,) a different 

nonzero tag, replacing each nk that is r,,_,-linked to either n, or nj with the 

newly tagged a(n,), using the original tagging function r,!_, on the remain- 

ing nk’s, and then relabeling the tags, if necessary. Note that the 4,1-blocks 

of A(d) that are contained in the 4(!_ ,T,/_ i-stable blocks of A(d - 1) are also 

r$,r,,-stable, and in addition the scalar, diagonal blocks of the singular value 

form D are stable under the action of U(+,,r,&n)). Furthermore, Theorem 

4.2 tells us that UDV= D only if U = V* and U is D(a(ni)), so the 

definition of $J,~T,~ g uarantees that a unitary similarity can preserve the old 

4(]_ 1T,l_ ,-stable blocks as well as the new stable blocks of D only if it is in 

Ub#J,,T,bd). 

Thus, we have A(d) N A(d - 1) with A(d) in Weyr special form, the 

tagged n-sum 4,7Jn) is a refinement of 4cl_3Td_,, and A(d) has at least d 

upper minors that are $,lr,l-stable; these stable blocks are preserved only by 

unitary similarities from U(4(,T,(n)). 

CASE 3. Suppose ni and nj are not linked and r < min{ni,nj}. 

If ni > nj, apply a type 1 operation to B. Thus, find an ni X n, unitary 

matrix P such that PB is in row form. Choose U = D(U,, US!,, ., U,> in 

U(4,,_,T,1-1(n)) with U, = P*, and set A(d) = U*A(d - 1)U. As before, this 

transformation does not change the 4rl_1~,,_ ,-stable blocks of A(d - l), but 

the new block Aij(d) = PBUj is in row form. Let 4,1 be the refinement of 

4,[_, formed by replacing ni, and each nk linked to ni, with the pair 

of numbers nj - r, r. If T,]_ ,(i> = 0, so that n, is not linked to any number of 

4(]_ ,(n), then we extend the tagging function r,,_ , to a tagging function T,~ 

of 4d by tagging ni - r and r with zeros, and leaving the original tags alone. 

If T,]_ ,(i) # 0, then define r,, by giving the numbers n, - r and r different 

nonzero tags, replacing each rik that is r,,_,-linked to n, with the newly 

tagged ni - r and r, using the original tagging function r[,_ I on the 

remaining nk’s, and then relabeling the tags, if necessary. Then A(d) - 

A(d - 1) with A(d) in Weyr special form, and the tagged n-sum 4,1rc&n) 

refines 4cr_,~cl_1. Furthermore the first n, - r rows of PBUj are zero and 

form a 4ctr,l-stable minor, so A(d) has at least d stable minors. From 

Theorem 3.14 and our construction of dd7<! we see that a unitary similarity 

preserves the stable blocks of A(d - 1) as well as the newly created stable 

block only if it is in U(4,r,(n)). 

If n, < nj, apply a type 2 operation to B and find an nj X nj unitary 
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matrix Q such that BQ is in column form. Choose U with Uj = Q, and refine 

$d-l in the jth place, as well as each place linked to j, with the pair 
nj - r-, r. The remainder of the argument is the same; note that the first 
nj - r columns of U,*BQ = Aij(d) f orm an ni x ( nj - r-1 block of zeros that 
is +,lr,-stable. 

Thus, by induction, for each positive integer d, we can construct A(d) - A 
such that A(d) is in special Weyr form with at least d upper blocks that are 
$drd-stable. However, a block upper triangular matrix has at most n(n - 1)/2 

blocks above the diagonal, so for some positive integer e < n(n - 1)/2 the 
process must produce a matrix A(e) in which all of the blocks are +r~,- 
stable. At this point the construction stops, and we claim that the function 
F:C(n) + C(n) defined by F(A) = A(e) is a canonical form for unitary 
similarity. We clearly have A N A(e) and now need to prove that A(e) = B(e) 
whenever A N B. We again proceed by induction. 

Thus, suppose A _ B. Then w(A) = w(B) and w*(A) = w*(B). At step 0, 
both A(0) and B(O) are in special Weyr form and we have A(0) _ B(O). Note 
also that the tagged n-sum &T,, will be the same for both A and B, and so 
by Theorem 4.1 we have U*A(O)U = B(O) for some U in U(4,r,(n)). 

Assume, as the induction hypothesis, that after step d - 1 we have 

constructed A(d - 1) and B(d - l), as well as tagged n-sums f#Jd_lTd_l(A) 
and $d _ ird _ 1(B) satisfying the following conditions: 

(I) 4d-1T,l-1(A) = 4d_ird-#). 
(2) There is a U in U(+&lr& ,(n)) such that U*A(d - 1)U = B(d - 1). 

We now show that our construction guarantees that this also holds after 
step d. 

Condition (2) implies that A(d - 1) and B(d - 1) must agree on every 
4d_ lrd_ ,-stable block, so if Aij(d - 1) is the first nonstable block of A(d - l), 

then Bij(d - 1) must be the first nonstable block of B(d - 1). Let U = 

D(n,,n,,..., n,) in U(+d_ l~,l_ i(n)) satisfy U*A(d - 1)C.f = B(d - 1). Then 
Bij(d - l)= U,*AJd - l>U,. If ni and n are linked, then Ui = Uj, and the j 
Case 1 argument produces the same refinement on +d _ 1rd _ 1 for both A and 
B. If ni and nj are not linked, then we are in either Case 2 or Case 3. In 
Case 2, we see that Bij(d - 1) and Aij(d - 1) must have the same singular 
value decomposition; in Case 3, we see that Bij(d - 1) and Aij(d - 1) must 
have the same size and rank. Hence, in either case, +d_ 1rd_ 1 undergoes the 
same refinement construction. Thus, in all cases, the construction yields 
+dTd(A) = 4dTd(B). Furthermore, the construction guarantees that A(d) and 
B(d) must agree both on 4d_ir&r-stable blocks and on the new stable 
blocks formed in step d. So any unitary U satisfying U*A(d)U = B(d) must 
be in u(f$drd(n)). Since A(d) N B(d), such a U must exist. 
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Now, by induction, conditions (1) and (2) must hold at the completion of 
the process, so that V*A(e)V = B(e) for some V in U(4,r,(n>>. But every 
block of A(e) is 4,r,-stable, so V*A(e)V = A(e) and thus A(e) = B(e). 

Thus, we have the following result. 

THEOREM 4.3. Let y be an ordering of the set of ordered pairs ((i, j) 1 
i < j}. For each A in C(n), let A(e) denote the matrix constructed by the 
process described above, using the ordering y, and let +,7,(n) be the 
corresponding tagged n-sum. Then the map P-: C(n) --, C(n) defined by 
Y(A)= A(e) is a canonical form for C(n) under the action of unitary 
similarity, and U(4,r,(n)) is the group of unitary matrices that commute 
with A(e). 

This completes the proof of the reduction process. We now make some 
remarks about the procedure and the canonical form obtained, and look at 
some special cases to get a better understanding of how the reduction works. 
First note that at step 0, the n-sum +a~a is just the special Weyr characteris- 
tic with the trivial tagging function. Operations 1, 2, and 4 do not produce 
any new linkages, but merely preserve the already existing ones. Hence, new 
linked pairs ni and nj occur only when we use the singular value decomposi- 
tion of operation 3. This occurs because the singular value form D is 
preserved only by unitary similarities of the proper block diagonal form; 
hence the new tagging function must link i and j in order to preserve a 
singular value form in the i, j block. At each step, new stable blocks are 
formed. For the Weyr form produced by operation 4, the new stable blocks 
are the scalar, diagonal blocks and the zero subblocks of the superdiagonal 
blocks. Operation 3 produces the scalar, diagonal blocks of the singular value 
form, while operations 1 and 2 produce zero blocks of rows or columns, 
respectively. Thus, our final matrix A(e) is a 4,-partitioned matrix in which 
each +,-block is either a block of zeros or a scalar block. When i and j are 
not linked by T,, then Aij is 4,r,-stable only if Aij = 0, so any 4,-block 
corresponding to an unlinked pair must be zero, while any tagged +,-block 
must be scalar. Of course, the 4,-blocks may be quite small; if they are all 
1 X 1, then we simply have an upper triangular matrix. 

In general, it is not clear what information can be gleaned from the 
canonical form. While the Weyr special form does give the similarity class, 
and thus the Jordan form, of the matrix, one might hope that a canonical form 
would display some geometric information about the transformation, or 
reveal the unitary invariants of the matrix. However, it seems that the final 
structure of the canonical form evolves only as we apply the step-by-step 
construction, and thus reflects the sequence of steps performed. SergeTchuk 
and Benedetti and Cragnolini discuss this in more detail, giving examples 
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and describing some general schemes for classifying these canonical forms. 
Also note that the canonical form obtained depends on the ordering y used 
to order the submatrices. Some possible choices for y might be a lexico- 
graphic ordering, or perhaps a “diagonal” ordering in which (i, j) would 
precede (k, r) whenever j - i < r - k. 

