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a b s t r a c t

Some equalities for frames involving the real parts of some complex numbers have been
recently established in [P. Găvruta, On some identities and inequalities for frames inHilbert
spaces, J. Math. Anal. Appl., 321 (2006) 469–478]. In the current note, we generalize the
equalities to a more general form which does not involve the real parts of the complex
numbers.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [1] to address some very deep problems in nonharmonic
Fourier series (see [2]). Basically, Duffin and Schaeffer abstracted the fundamental notion of Gabor frames for studying signal
processing. Outside of signal processing, frames did not seem to generate much interest until the ground breaking work of
Daubechies, Grossmann and Meyer [3]. Since then the theory of frames began to be more widely studied (see [4,5]). Frames
provide unconditional basis-like, but generally nonunique, representations of vectors in aHilbert space. The redundancy and
flexibility offered by frames has spurred their application in a variety of areas throughoutmathematics and engineering, such
as wireless communications [6], σ–δ quantization [7] and image processing [8].
We need recall the definition and some properties of frames in Hilbert spaces.
LetH be a Hilbert space and J be a countable index set. A frame forH is a sequence {fj : j ∈ J} such that there are two

positive constants A and B satisfying

A‖f ‖2 ≤
∑
j∈J

| 〈f , fj〉 |2 ≤ B‖f ‖2 (1)

for all f ∈ H . The constants A and B are called lower and upper frame bounds, respectively. If A = B, then this frame is called
an A-tight frame, and if A = B = 1, then it is called a Parseval frame.
Associated with each frame {fj : j ∈ J} there are three linear and bounded operators:

synthesis operator T : l2(J) −→ H, T ({cj}j∈J) =
∑
j∈J

cjfj,

analysis operator T ∗ : H −→ l2(J), T ∗f = {〈f , fj〉}j∈J ,
frame operator S : H −→ H, Sf = TT ∗f =

∑
j∈J

〈f , fj〉fj.
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Moreover, T ∗ is the adjoint of T and S is a self-adjoint positive invertible operator inH . The frame operator S leads to the
frame reconstruction formula

f =
∑
j∈J

〈f , fj〉S−1fj =
∑
j∈J

〈f , S−1fj〉fj, ∀ f ∈ H, (2)

where the collection {f̃j ≡ S−1fj : j ∈ J} is also a frame for H , which is called the canonical dual frame of {fj : j ∈ J}.
In general, the frame {gj : j ∈ J} forH is called an alternate dual frame of {fj : j ∈ J} if ∀ f ∈ H ,

f =
∑
j∈J

〈f , gj〉fj. (3)

For basic results on frames, see [2,4,5,9,10].
In [11], the authors verified a longstanding conjecture of the signal processing community: a signal can be reconstructed

without information about the phase. While working on efficient algorithms for signal reconstruction, the authors of [12]
established the remarkable Parseval frame equality given below.

Theorem 1.1. If {fj : j ∈ J} is a Parseval frame for H , then ∀K ⊂ J and ∀ f ∈ H ,

∑
j∈K

|〈f , fj〉|2 −

∥∥∥∥∥∑
j∈K

〈f , fj〉fj

∥∥∥∥∥
2

=

∑
j∈K c
|〈f , fj〉|2 −

∥∥∥∥∥∑
j∈K c
〈f , fj〉fj

∥∥∥∥∥
2

,

where K c = J \ K.

Recently, Theorem 1.1 was generalized to alternate dual frames [13]. The following form was given in [13].

Theorem 1.2. If {fj : j ∈ J} is a frame for H and {gj : j ∈ J} is an alternate dual frame of {fj : j ∈ J}, then ∀K ⊂ J and ∀ f ∈ H ,

Re

(∑
j∈K

〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈K

〈f , gj〉fj

∥∥∥∥∥
2

= Re

(∑
j∈K c
〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈K c
〈f , gj〉fj

∥∥∥∥∥
2

. (4)

In this note, we generalize the equality (4) to a more general form which does not involve the real parts of the complex
numbers.

2. The main result and its proof

We first give a simple result for operators.

Lemma 2.1. Let P and Q be two linear bounded operators onH such that P + Q = I; then

P − P∗P = Q ∗ − Q ∗Q ,

where I denotes the identity operator onH .

Proof. A simple computation shows that

P − P∗P = (I − P∗)P = Q ∗(I − Q ) = Q ∗ − Q ∗Q . �

Now, the main result of this note is stated as follows.

Theorem 2.2. Let {fj : j ∈ J} be a frame for H and {gj : j ∈ J} be an alternate dual frame of {fj : j ∈ J}; then ∀K ⊂ J and
∀ f ∈ H ,(∑

j∈K

〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈K

〈f , gj〉fj

∥∥∥∥∥
2

=

(∑
j∈K c
〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈K c
〈f , gj〉fj

∥∥∥∥∥
2

. (5)

Proof. For K ⊂ J , the operator UK is defined by

UK f =
∑
j∈K

〈f , gj〉fj, f ∈ H .

Then it is easy to prove that the operator UK is well defined and the series
∑
j∈K 〈f , gj〉fj converges unconditionally. By (3),

UK + UK c = I . Thus, by Lemma 2.1 we have
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j∈K

〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈K

〈f , gj〉fj

∥∥∥∥∥
2

= 〈UK f , f 〉 − 〈U∗KUK f , f 〉

= 〈U∗K c f , f 〉 − 〈U
∗

K cUK c f , f 〉

= 〈f ,UK c f 〉 − ‖UK c f ‖2

=

(∑
j∈K c
〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈K c
〈f , gj〉fj

∥∥∥∥∥
2

.

Hence (5) holds. The proof is completed. �

It is easy to see that the result from Theorem 1.2 is obtained if we take the real part on both sides of (5). In fact, we can
give a more general result.

Theorem 2.3. Let {fj : j ∈ J} be a frame for H and {gj : j ∈ J} be an alternate dual frame of {fj : j ∈ J}; then for every bounded
sequence {bj : j ∈ J} and ∀ f ∈ H ,(∑

j∈J

bj〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈J

bj〈f , gj〉fj

∥∥∥∥∥
2

=

(∑
j∈J

(1− bj)〈f , gj〉〈f , fj〉

)
−

∥∥∥∥∥∑
j∈J

(1− bj)〈f , gj〉fj

∥∥∥∥∥
2

. (6)

The proof of Theorem 2.3 is immediate. Obviously, for every K ⊂ J , taking bj = 1 if j ∈ K and 0 if j ∈ K c in (6), we then
obtain the equality (5). On the other hand, we can get the equality in Theorem 3.3 of [13] by taking the real part on both
sides of (6).
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