In Section 2 we examined the special case where the matrix has distinct 
eigenvalues, and later we saw, in Section 3, that the same results apply in the 
nonderogatory case. If A is nonderogatory, with eigenvalues (~i,(~a,. ..,(Y~ of 
multiplicities ni,n,,. . .,nt, then both w(A) and w*(A) are the all 1 se- 
quence, so &T~ = (1, l,l,. . . , 11, and U(&r,(n)) is the group of diagonal, 
unitary matrices. The +,r,,-stable minors of A(0) are the diagonal entries and 
any zero entries that happen to occur. For each eigenvalue oi of A, the 
corresponding diagonal block of A(O), of size ni X n,, must have nonzero 
entries in the superdiagonal positions, because A(0) is in Weyr form. At any 
stage in the construction, one applies only diagonal unitary similarities; thus, 
the zero entries are always stable, and new zero entries cannot appear. 
Operations of type 1 or 2 are never needed, the type 3 operation just replaces 
an entry with its modulus, and a type 4 operation has no effect. The 
reduction process thus reduces to the procedure described in Section 2, 
which amounts to choosing a diagonal unitary matrix that creates some 
positive entries above the diagonal. Which entries are converted to positive 
numbers, and the final structure of the group U(~,T,(~Z)>, depend on the 
ordering y and the zero-nonzero structure of the matrix. In general, one 
expects to create n - 1 positive entries and to end up with U( 4e~,( n)) being 
the group of unitary, scalar matrices. However, it is not always possible to 
have n - 1 positive entries (see Example 2.1). Also, in some cases, U(4,r,(n)) 
contains nonscalar diagonal matrices. 

Finally, notice that while the first step of the process involves triangular- 
izing the matrix, the general method does not really depend on this. As we 
shall see in Section 5, the same approach may be used to obtain other types 
of nontriangular canonical forms, to define U(+r(n>) canonical forms, and to 
reduce sets of matrices simultaneously [9, 12, 991. 

5. NONTRIANGULAR FORMS 

The canonical forms developed by Littlewood [59], Mitchell [69], 
Sergeychuk [99], and Benedetti and Cragnolini [9] are all triangular. They are 
constructed by first applying Schur’s theorem to put the matrix in triangular 
form, with the eigenvalues in specified order along the diagonal, and then 
reducing the rest of the matrix. By starting differently, but then using 
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essentially the same reduction process, one can define other types of nontri- 

angular canonical forms. In this section we discuss work of Brenner [12], 

McRae [62], and Radjavi [89]. Brenner begins by diagonalizing the positive 

definite Hermitian matrix A*A, thus using the structure of the singular value 

form of A as the initial step. He then gives an inductive definition for a 

canonical form in which one assumes the form has already been defined for 

smaller cases. McRae describes a general approach for defining a variety of 

canonical forms. In [89], Radjavi develops a construction using unitary 

transformations to orthogonahze the rows and columns of submatrices of a 

partitioned matrix; Radjavi proposes another method in [go]. 

Brenner calls the groups UC&-(n)) generalized diagonal groups, and 

gives an inductive definition of a &canonical form for an n X n matrix A, 

under the action of any generalized diagonal group 9. The following proof is 

based on Brenner’s presentation, but differs a bit in some details. As in 

Section 4, we let y be some ordering of the set of ordered pairs (i, j) of 

positive integers and use y to order the submatrices of A. Brenner’s 

argument gives a particular order in which to consider these submatrices. We 

denote the &canonical form of A as F(A); associated with Y(A) will be 

its stabilizer, the group of unitary matrices that commute with the matrix 

F(A). 

Let A be an n X n complex matrix, and let .g be a generalized diagonal 

group. If n = 1, then A is its own canonical form, i.e., we define .F(A) = A. 

We now assume, as the induction hypothesis, that for all k X k matrices A,, 

and any generalized diagonal group g,,, a g(,-canonical form &(A,,) has 

been defined for A,, and that the stabilizer of $,(A,,) is a generalized 

diagonal group whenever either 

(I) k < n or 

(2) k = n and 3” is a proper subgroup of .8. 

We must now show how to define a &canonical form for A. We consider 

two cases. 

CASE 1. Suppose 3 = U(n) is the full unitary group. Let D be the 

singular value form of A, as in Definition 3.9, and let the n-sum 4(n)= 

(n,, n2,. . , n,) be the singular value characteristic of A. Then, as in the proof 

of Theorem 3.20, we can find a unitary matrix U such that U*(A*A)U = D’. 
Furthermore, a unitary matrix commutes with D or 0’ if and only if it is in 

U(4(n)). Let A, = U*AU; then ATA, = D”. 
If D is a scalar matrix, then A,, and hence A itself, is a scalar multiple of 

a unitary matrix, and thus A is normal. Therefore, we can find a unitary 

matrix V such that V*AV is diagonal with the eigenvalues of A in lexico- 
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graphic order along the diagonal. We define F(A) = V*AV. Obviously, 
A - F(A), and if B - A, then B is also normal and has the same eigenvalues 
and multiplicities as A, so F(B) = F(A). Hence, this defines a canonical 
form for A in this case. If m,,m,,. . .,m, are the multiplicities of the 
eigenvalues of A, and we let +i( n) = Cm,, m2,. . . , mr), then the generalized 
diagonal group U(+,( n)) is the stabilizer of F(A). 

If D is not a scalar matrix, then J0 = U(C$(~)) is a proper subgroup of 
9. Hence, by the induction hypothesis, we have defined a &a-canonical 
form, Fa(A,) for A ,, and the stabilizer of &(A,) is some generalized 
diagonal group U(c$,~,(n)). We then define F(A) to be F&A,). Since 
A- A, and A, - 9&A,), we have A - F(A). If B-A, then B has the 
same singular value form as A, so there is a unitary matrix V such that 
V*(B*B)V= 0’. Putting B, =V*BV, we have B, - A,, so there is a unitary 
matrix W such that W*BiW = A,. But then, since BCB, = ATA, = D’, we 
have W*D”W = D”, so W must be in 3, = U(cj~(n>>. Hence, B, and A, are 
&,-equivalent, and Fa< B,) = FJA,). Hence F(B) = F(A), and we have 
defined a canonical form for A, and the stabilizer of this canonical form is a 
generalized diagonal group. 

CASE 2. Now suppose that 9 = U(+dn)) is a proper subgroup of U(n). 
If U*AU = A for every U in 9, we put F(A) = A and are done. Otherwise, 
partition A conformally with the n-sum 47(n), and let Aij be the first 
(according to the ordering y) block of A that is not $r-stable. Let U = 

D(U,,U,,..., U,) be in 3, and let B = U*AU. Then B,, = Ui*AijUj, and we 
must consider two cases, depending on whether or not r(i) = 7(j). 

If 7(i) = 7(j), then Ui = Uj, and A,, is an rri X ni matrix with ni < n. 
Hence, by the induction hypothesis, we can find a unitary matrix Vi in U(n,) 
such that Ui*AijUi = F(Aij) is in canonical form, and a generalized diagonal 
group U(+,T,(~~)) that is the stabilizer of F(Aij). Let V = D(V,, V,, . . . ,V,l 
be a matrix in U(C#JT(~)) such that Vi = Vj = Ui and also V, = Uj for every k 
linked to i by the tagging function T. Then A, = V*AV will have F(Aij) as 
its i, j minor. Let +“TJ~) be the tagged refinement of +7(n) determined by 
refining C#JT in position i, and every position linked to i by T, with the 
tagged n,-sum c)~T~. Then ~7~ = U(+,,T,(~)) is a proper subgroup of 9 = 
U(C#JT(~)); the induction hypothesis gives a &a-canonical form, Fa(A,), foi 
A ,, and a generalized diagonal group, .Yr = U(qb,~,(n)>, which is the stabi- 
lizer of Fa(Ai). Define the canonical form F(A) of A to be FJA,). Since 
A is &equivalent to A,, and A, is &,-equivalent, and hence also .@equiv- 
alent, to &(A,), it follows that A is &equivalent to F(A). If B is 
&equivalent to A, then B must also be &equivalent to A,. We then form 
the matrix B i from B in tht: same way we formed A i; since the i, j minors of 
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both A, and B, are in canonical form, the matrices A, and 8, must be 
Ha-equivalent, so Fa(A,) = FO(B1) and hence F(B) = F(A). 

If r(i)+ r(j), then we choose Vi in U(n,) and Vi in U(nj) so that 
Ui*AijUj is in singular value form. Note that Aij # 0 because Aij is not 
4r-stable. Let V = D(V,, V,, . . . , V,) be a matrix in U(4r(n)) such that 
q = V, = V, for every k linked to i by the tagging function 7, and such that 
y = V, = Uj for every k linked to j by the tagging function 7. Put A, = V*AV; 
then the i, j minor of A, is the singular value form V,*AijUj. Let o be the 
rank of A,,, and let m,,m, ,..., m, be the multiplicities of the nonzero 
singular values of Aij. Let 4r(ni) = Cm,, m2,. . , m,, n, - q) and &,(ni) = 

(ml, m2,. . . , m,,nj - 4). Define a tagged refinement, 4,,~a(n), of 47(n) 
determined by refining 47 in position i, and every position linked to i by r, 
with 4,(ni>; refining ~$7 in position j, and every position linked to j by 7, 
with 4,(ni>; and then linking the mk’s, for each k = 1,2,. . . , r, with the 
tagging function TV. From Theorem 3.21, this is exactly what is needed for 
the group &0 = U(&r,(n)) to be a subgroup of U(4~(n)) and for the i,j 

block of A, to be +,,r,-stable. Since Aij is not zero, .Y, is a proper subgroup 
of 9, and so we can invoke the induction hypothesis to produce the 

canonical form, Fa(A, ), for A, under the action of .YO. We then define 
Y(A) = FO(A,) to be the canonical form of A. The same argument used in 
the first case shows that Sr(A) is s-equivalent to A, and if B is &equiv- 

alent to A then F(B) = F(A). 

This describes a very general inductive method for defining canonical 
forms; the use of the singular value form of A in the first step serves mainly 
to start the process. As with the triangular canonical form obtained in Section 
4, the final result is a tagged partition &,~,$n) and a 4ar0-partitioned matrix, 
F(A), in which every 4,r,-block is 4,,r,-stable. Thus, the tagged blocks 
must be scalar blocks, and the untagged blocks must be blocks of zeros. 
When 9 is the full unitary group and we start the process by diagonalizing 
A*A, we obtain (F(A))*(F(A))= D2, where D is the singular value form 
of A. 

The Brenner inductive definition can be used to find a &canonical form 
whenever 9 is a generalized diagonal group, and thus the method may be 
extended to sets of matrices. Let (A,, A,, . . . , A,) and (B,, B,, . . . , B,) be two 
ordered q-tuples of n X n matrices. We say the Ai’s are simultaneously 
unitarily similar to the Bj’s if there is a unitary matrix U such that U*AiU = Bi 
for each i=l,..., q. One might then ask for a canonical form for such 
ordered q-tuples of n x n matrices. The methods developed to reduce a 
single matrix can be applied to such q-tuples of matrices in several ways. 
One approach [89] is to let A be the direct sum of the Ai’s; thus A = 
D(A,, A,, . , , A,) is a block diagonal matrix of size nq X no. Let 3 be the 
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generalized diagonal group of all unitary matrices in U(nq) of the form 
D(V,V,..., V), where V is any n X n unitary matrix. Thus, 4 = U(&r(nq)), 
with t#whq)=(n,,n,,..., n,), where the n appears 9 times and the sub- 
script 1 is the value of the tagging function 7. For any U = D(V, V, . . . , V) in 
.3, we have U*AU = D(V*A,V,V*A,V,. . .,V*A,V), and we can use the 
&canonical form for A to obtain a canonical form for the 9-tuple of Ai’s. An 
alternative procedure [62] is to consider conformal partitions of the Ai’s into 
submatrices. Thus, let Ai(r, s) denote the r, s block of Ai under some 
partition. Let y be some fixed ordering defined on the set of all triples of 
positive integers (i, t, s) with 1~ i < 9, 1~ r < n, and 1~ s < n. Then the 
same inductive argument used to define a canonical form for a single matrix 
can be used for the set A,, A,, . . . , A,; one simply considers the @-blocks of 
all of the matrices. Still another method, proposed by Brenner, is to first 
apply a unitary matrix U in 3 such that U*A,U = F(A,) is the &canonical 
form for A. Then let gc, be the stabilizer of F(A,), and find the .#a-canoni- 
cal form for U*A,U, and so on. Sergeichuk shows how to deal with the more 
general problem of canonical forms for sets of matrices of different sizes, 
including nonsquare matrices, by defining a large matrix containing the given 
matrices as submatrices. 

As another approach to the canonical form problem, McRae introduces 
the notion of representing a matrix as a polynomial in normal matrices. Thus, 
let fCr,,xs,..., xk) be a polynomial with complex coefficients in the noncom- 
muting variables x1,x2,.. .,xk, and suppose we can find normal matrices 
N,,N,,..., Nk such that A = f(N,, N,,. .., Nk). Then one can define a canoni- 
cal form for A by applying the methods above to the set N,, N,, . . . , Nk. Since 
normal matrices can be unitarily diagonalized, when 9 is the full unitary 
group, one can begin by diagonalizing Ni. However, we need to restrict the 
polynomial f and the allowable normal matrices Ni in order to get a unique 
representation for A. Thus, assume we have specified a set of conditions 
restricting the Ni’s such that there is a unique k-tuple, N,, N,, . . . , Nk, 
satisfying the conditions and such that A = f(N,, N,, , . . , Nk). We also 
need to assume that whenever U is unitary and N,, Nz,, . . , Nk satisfy 
these conditions, the k-tuple U*N,U, U*NsU,. . . , U*NkU also satisfies the 
conditions, and is the unique k-tuple such that U*AU = 
f(U*NiU,U*NsU,..., U*N,U). As a familiar example of such a representa- 
tion, consider the decomposition of A into its Hermitian and skew-Hermitian 
components. Here we have A = H + iK, where H = (A + A*)/2 and K = 
(A - A*)/2i are Hermitian. If we define f(xi, x,) = (xi + ix,) and restrict 
Ni and N, to be Hermitian, then H and K are the unique pair such that 
A = f(H, K). We could then define the canonical form for A by first choosing 
U so that U*HU = D is diagonal, letting 9 be the stabilizer of D, and then 
finding the &canonical form for U*KU. (When U*HU is diagonal, the 
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matrix V*KV has a special form, described by Taussky [115, 1031.) Another 
possible representation is the polar decomposition for nonsingular matrices; 
here we have f(x,,x,) = x1x2 and restrict NI to be unitary and N, to be 
positive definite Hermitian. 

We now discuss Radjavi’s method [89] for constructing a canonical form. 
Here again, we deal with a tagged n-sum, @r(n), and a +r-partitioned 
matrix. The idea is orthogonalize the rows and columns of the submatrices of 
A. The basic construction is based on the following two lemmas. 

LEMMA 5.1. Let B be an r X s matrix with nonzero singular values 

CT1 > 0, > . . . > a, of multiplicities m,, m2,. . . , m,, and put 4(r) = 

Cm,, m2,. . , m,, t --Cm, + m2 + . . . + m,)). Then there exists an r X r uni- 

tary matrix V, such that V, B has mutually orthogonal row vectors x I) x 2, . , . , x r 
with llxJl> Ilx211 a . . . > Ijx,lj. Furthermore, a unitary matrix V has this same 

property if and only if V is in the coset U(+(r>)V,,. 

Proof. Let V,, be a unitary matrix such that V,, BB*VO* = D, where D is 
the singular value form of B. The row vectors of V,B are then orthogonal 
and satisfy the length condition. If V is any other unitary matrix with this 
property, then we must have VBB*V* = D, because c,, a,, . .,q are the 
singular values of B. Hence V,* DV,, = V*DV, and VU”* commutes with D. 

But then VU,* is in U(4(r)), and so V is in the coset U(4(r)>V,. Conversely, 
if V = VU,, for some V in U(4(r)), then V commutes with D, so VBB*V* = D 

and VB has the required property. 8 

We shall call a matrix in the coset U(+(r))V,, a row fixer for B. 

Similarly, we can formulate and prove a column version of Lemma 5.1. 

LEMMA 5.2. Let B be an r X s matrix with nonzero singular values 

u,>u,> a’. > u, of multiplicites m,, m2,. ., m,, and put 4(s) = 

Cm,, m2,. . . , m,,s-_(m,+m2+ .. . + m,)). Then there exists an s X s uni- 

tary matrix V, such that BV,, has mutually orthogonal column vectors 

Y~,Y~,,..,Y~ with IIY~II~~~Y~~~~ .*- > Ily,JI. Furthermore, a unitary matrix V 

has this same property rf and only if V is in the coset V,,U(4(r)>. 

The proof of Lemma 5.2 is the same as that of Lemma 5.1; use the 
diagonalization of B*B to find the matrix U,). 

DEFINITION 5.1. An r X s matrix B is said to be row orthogonal if BB* 
is a scalar matrix, or, equivalently, if the rows of B are mutually orthogonal 
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and all have the same length. We say B is column orthogonal if B*B is a 
scalar matrix, i.e., if the columns of B are mutually orthogonal and all have 
the same length. 

Now let 9 = U(+r(n)) be a generalized diagonal group, and let A be an 
n X n matrix partitioned conformally with @(n). We use Lemmas 5.1 and 
5.2 to define two operations on A. Note that if U, is a row fixer for B, and V 
is unitary, then (U,BVXU,BV)* = U,,BB*U,*, so U,, is a row fixer for BV. 
Similarly, if U, is a column fixer for B, then V, is a column fixer for VB 
whenever V is unitary. 

OPERATION 1. Let Aij be the first +-block of A that is not row 
orthogonal. Let the nonzero singular values of Aij be (T, > aZ > * . . > a,, 
with multiplicities ml, m2,. . . , m,, and put ~$~(n~) = Cm,, m2,. . , m,, 
n,-_(ml+m,+ ** * + m,)). Let Vi* be a row fixer for Aii. Let U be the 
element of 9 that has Vi in the i th diagonal block position and in every 
position k linked to i by T, and has the identity matrix in the other diagonal 
blocks. Let r&~,,(n) be the tagged refinement of IT obtained by refining 
4~ in the ith place, and each place linked to i, by +Jni), and linking 
corresponding m,‘s. Put A,, = U*AU and &0 = U(&,r,(n)>. Then the i, j 
block of A, has mutually orthogonal row vectors satisfying the length 
condition of Lemma 5.1. 

OPERATION 2. Let Aij be the first +r-block of A that is not column 
orthogonal. Let the nonzero singular values of Aij be err > a, > . * * > a,, 
with multiplicities m,, ma,. . . , m,, and put 
(m,+m,+ *** 

r$jj(nj) = (ml,m,, . . . , mt,nj- 
+ m,)). Let Uj be a column fixer for Aij. Let U be the 

element of 9 that has Uj in the j th diagonal block position and in every 
position k linked to j by T, and has the identity matrix in the other diagonal 
blocks. Let &To(n) be the tagged refinement of &r(n) obtained by refining 
4~ in the jth place, and each place linked to j, by +j(nj), and linking 
corresponding mi’s. Put A, = U*AU and d0 = U(4,r,(n)). The i, j block of 
A, has mutually orthogonal columns satisfying the length condition of 
Lemma 5.2. 

Now use Operations 1 and 2 to define a third operation. 

OPERATION 3. By a finite number of applications of Operation 1, we can 
produce a tagged refinement c),T, of +T, and a matrix A, such that A, is 
&equivalent to A and every +,r,-block of A, is row orthogonal. We then 
apply Operation 2 to the matrix A,, and repeat Operation 2 until we obtain a 
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refinement &~a of +I~1 and a matrix A, that is J-equivalent to A, and 
such that every 4,r,-block of A, is column orthogonal. 

Now apply Operation 3 until we obtain a refinement c#P),~, of 47 and a 
matrix A, such that A, is &equivalent to A and every ber,-block of A, 
is both row and column orthogonal. Thus, the nonsquare 4e7e-blocks must be 
zero, and any nonzero, square +,Te-block is a scalar multiple of a unitary 
matrix. This establishes part (I) of the following theorem. 

THEOREM 5.1 (Radjavi [89]). Let 9 = U(&r(n)l be a generalized diugo- 
nal group, and let A be an n X n mat&. There is an algorithm that produces a 
refinement I,?J,T, of ~$7, and a matrix A,, such that A, is .@equivalent to A 
and the following hold: 

(1) If Aij is a nonsquare $,-block of A e, then Aij = 0; if Aij is a square 
4,-block of A,, th en A ij = ci jUi j for some unitary matrix Uij and some 
scalar ci j. 

(2) A matrix B is &equivalent to A if and only tf B, is U(4,r,)-equivalent 
to A, and the refinement of ~$7 produced by applying the algorithm to B is 

+6?7,. 

See [89] for a complete proof. 
We now apply further unitary similarities from U(4,r,) to the matrix A, 

to reduce the nonzero blocks. If Aij = cijUij is an untagged block, we can 
choose a unitary matrix CT in U(+,r,) with Uij in the ith position and an 
identity matrix in the jth position. The i, j block of U*AU is then the scalar 
matrix cijZ. However, if Aij = cijUij is a tagged block, we choose an ni X ni 
unitary matrix Vi such that Ui*UijUi is diagonal, with diagonal entries in the 
lexicographic order, and let U be a matrix in U(C$,T,) with Vi in positions i 
and j. One must then further refine the n-sum C#J~T, in the ith place in 
accordance with the multiplicities of the eigenvalues of Uij. By repeating 
these operations, we eventually obtain an n-sum 4frr and a matrix Af such 
that every minor of Af is &frfstable. As noted before, untagged stable 
blocks must be blocks of zeros, and tagged stable blocks must be scalar 
blocks. The matrix A, can then be used as the canonical form for A. For a 
complete proof and a more detailed description of the algorithms involved, 
see [89]. Radjavi also points out that when .YY is the full unitary group, one 
can first put the matrix in triangular form and then apply the algorithm to 
obtain a triangular canonical form. 

In [90] Radjavi proposes a different approach for reducing a set of 
matrices to a canonical form. 

The general reduction method has been used to define a variety of 
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canonical forms under unitary similarity. In each case it produces a canonical 
form and an associated tagged n-sum. The resulting canonical form is stable 
under the action of the direct unitary group determined by the tagged 
n-sum, and if one partitions the canonical form using the tagged n-sum, each 
of the resulting tagged blocks is scalar, while the untagged blocks must be 
zero. However, it is difficult to visualize these forms without considering the 
actual steps of the reduction process. Unitary similarity preserves both the 
algebraic and geometric structure of the transformation, and one would like a 
canonical form that reveals this structure, or perhaps exhibits unitary invari- 
ants. The triangular canonical forms of [9, 59, 991 exhibit the Weyr character- 
istic, and Brenner’s form exhibits the singular value form, but none of these 
forms seems to exhibit the geometric nature of the transformation the way 
the Jordan and rational canonical forms display the important similarity 
invariants. 

In [52], Kaluznin and Havidi approach the problem of unitary similarity 
for m-tuples, (A,,A,, . . .,A,,,) and (B,, B,,. . ., B,), of square matrices from a 
more geometric point of view. First note that when we decompose each 
matrix into its Hermitian and skew Hermitian components, Aj = Hj + iK, 
and Bj = Lj + iMj, where Hj, Kj, Lj, and Mj are all Hermitian, a unitary 
matrix U satisfies U*A,U = Bj if and only if U*HjU = Lj and U*KjU = Mj. 
Thus, we may replace each Aj and Bj with a pair of Hermitian matices and 
study the 2m-tuples in which every entry is Hermitian. Hence, it suffices to 
consider the case where each of the matrices Ai and Bi is normal. The 
eigenspaces of an n x n normal matrix give a decomposition of C” into an 
orthogonal direct sum of subspaces. For each Ai and Bi we have such a 
decomposition. Hence, we have a set of m decompositions corresponding to 
the Ai’s, and another set of m decompositions corresponding to the Bi’s; 
these are called configurations. The m-tuples (A,, A,, . . . , A,) and 

@,, B,, . . . > B,) are unitarily equivalent if and only if, for each i, the normal 
matrices A, and Bi have the same eigenvalues and multiplicities, and there 
is a unitary transformation mapping one configuration onto the other. Kaluznin 
and Havidi analyze the geometry of these two configurations. They consider 
the “angles” between pairs of corresponding subspaces in the configurations, 
where the angle between two subspaces is a certain operator defined in 
terms of the projections onto those subspaces. Using the angles between 
pairs of subspaces, they further decompose the eigenspaces into orthogonal 
direct sums of lower dimensional subspaces, repeating the process until the 
angles between any two components are scalar. They then analyze these 
reduced configurations. Thus, this geometric theory also depends on a 
reduction process that successively refines the configurations, just as the 
reduction to canonical form involves refining the partitions of the matrices. 
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6. UNITARY INVARIANTS 

Constructing canonical forms for matrices under unitary similarity pro- 

vides one way to determine when two matrices are unitarily similar-A and 

B are unitarily similar if and only if they have the same canonical form. 

However, the canonical forms are complicated, especially when the matrix is 

not nonderogatory, and it is not clear what information they display. Another 

approach is to find a set of invariants that completely characterize a matrix 

up to unitary similarity. In this section we survey some results about 

quantities or properties of a matrix that are invariant under unitary similarity. 

Perhaps the main result in this area is a theorem of Specht [110] showing 

that a certain set of traces gives a complete set of unitary invariants. This 

theorem has been refined by Pearcy [83], and has been generalized to certain 

types of operators on Hilbert spaces [19, 21, 22, 83, 85, 861. The problem of 

unitary invariants is also closely related to the more general problem of 

finding similarity invariants for sets of matrices. 

We use tr(A) to denote the trace of A. 

Unitary similarity is a special form of similarity, so anything invariant 

under similarity, such as eigenvalues, characteristic and minimal polynomi- 

als, elementary divisors, and the Jordan canonical form, is also preserved by 

unitary similarity. However, there are other properties and quantities that 

are not always preserved by a similarity, but are preserved by any unitary 

similarity. For example, if U is unitary and U*AU = B, then U*(A*A)U = 

B*B, so a unitary similarity preserves the singular values of A as well as the 

quantity tr(A*A)= X~=1C~=,(aij]2, kn own as the Frobenius norm of A. 

If U,‘cTZ ,..., o,, are the singular values of A, then tr(A*A) = 

a;+a;+ *.. + a,$. Similarity transformations do not generally preserve the 

singular values or Frobenius norm. However, although the singular values 

are invariant under unitary similarity, similar matrices with the same singular 

values need not be unitarily similar. 

EXAMPLE 6.1. For any triple (x, y, Z> of positive numbers let 

0 x Y 
M(x,y,z)= i 0 0 ,z 1 > 

0 0 0 

as in Example 3.1. Recall that all such matrices are similar, but two such 

matrices are unitarily similar if and only if they are identical. To find the 
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singular values of M(x, y, z), compute 
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This matrix has eigenvalues 0 and the pair R f @qq where 
R = x” + yz + z’. Thus, whenever (xr,yi,zi) and (x2,y2,z2) are’distinct 
triples of positive numbers satisfying the equations 2: + yf + a: = ~2” + yi + 
zi and xlzl=xzzz, the matrices M(x,, y,,z, ) and M(x,, y,,z,) have the 
same singular values but will not be unitarily similar. For a specific example, 
put x,=y,=zr=l and x2=2, y2=fi/6, and z,=$. 

When B = V*AV, the matrices AA* and BB* have the same trace. More 
generally, suppose m(A,A*) is any word in A and A*-that is, m(A,A*) is 
the result of taking any monomial ~(x, y) in noncommuting variables x and 
y and replacing x with A and y with A*. If A and B are unitarily similar, 
V*u(A, A*)V = C&B, B*), so w(A, A*) and &B, B*) have the same trace. 
Specht proved that the converse also holds, so that the set 

ltl(m(A, A*)) I 4x, y) is any word in x and y) completely determines A up 
to unitary similarity, and thus is a complete set of unitary invariants. 

THEOREM 6.1 (Specht [llo]). Let A and B be n X n compZer matrices. 

Then A and B are unitarily similar $and only $ tr( w(A, A*)) = tr(w( B, B*)) 

holds fw every word CO. 

The idea of Specht’s proof is to look at the free semigroup 9(x,y) 
generated by x and y and view the maps U(X, y) + m(A,A*) and 
~(x, y) -+ w(B, B*) as two representations of 9. Let &A, A*) be the set of 
all matrices of the form &A,A*). Since @(A, A*) is self-adjoint [i.e., 
(d(A,A*))* = #(A,A*)], it is fully re UCI d ‘bl e, which means that a subspace 
is invariant under &(A, A*) if and only if its orthogonal complement is also 
invariant under .3(A, A*). Since tr(&A, A*)) = tr(w(B, BY)) holds for all 
words W, these two fully reducible representations have the same character 
and thus must be equivalent. Hence, there is a nonsingular matrix P such 
that P-‘w(A,A*)P = P-‘co(B, B*)P for any word UC+. In particular, P-‘AI’ 
= B and P-‘A*P = B*. But then P-‘AP = P*A(P*)-‘, so PP* commutes 

with A. Now let P = HV be the polar decomposition of P, where U is 
unitary and the Hermitian matrix H is the unique positive definite square 
root of PP*. Since H can be expressed as a polynomial in PP*, the matrix H 

commutes with A. Thus, P-‘AP = V*(H-‘AH)V = V*AV = B. 
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The final step of this argument shows that if there is a nonsingular matrix 
S such that S-‘AS = B and S-‘A*S = B*, then A and B are unitarily similar. 
Also, A commutes with SS*. Conversely, if A commutes with SS*, then 
S-‘A*S = (S-‘AS)*, so A and S-‘AS must be unitarily similar. 

Also of interest is the algebra &(A, A*) generated by A and A* over the 
complex numbers. This self-adjoint algebra is the set of all polynomial 
expressions p(A, A*), where p(x, y) is any polynomial in the noncommuting 
variables x and y. Thus, the words u(A, A*) span &(A, A*). If 
tr(m(A,A*))= tr(a(B, B*)) holds for all words U, then tr(p(A,A*)= 
tr(p(B, B*)) for any polynomial p(x, y). We can now try to define a map 
+:ti(A,A*)-,&‘(B,B*)b th y e rule I)( p( A, A*)) = p( B, B *) for any polyno- 
mial p(r, y). One can show that I) is well defined and one-to-one by using 
the fact that tr(CC*> = 0 if and only if C = 0, together with the assumption 

tdp(A, A*) = tdp(B, B*)) f or any polynomial p(x, y). The map $ thus is a 
*-isomorphism of &(A, A*) onto ti( B, B*) such that +(A) = B. The algebra 
&(A,A*) is an example of an H*-algebra [32]; Bhattacharya [lo] proves 
Specht’s theorem by using the fact that representations of an H*-algebra are 
equivalent if and only if their characters are equal. 

These proofs of Specht’s theorem also apply to two finite sets 

AnA,,..., A, and B,,B,,..., B, of n X n matrices, as noted by Wiegmann 

‘,‘,“d”]. Onet;rr either consider the free semigroup 9(x,, y,, x2, yZ,. . . , x,, y,> 
representations W(X,, y1> X2> ya>. . . , Xt, Y,) + 

w(Al, AT, A,, AZ,. . , A,, AT) and @(x1, yl, x2, y2,. . . , xt, Y,) --f 
m(B1, B:, B,, Bz,. . . , B,, B:), or regard the algebras 

.d(A,,A~,A,,A; ,..., A,,AT) and &(B,,B:, B,, B,*,.. ., B,, B:) as equiva- 
lent representations of the same H*-algebra. In either case, the same 
argument proves the following generalization of Specht’s theorem to finite 

sets of matrices. 

THEOREM 6.2. Let A,,A, ,..., A, und B,, B, ,..., B, be sets of n X n 

matrices. There is a unitary matrix U such that U*A,U = Bi for i = 1,2,. . . , t zj 
and only ay fm every word ~(x,, y,, x2, y2,. . . , xt, yt> in the noncommuting 
variables xi and yi we have 

Specht’s theorem provides a set of invariants that uniquely determine a 
matrix up to unitary similarity; since one can form infinitely many words in A 
and A*, it gives an infinite set of invariants. Pearcy [83] has shown that a 
finite set of words sullice. Let Y’(k) denote the set of words in the 
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noncommuting variables x and y in which the sum of the exponents does not 
exceed k. 

THEOREM 6.3 (Pearcy [83]). lf A and B are n X n complex matrices, and 
if tr(m(A, A*)) = tr(&B, B*)) fw every word C&I, y> in W(2n2), then A 
and B are unitarily similar. 

This is proved by first showing that (m(A, A*)( m is in W(n2)] must 
span the algebra &(A, A*). The fact that CC* has trace zero if and only if 
C= 0 is then used to show that if tr(u(A,A*))== tr(m(B,B*)) holds for 
every word in W(2n2), then tr(o(A,A*))= tr(m(B, B*)) must hold for 
every word u. Thus, A and B are unitarily similar by the original Specht 
theorem. 

The number of words in W(2n2) is less than 4”‘, giving the folltiwing 
result. 

THEOREM 6.4 (Pearcy [83]). There is a complete set of unitary invariants 
for n X n complex matrices containing fewer than 4”’ elements. 

The analogues of Theorems 6.1, 6.2, and 6.4 for orthogonal invariants of 
real matrices also hold, for any collection of traces forming a complete set 
of unitary invariants for n X n complex matrices is also a complete set of 
orthogonal invariants for n X n real matrices [83]. 

One might ask for a least upper bound on the number of traces needed 
for a complete set of unitary invariants for n X n matrices; the number 4”’ is 
much too large. For 2 X 2 matrices, only three traces are needed [74], for the 
traces of A and A2 determine the eigenvalues of A, and the quantity tr(A*A) 
then determines the superdiagonal entry of the triangular canonical form 
described in Section 2. Mumaghan [74] also studied the case n = 3; but his 
claim that six traces suffice is not correct, as shown in [84]. Pearcy [84] shows 
that nine traces suffice for n = 3; Sibirskii [106] improves this by finding a 
set of seven traces that suffice and form a minimal set. Using Paz’s [82] 
results on the size of a set of words needed to span an algebra generated by a 
finite set of square matrices, L&fey [57] and Bhattacharya [lo] point out that 
one needs to compute approximately 2”“13 traces. For matrices for which the 
nonzero singular values have multiplicity one, Bhattacharya gives a family of 
about (en)” traces that suffice. She also gives a topological argument for the 
existence of n2 + 1 continuous functions on C(n) that give a complete set of 
unitary invariants. Thus, one would like to find a complete set of specific 
unitary invariants with the size of the set being a polynomial in n. The 
problem of finding sets of unitary invariants for sets of matrices is also of 
interest [ 106, 1111. 
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The algebra &(A, A*) is a closed, self-adjoint algebra of operators acting 
on the finite dimensional Hilbert space C” and thus is a W*-algebra. A 
W*-algebra, or von Neumann algebra, is a weakly closed, self-adjoint algebra 
of operators on a Hilbert space Z [98]. The structure and classification of 
W*-algebras has been much studied, along with the problem of classifying 
Hilbert space operators up to unitary equivalence and finding unitary invari- 
ants for operators [26, 981. Pearcy [83, 851 has shown that the Specht trace 
invariants are a complete set of unitary invariants for operators that generate 
finite W*-algebras of Type I. Such operators can be decomposed as direct 
sums of homogeneous n-normal operators; Kaplansky [53] and Brown [13] 

gave a structure theory for homogeneous n-normal algebras. A homogeneous 
n-normal operator may be viewed as a continuous, complex valued function 
from a totally disconnected compact Hausdorff space .Y to the set of n X n 
complex matrices. Thus, one may regard a homogeneous n-normal operator 
as an n X n matrix with entries from 4(Z), the ring of continuous, complex 
valued functions over ?Z’. Dixmier extended the notion of trace to finite 
W*-algebras by showing the existence of a unique, center valued function D 

with tracelike properties [83]. 

THEOREM 6.5 (Pearcy [83]). Let A be a homogeneous n-normal operator 
generating the W*-algebra 9, and suppose B is in 9. Let Y be any set of 

words u(x, y) such that the associated traces form a complete set of unitary 

invariants for the set of n X n complex matrices, and let D be the unique 

Dixmier central trace on 9. Then if D(u(A, A*)) = D( CU( B, B*)) for each 

word w(x, y) in 9, there is a unitary operator U in .92 such that U*AU = B. 

THEOREM 6.6 (Pearcy 183, 851). Let 2%’ be a finite W*-algebra of type I, 

and let A and B be in 9. Let D denote the unique Dirmier central trace on 

9. Then there is a unitary operator U in 5%’ such that U*AU = B if and only 

23 D(w(A, A*)) = D(m(B, B*)) for each word U(X, y). 

In [86], Pearcy and Ringrose investigate the extent to which similar 
results hold in a type II, von Neumann algebra. Deckard and Pearcy 1201 and 
Deckard [19] also establish generalizations of the Specht theorem for com- 
pact and trace class operators [19] and Hilbert-Schmidt operators [22]. 

Totally disconnected compact Hausdorff spaces are known as Stonian 
spaces; [85, 20, 211 contain additional results on the algebra M,(X) of n X n 

matrices with entries from the ring 8(X) of continuous complex valued 
functions on the Stonian space Z. For example, in [85], Pearcy shows that if 
ti is an Abelian * -subalgebra of M,(X), then there is a unitary element U 
in M,(Z) such that U*&U is diagonal. This generalizes the fact that a set 
of commuting normal matrices over C can be simultaneously diagonalized. In 
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[20] Deckard and Pearcy prove that any matrix with entries from 6(E) is 
unitarily equivalent to another such matrix in upper triangular form, thus 
extending Schur’s theorem to M,(X). Similarity in M,(X) is studied in 

ml. 
We have already noted that A and B are unitarily similar if and only if 

the pair (A, A*) is simultaneously similar to the pair (B,B*)-i.e., if and only 
if there is a nonsingular matrix S such that S- ‘AS = B and S- ‘A*S = B*. 
Thus, unitary invariants may be viewed as a special case of invariants for 
pairs of matrices under the action of simultaneous similarity, or conjugation 
in the group GL(n). More generally, let k,,,(n) be the space of ordered 
m-tuples of n X n matrices over a field of characteristic zero, and consider 
the action of the group GL(n) on this space by simultaneous similarity, or 
conjugation. Thus, define the action of a nonsingular matrix S on kr,<n> by 
the rule S[(A,,A,,..., A,,)] = (S-‘AiS, S-‘A,$ . . . , S-‘A,,S). For any word 

u xi, X2’. . . > ( x,) in the noncommuting variables xi, the quantity 

tT(r&Ai, A,, . . . , A,,)) is invariant under this action. Procesi [88] has shown 
that these trace invariants generate the ring of polynomial invariants for the 
action of GL(n) on dm<n> by simultaneous similarity. A polynomial invariant 
is a polynomial p in the mn2 entries of the m matrices A,, A,, . . . , A,,, such 
that p(A,,A,,..., A,,) = p(S-‘A,S, S-‘A,$. . ., S-‘A,,,S) for every S in 
GL(n). 

THEOREM 6.7 (Procesi [BS]). Any polynomial invariant of an m-tuple 

(A,,A,,..., A,,) of n X n matrices is a polynomial in the invariants 

tr(cu(A,, A, ,..., A,,)), where u’(x~,x~,.. .,x,1 runs over the set of all nwno- 

mials in the noncommuting variables x 1, x2, . . . , x, . 

The set of polynomial invariants does not, in general, completely charac- 
terize the orbit of (A,,A,,..., A,,,), and thus these trace invariants do not 
classify m-tuples of n X n matrices under simultaneous similarity. For exam- 
ple, suppose A,,A,, . . .,A,,, and B,, B,,. .., B,, are two m-tuples of triangular 
matrices such that Ai and Bi have the same diagonal entries for each i. Then 

tl(c&A,, A,, . . . , A,)) = t&(Br, B,, . . . , B,,)) will hold for every word CV, 
but the m-tuples (A,, A,, . . . , A,,) and (B,, B,, . . . , B,) need not be simulta- 
neously similar. In [30], Friedland solves the problem of classifying pairs 
(A,,A,) of complex matrices under simultaneous similarity. He also shows 
that when the characteristic polynomial, p(h, x) = det(AI -(A, + xA2)), of 
the pencil A, + xA, is irreducible, the trace invariants of Theorem 6.7 do 
completely determine the orbit of the pair (A,, A,) under simultaneous 
similarity. [In the previous example of two sets of triangular matrices, the 
characteristic polynomial p(~, x2, xa, . . . , x,) = det(AI -(A, + xzA2 + xsA, 
+ . * . + x,A,,)) factors into m linear factors, where the i th factor corre- 
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sponds to the ith diagonal position of the matrices Ai.] Motzkin and Taussky 
[70, 711 study the characteristic polynomial p(h, X) in their work on matrices 
having the L-property; Friedland generalizes one of their main results in 

[291. 
Results similar to Theorem 6.7 also hold for the action of the orthogonal 

group on km(n), and for the action of the unitary group U(n) on m-tuples of 
n X 72 complex matrices [SS]. 

7. THE NUMERICAL RANGE 

Another unitary invariant of a matrix is its numerical range, defined by 
Toeplitz in [119]. 

DEFINITION 7.1. Let A be an 12 X n complex matrix. The numerical 
range of A, denoted F(A), is the set of complex numbers {x*Ax Ix is in C” 
and 1(x/( = 1). 

The numerical range is also called the field of values. The definition also 
applies to operators of a Hilbert space into itself. More generally, numerical 
ranges have been defined for operators on normed spaces and for elements of 
unital normed algebras [II]. 

Since P?‘(A) is the image of the unit ball in C” under the continuous map 
x + x*Ax, it is a closed compact subset of the complex plane; a well-known 
theorem of Toeplitz [119] and Hausdorff [42] says that Z%@(A) is also convex. 
Choosing x to be a unit eigenvector of A shows that %@(A) contains all of the 
eigenvalues of A. Hence, P’(A) contains the closed convex hull of the 
eigenvalues of A, a polygonal region with eigenvalues as vertices. We denote 
the closed, convex hull of a set {11,1,, .,l,) of complex numbers as 

X(Yi>52,...,5J 
If U is unitary, P(A) = Y’(U*AU), so unitarily similar matrices have the 

same numerical range. However, similar matrices generally do not have the 
same numerical range. A direct computation shows that if D is diagonal with 
diagonal entries d,, da,. . , d,, then PY( D) = A?(d,, d,,. . . ,d,). Hence, if A 
is normal, with eigenvalues cxl, os,. . ., a,, then Y’(A) = Z(oi, os,. .,a,>. 
When n < 4, the converse holds, but r(A) = X(a,, os,. . ., a,) can hold for 
a nonnormal matrix when 71 2 5 [72, 1041. 

If A has eigenvalues oi, (Ye,. . . , a,, then F’(A) must contain the polygo- 
nal region Z(a,, LyZ,. . . , a,); in general, &?((Y,, (~a,. . . , a,> will be a proper 
subset of Y’(A). Givens [34] has shown that X(oi, (~a,. . ., a,) is the 
intersection of the sets P’(S-‘AS), where S ranges over all nonsingular 
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matrices. From the polar decomposition of S and the fact that the numerical 
range is invariant under any unitary similarity, it follows that 

J%$ as’. . . , a,) is also the intersection of all of the sets Y(H-‘AH) where 
H ranges over all positive definite Hermitian matrices. 

A matrix H is Hermitian if and only if its numerical range is a subset of 
the real numbers; in this case F'(H) is the closed interval [h,i,(H), A,,(H)], 
where h,,(H) is the smallest eigenvalue of H and A,,(H) is the largest 
eigenvalue. Writing A = H + iK, where H and K are Hermitian, we see 
Y”(A) is contained in the rectangle bounded by the vertical lines x = A,,,,(H) 
and r = A.,,(H), and the horizontal lines y = A,,(K) and y = A,,(K). 

For a 2 X 2 matrix A, the set P’(A) is an ellipse and the eigenvalues of A 
are the foci of the ellipse [119]. Furthermore, if we apply a unitary similarity 
to put A in triangular form: 

then IpI is the length of the minor axis of the ellipse [73]. Thus, for 2 X2 
matrices, A and B are unitarily similar if and only if P’(A) = P’(B). This 
does not hold for n >, 3; for example, whenever H and K are Hermitian 
matrices with the same minimum and maximum eigenvalues, they will have 
the same numerical range, but need not be similar if n z 3. 

Let ei denote the ith unit coordinate vector. Then e:Aei = aii, so Y(A) 
contains the diagonal entries of A. More generally, if B is any principal 
submatrix of A, then Y(B) c r(A), as can be seen by restricting the vectors 
x in x*Ax to have nonzero entries only in components corresponding to the 
rows and columns that specify the submatrix B. Now let (Y be an eigenvalue 
of A and apply a unitary similarity V so that V*AV = A, is upper triangular 
with (Y in the 1,l entry. If Z3ij is the 2 X 2 principal submatrix of A 1 formed 
from rows and columns 1 and j, then P’(Bij) is an ellipse with (Y as one of 
its foci and a minor axis of length equal to the modulus of the 1, j entry of 
A,. This ellipse must be contained in P’(A). Hence, if a is a boundary point 
of Y(A), entries 2 through n of the first row of A, must be zero. Thus, if an 
eigenvalue CY of A lies on the boundary of Y(A), there is a unitary matrix V 
such that V*AV is D&n - l), where the 1 X 1 block is the number (Y. This 
fact has been noted by Roseler [92], Kippenhahn 1541, and Donoghue [23], 
and more recently in [27, 51, 661. 

Suppose p is in %‘(A) and x*Ax = /3. If V is a unitary matrix with the 
vector x in the first column, then p is the 1,1 entry of V*AV. Since Y(A) is 
a convex set and contains the diagonal entries of A, the number tr(A)/n is 
in T(A). Hence, A is unitarily similar to a matrix with the number tr(A)/n 
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in the 1,l position. One can now use an induction argument to show that A 
is unitarily similar to a matrix with every diagonal entry equal to tr(A)/n, a 
result of Parker [79]. 

When n = 2, the boundary of the numerical range is an ellipse and thus is 
an algebraic curve of degree 2. For general n, the numerical range is also 
determined by an algebraic curve, as follows. Let A = H + iK be an n X n 
matrix, where H and K are Hermitian; recall that H and K are uniquely 
determined. The set of all matrices of the form xH + yK, where x and 
y are variable, is called the pencil generated by H and K. The polynomial 
f(x, y, Z) = det(tZ - xH - yK) is the characteristic polynomial of the pencil 
nH + yK. This polynomial is homogeneous of degree n in the three variables 
x, y, z, and determines two different curves in the complex projective plane. 
If we view the triple (x, y, Z) as representing a point in the projective plane, 
then the homogeneous equation f(r. y, Z) = o represents a curve of degree 
n. However, if we regard the triple (x, y, Z) as coordinates for a line in the 
projective plane, i.e., as line coordinates, then the solutions to f(x, y, Z> = 0 
represent a set of lines forming the envelope of an algebraic curve. The 
degree n of the line coordinate equation f(x, y, ~7) = 0 is called the class of 
this curve and is the number of tangent lines to the curve one can draw from 
any fixed point. Mumaghan [73] and Kippenhahn [54] showed that the lines 

of support of the numerical range of A satisfy the equation f( - x, - y, Z) = 0, 
and the numerical range of A is the closed, convex hull of this curve of class 
n. Furthermore, the n eigenvalues of A correspond to the n real foci of this 
curve [54, 73, 94, 1021. Kippenhahn also showed that any singular point 
CY = a + ib on this curve must be an eigenvalue of A; furthermore, there is a 
unitary matrix U such that U*AU is D(1, n - l>, where the 1 X 1 block is the 
number cr. Donoghue [23] showed that if T is an operator of a Hilbert space 
into itself, and if Y’(T) is closed, then any nondifferentiable boundary point 
is an eigenvalue of T. 

Degree two curves also have class two, so the ellipse obtained in the case 
n = 2 does have class two. Since Y(A) determines A up to unitary similarity 
when n = 2, the polynomial f(x, y,~) must also determine A up to unitary 
similarity when n = 2. In fact, for n = 2, the polynomial det(xH + yK) 

suffkes to determine A = H + iK up to unitary similarity [I, 1161. These 
results are not true for n Z 3; see [lOl, 1021 f or examples of matrices that are 
not unitarily similar, but do have the same polynomial f(x, y, z>. 

The numerical range has been generalized in many ways [8, 11, 34, 35, 
36, 40, 49, 63, 64, 67, 771. For example, there is the Bauer field of values [8, 
771, the k-numerical range [40], the c-numerical range 1361, the C-numerical 
range [36], the G-bilinear range [67]. We shall not discuss these here; see [35, 
491 for a survey and references. However, we will discuss the matrix range 
introduced by Arveson [4, 21, who shows that an irreducible compact operator 
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T on a Hilbert space can be classified up to unitary similarity by a sequence 
of invariants, x(T), which are generalizations of the numerical range. The 
set E(T) is the set of n X n complex matrices obtained by applying certain 
completely positive linear maps to T. 

Let JZY and B be C*-algebras. A linear map I,!I : d + @ is said to be 
positive if @(A) >/ 0 whenever A > 0. For example, if ._& = C(m) and 
@ = C(n), and P is any m X n matrix, the map $(A) = P*AP is positive, for 
whenever A is a positive semidefinite Hermitian matrix, so is P*AP. 
Stinespring [ 1121 introduced the notion of a completely positive map. For any 
positive integer 9, let d(9) be the C*-algebra of 9 x 9 matrices with 
entries from ti; one may regard .QZ’(~) as the tensor product C(9) QD J& We 
can extend the map $I to a linear map I)~ : d(9) + &J(9) by applying qQ to 
each entry of a matrix in M(9). 

DEFINITION 7.2 (Stinespring [112]>. The positive map JI : .M-+ 93 is 
said to be completely positive if $g :&(a) + a(9) is positive for each 
positive integer 9. 

When @ is an algebra of operators on a Hilbert space, the following 
theorem characterizes completely positive maps. 

THEOREM 7.1 (Stinespring [112]). Let LIT be a C*-a2gebra with identity, 

let 2 be a Hilbert space, and let 9 be a linear map from & to operators on 

2. Then rl, is completely positive if and only if q!t has the form $(A) = 
V*p(A)V, where V is a bounded operator from 2 to a Hilbert space X, and 

p is a *-representation of & into operators on X. 

If LZ? = C(m), the algebra d(9) is the set of qm X qm complex matrices, 
viewed as the tensor product C(q)@C(m). Given a matrix M in C(qm), we 

partition M into 92 blocks Mjk, each of size m X m, and write M = (Mjk). If 
I,!I :C(m) + C(n) is a linear map, then I), :C(qm) + C(qn) is defined by 

%(M) = (JI(Mjk)l; note that @CM+) is in C(n), so ($(Mjk)) is a matrix of 
size 9n X qn. If +(A) = P*AP for some m X n matrix P, then $(Mjk)= 

P*Mjk P, and we have I,!I,(M) = (I@ P)*M(ZO P). Thus, for any matrix P, the 
map I)(A) = P*AP is completely positive. However, there are positive maps 
that are not completely positive [3, 1121. 

For any finite set of m X n matrices P,, P,, . . . , P,. the map J, : C(m) --f 
C(n) defined by r)(A) = C:=, Pj*APj is completely positive; Choi 1161 shows 
that every completely positive map from C(m) to C(n) must have this form. 
The set of completely positive maps from C(m) to C(n) is thus the positive 
cone generated by the maps @(A) = P*AP. We can rewrite the map +(A) = 
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CfzlPi*APj in the form given by Theorem 7.1 as follows. Define p:C(m) + 

C(mt> by putting p(A)= Z,@A; the matrix p(A) is then the block 
diagonal matrix formed from the direct sum of t copies of A. Let P = 
(Pr Pz .-- Pt)r be the tm X n matrix formed by stacking the t matrices Pi 

into a column. Then P*(Z,@A)P = P*p(A)P = $(A). 

We can now define the set x(T), where T is an operator on a Hilbert 

space. Let C*(T) denote the C*-algebra generated by T and the identity. 

DEFINITION 7.3 (Arveson, [2, 41). Let 12 be a positive integer, and let T 

be an operator on a Hilbert space %. Then x(T) is the set of all n X 72 
matrices of the form 4(T), w h ere Cc, ranges over all completely positive maps 
of C*(T) into C(n) that preserve the identity. 

If n = 1, the set 9’&T) is the closure of the ordinary numerical range 
F’(T) [4]. The sequence (rI(T), Y2(T), . . .} is called the matrix range of T. 
When 2? = C(m), Choi’s characterization of completely positive maps from 
C(m) to C(n) gives 

p, 1 p, >. . . , P1 are m X n matrices such that 

i p,*p,=z, ). 
i=l 

The matrix range gives a complete set of unitary invariants for irreducible 
compact operators. 

THEOREM 7.4 (Arveson [2, 41). Let S and T be irreducible compact 

operators on the Hilbert spaces .2 and X, respectively. Then S and T are 

unitarily equivalent afund only if x(S) = 3$(T) fw every positive integer n. 
.?f X and X are finite dimensional, with dimension n, then S and T are 
unitarily equivalent if and only if x(S) = x(T). 

Thus, n X n matrices A and B are unitarily similar if and only if 

Z(A) = F(B). 
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8. UNITARY REDUCIBILITY 

Since smaller matrices are easier to work with, it is often useful to reduce 
a matrix to block diagonal form. In this section we discuss some results about 
reducing a matrix to block diagonal form with a unitary similarity. 

DEFINITION 8.1. We say an n X n matrix A is unitarily reducible if 
there exists an unitary matrix I.7 such that U*AV is block diagonal. A matrix 
that is not unitarily reducible is said to be unitarily irreducible. 

The term unitarily decomposable is sometimes used for the concept we 
have called unitarily reducible. 

Definition 8.1 can be extended to sets of matrices. 

DEFINITION 8.2. We say a set fl of n X n matrices is T(n,, n2,. . . , n,) if 
every matrix in R is T(n,,n,, . ..,n,). We say fi is D(n,,n,,. ..,n,) if every 
matrix in R is D(n,,n,,..., n,). If there is a unitary matrix U and an integer 
t > 1 such that U*flU is D(n,,n,,...,n,), then we say R is unitarily 
reducible. 

Let &(A, A*) be the algebra generated by A and A* over C. Since 
(U*AU)* = U*A*U, the algebra &(A, A*) is unitarily reducible if and only if 
A is unitarily reducible. Put H = (A + A*)/2 and K = (A - A*)/2i. Then H 
and K are the unique Hermitian matrices such that A = H + iK, and H and 
K generate the same algebra as A and A*. 

THEOREM 8.1. Let A be an n X n matrix. The following are equivalent: 

(1) A is unitarily reducible to a matrix that is D(k, n - k), where 0 < 
k <n. 

(2) The algebra &A, A*) is unitarily reducible to an algebra of matrices 
that is D(k,n - k). 

(3) There is a k-dimensional subspace Q of C” such that both 9 and 
% L are invariant under A, where % 1 is the orthogonal complement of Q. 

(4) There is a k-dimensional subspace % of C” such that 8 is invariant 
under both A and A*. 

(5) There is a k-dimensional subspace Q of C” such that c% is invariant 
under every matrix in &'(A, A*). 

(6) There is a kdimensional subspace 8 of C” such that 8 is invariant 
under both H and K, where H = (A + A*)/2 and K = (A - A*)/2i. 

(7) There is a k-dimensional subspace Q of C” such that 8 is invariant 
under every matrix in u’(H, K). 
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The equivalence of (1) and (3) f o 11 ows by letting V be a unitary matrix in 

which the first k columns form an orthonormal basis for % and the 

remaining n - k columns form an orthonormal basis for Q I, and then 

forming V*AV. The equivalence of (3) and (4) comes from using the fact that 

(x, Ay) = (A*x, y) to show that Q is invariant under A if and only if Q L is 

invariant under A*. The remaining conditions follow from the fact that % is 

invariant under both A and A* if and only if Q is invariant under 

&(A, A*), and % is invariant under both A and A* if and only if Q is 

invariant under both H and K. Theorem 8.2 essentially restates results of 

Specht [log]; see also [loo, 571. 

The algebra &‘(A, A*) is equal to all of C(n) if and only if A is unitarily 

irreducible; this follows from condition (5) of Theorem 8.1 and the following 

theorem of Bumside [15, 501. 

THEOREM 8.2 (Bumside [15]). Let & be an algebra of n X n complex 
matrices, and suppose that no nontrivial subspace of C” is invariant under 
&. Then &= C(n). 

Suppose V*AV = D(A,,A,, . .,A,), where each Ai is ni X n, and is 

unitarily irreducible. Using Theorem 8.1, we have an ni-dimensional sub- 

space %i corresponding to the i th block; the subspaces si are mutually 

orthogonal and C” is the direct sum of the ei’s. If ni = 1, then A and A* 

have a common eigenvector that generates %i. Each n, is one if and only if 

A is normal; in this case &‘(A, A*) is a commutative algebra. The number t 
and the numbers ni are uniquely determined by the matrix A, but may not 

be easy to determine. A theorem of Schur [96, 1081 relates the number t to 

the number of distinct eigenvalues in the matrices that commute with 

&‘(A, A*). 

THEOREM 8.3 (Schur [96]). Let A be an n X n complex matrix, and 
suppose V*AV= D(A,,A,,...,A,), where each Ai is ni X ni and is unitarily 
irreducible. Lt B(A,A*) be the set of matrices that commute with every 
matrix in the algebra &(A, A*), and let r be the largest number of distinct 
eigenvalues of any matrix in &‘(A, A*). Then r = t. 

Proof. Since (V*AV)* = V*A*V, we have V*&(A, A*)V = 
._M’(U*AV, V*A*U) and V*&(A, A*)U = L(U*AV, V*A*V), so we may as- 

sume that A itself is D(A,, A,, . , A,). Clearly, any matrix that is 

D(n,, n2,. . . , n,) and has scalar matrices in each diagonal block will commute 

with @‘(A,A*), so t < r. 
Now suppose that B is in L(A, A*) and that B has r distinct eigenvalues 

PI,@ 2,. . . , p, of multiplicities m,, m,, . , m,. We can find a unitary matrix V 
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such that U*BU = T(B,, B,, . . . , B,), where Bi is mi X mi and pi is the only 
eigenvalue of Bi. Transforming A and A* by this same unitary similarity, U, 
we then deal with U*BU and &(U*AU,U*A*U)+ For notational conve- 
nience, assume B is already in the form T( B,, B,, . . . , B,). Let M be any 
matrix in &(A, A*); then BM = MB. Partition M into blocks conformal with 
the block structure of B. The argument used to prove Theorem 3.5 then 
shows that M is T(m,,m, ,..., m,). Hence &‘(A,A*) is T(ml,m, ,..., m,). 
But then &(A,A*) must be D(m,,m2,.. .,m,), for whenever M is in 
&A,A*), then M* is also in &‘(A,A*). Therefore, r < t. Since we have 
already seen that t Q r, we have t = r. n 

Theorem 8.3 establishes a connection between the decomposition of the 
algebra &A, A*) into a direct sum of irreducible components and the 
commutant &A,A*). An analogous result holds for strongly closed, self- 
adjoint algebras of Hilbert space operators-such an algebra is decomposable 
if and only if its center contains an operator that is not a scalar multiple of 
the identity. A W*-algebra whose center consists of scalar multiples of the 
identity is called a factor; a general W*-algebra can be regarded as a direct 
integral of such factors [98]. 

Theorem 8.3 concerns the number of blocks in the decomposition U*AU 
= D(A,,A,,..., A,). Results linking the sizes of the blocks to polynomial 
identities for matrix algebras may be found in [7, 55, 100, 1271. Some special 
results apply when the blocks are of size at most two or three. Two n X n 
matrices that satisfy quadratic polynomials generate an algebra of dimension 
at most 2n [31]. Applying this to the pair of matrices A and A* shows that if 
the minimal polynomial of A has degree two, then there is a unitary matrix U 
such that U*AU is block diagonal with blocks of size one or two. Each of the 
blocks must satisfy that same polynomial of degree two, so one can say more 
about the structure of the blocks. 

Let A = H + iK, where H and K are Hermitian, and let f(r, y, Z> be the 
characteristic polynomial of the pencil rH + yK. Motzkin and Taussky [70, 
711 studied the characteristic polynomial f(x, y. .a) in their work on matrices 
with property L. 

DEFINITION 8.3. Let A and B be n X n matrices. If there are orderings 

al, o s,. . . , a, of the eigenvalues of A and pi, &, . . . , p,, of the eigenvalues of 
B such that xA + yB has eigenvalues xoi + ypi for all values of x and y, 
then A and B are said to have property L. 

Let h,,h,,..., h, be the eigenvalues of H, and let k,, k,, . . . , k, be the 
eigenvalues of K. The polynomial f(r, y, Z) factors into the n linear factors 
(z - hiy - kiz) if and only if the eigenvalues of aH + bK are the n numbers 
ahi + bk, for every choice of the complex coefficients a and b, that is, if and 
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only if H and K have property L. Motzkin and Taussky [70] proved that a 
pair of Hermitian matrices have property L if and only if they commute. This 
result also holds for pairs of normal matrices [I33], but does not hold for 
general pairs of matrices. Observe that we can then simultaneously diagonal- 
ize H and K, so the matrix A is normal and can be unitarily diagonalized. 
More generally, if A is unitarily reducible to a matrix that is D(n,, n,, . . . , n,), 
then f(x, y, z) factors into t factors f&r, y, z), where r;.<x, y, z) has degree nj 

and corresponds to the jth diagonal block. More precisely, if Aj = H, + iK,, 
then fj(x, y, Z) = det(zZ - xHj - yK,). However, the converse is not true, for 
A can be unitarily irreducible even if f(x, y, Z> factors [IOl]. Kippenhahn [54] 
showed that if the minimal polynomial of rH + yK has degree two, then A is 
unitarily reducible to a block diagonal matrix with blocks of size at most two; 
this also follows from the previous paragraph. He conjectured that whenever 
the minimal polynomial has degree less than 12, then A will be unitarily 
reducible. This conjecture is correct for 72 < 5, but is false in general, as 
shown by Laffey [56] and Waterhouse [126]. However, if the minimal 
polynomial of xH + yK has degree three, then A is unitarily reducible to a 
block diagonal matrix with blocks of size at most three [IO3]. 

Other results on the unitary equivalence of sets of Hermitian matrices, or 
orthogonal equivalence of sets of real symmetric matrices, may be found in 
[I, 38, 44, 1161; see [44, 451 for work on simultaneous reduction of sets of 
matrices by unitary congruence. 

Radjavi and Rosenthal [91] showed that every nonscalar operator on a 
separable complex Hilbert space has a matrix representation with no zero 
entries. Thus, any nonscalar 7~ X n complex matrix is unitarily similar to a 
matrix with no zero entries. This result is used to show that if A is any 
nonscalar operator, then there is an operator B such that A and B have no 
common invariant subspace [9I]. 

There are several sets of inequalities comparing the eigenvalues, singular 
values, and diagonal elements of a matrix; there are also inequalities linking 
the eigenvalues of the Hermitian and skew Hermitian parts of a matrix to the 
real and imaginary parts of its eigenvalues. The Weyl [130] inequalities apply 
to the eigenvalues and singular values, R. C. Thompson [118] has established 
inequalities for singular values and diagonal entries, and S. Sherman and 
C. J. Thompson [105] have inequalities comparing the eigenvalues of the 
skew Hermitian part of a matrix with the imaginary parts of the eigenvalues. 
In many cases, these inequalities give necessary and sufficient conditions for 
the existence of a matrix with prescribed singular values, eigenvalues, 
diagonal entries, etc. [47, 1181. C.-K. Li [58] h as studied matrices for which 
these inequalities become equalities and shown that in many cases such 
matrices must be unitarily reducible. 

We conclude this section with a theorem of McRae [62]. Let A have t 
distinct eigenvalues cu,, LY*, . . . , at of multiplicities n,, n2,. . . , n,. Then A* has 
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t distinct eigenvalues iSi of multiplicities ni for i = 1,. . . ,t. Let Qi be the 
eigenspace of A corresponding to CY~, so %Pi is the null space of A - cw,I. Let 
T be the eigenspace of A* corresponding to ‘Yi. Then Qi = q for every i if 
and only if A is normal. In general, while %i and 8 must have the same 

dimension, they are different subspaces. Let 7 = Qi n K, and let ki be the 
dimension of F. Then F is invariant under both A and A*, and if we use 

T as the subspace Q of Theorem 8.1, the corresponding k i x ki blocks of 

A and A* will be the scalar blocks aiZk, and SiZki, respectively. This leads to 
the following decomposition. 

THEOREM 8.5 (McRae [62]). Let A be an n X n complex matrix with t 
distinct eigenvalues (Ye, (Ye,. . . , at of multiplicites n,, n2,. . . , n,. Let Qi be the 
eigenspace of A corresponding to q, let y be the eigenspace of A* 
corresponding to Ei, and let ki be the dimension of %i n 7. Then there is a 
unitary matrix U such that U*AU = D( D, C), where D is a diagonal matrix of 
size k = k, + k, + . . * + k t in which cq appears ki times on the diagonal. 
Furthermore, if V*AV= D(D,,C,) is any other decomposition of this type, 
with D, diagonal, then D, has size at most k, and if D, is k X k, then D, can 
differ from D only in the order of the diagonal entries, and C N C,. 

Note that A is normal if and only if n = k, + k, + . . . + k,; one may 
think of Theorem 8.5 as telling us how to split off the “normal part” of A. 

1 would like to thank Roger Horn fm encouraging me to do this survey and 
fm his many helpful suggestions. Thanks also to Shmuel Friedland, who drew 
my attention to Reference [9] and Byan Cain, who infmd me of Refer- 
ences I2- 4I. I $rst became interested in this subject as a graduate student, 
and am grateful to Olga Taussky Todd, my thesis advisor, for her invaluable 
guidance. Many thanks to the interlibrary loan office of McCabe Library, 
Swarthmore College. Most of all, thanks to Emi Horikawa and Meg Spencer of 
Cornell Science Library, Swarthmore College, fw their generous and expert 
assistance with the literature search. 
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