COMMUNICATION

JEU DE TAQUIN AND CONNECTED STANDARD SKEW TABLEAUX

Michael CLAUSEN and Friedrich STÖTZER

Lehrstuhl II für Mathematik, Universität Bayreuth, Postfach 3008, D-8580 Bayreuth, West Germany

Communicated by M.P. Schützenberger
Received 20 january 1983

1. Introduction

Schützenberger's 'jeu de taquin' is a construction which step by step reduces a standard skew tableau T to a standard tableau $P_{T}[1 ; 2]$. This reduction process is not unique and depends on the choices of upper corner squares [2, p. 108]. Nevertheless, Schützenberger and Thomas independently proved that the resulting tableau P_{T} is uniquely determined by T.

If we perform the jeu de taquin subject to a standard skew tableau T and an upper corner square (i, k) of T, we get a new standard skew tableau, which will be denoted by $J_{i k}(T)$.

Example. See Fig. 1.

0012-365X/83/\$03.00 © Elsevier Science Publishers B.V. (North-Holland)

When we started to study Schützenberger's construction, we had the vague feeling that in every case the taquin game transports connectedness, i.e. if T is a connected standard skew tableau, then $J_{i k}(T)$ is connected, for every upper corner square (i, k) of T. But the above T provides a counterexample: T is connected, whereas $J_{12}(T)$ has two connected components.

A suitable modification of our conjecture led us to the following.

Thearem. If T is a connected standard skew tableau, then there exists an upper corner square (i, k) of T such that $J_{i k}(T)$ is connected.

We prepare the proof of this theorem by some definitions.

2. Definitions

A skew tableau T is a mapping, whose domain, denoted by $|T|$, is the set-theoretic difference of two Young diagrams [2] and whose range is some finite set of positive integers. T is standard, iff the entries in T are weakly increasing from left to right in each row and strictly increasing from top to bottom in each column of T.

The transition from a standard skew tableau T to $J_{i k}(T)$ specifies a finite sequence
$(*) \quad(i, k)=:\left(i_{0}, k_{0}\right),\left(i_{1}, k_{1}\right) \ldots,\left(i_{r}, k_{r}\right)$,
which can be interpreted as the path of a pawn starting at (i, k) and traversing the standard skew tableau T subject to the 'taquin rules' [1; 2, p. 109]. Such a sequence will be called the taquin path of T with respect to the upper corner square (i, k), or for short: the (i, k)-taquin path of T. In such a path (*), $\left(i_{p+1}, k_{p+1}\right)$ equals either $\left(i_{p}+1, k_{p}\right)$ or $\left(i_{p}, k_{p}+1\right), 0 \leqslant p<r$. We shall call a taquin path (*)

$$
\begin{array}{lll}
\text { horizontal, } & \text { iff } i_{0}=\cdots=i_{r}, \\
\text { vertical, } & \text { iff } & k_{0}=\cdots=k_{r}, \text { and } \\
\text { zigzag, } & \text { iff } & i_{0} \neq i_{r} \text { and } k_{0} \neq k_{r} .
\end{array}
$$

In ine above example $((1,2),(2,2),(3,2))$ and $((2,1),(2,2),(3,2))$ are all possible taquin paths of T; the first one is vertical, and the second one is zigzag.

Finally we need the notion of a hook. Let T be a skew tableau, $(a, b) \in|T|$. Then

$$
H_{a b}\left(T^{\prime}\right):=\{(c, d) \in|T|: \quad(c=a \text { and } d \geqslant b) \text { or }(d=b \text { and } c \geqslant a)\}
$$

is the hook of T with corner (a, b).
The element $(a, h) \in H_{a b}(T)$ (resp. $\left.(f, b) \in H_{a b}(T)\right)$ is called the hand (resp. foot) of this hook, iff $(a, h+1) \notin H_{a b}^{r}(T)$ (resp. $(f+1, b) \notin H_{a b}(T)$).

3. Proof of the Theorem

In order to prove the Theorem, we distinguish several cases. In each case we can find hooks which guarantee the connectedness of some $J_{i k}(T)$.

Case 1. There is an (i, k)-taquin path of T which is zigzag.
Claim. $J_{i k}(T)$ is connected.
To prove this, let us consider the hook $H_{i k}\left(J_{i k}(T)\right)$. The crucial property of this hook is the fact that its foot coincides with the foot of $H_{i+1, k}(T)$ and its hand coincides with the hand of $H_{i, k+1}(T)$; hence $J_{i k}(T)$ is connected.
Case 2. No taquin path of T is zigzag.
Here we distinguish three subcases. First of all, it is convenient to label all upper corner squares of \boldsymbol{T} lexicographically:

$$
\left(i^{(1)}, k^{(1)}\right)<\cdots<\left(i^{(s)}, k^{(s)}\right)
$$

Case 2.1. The taquin path of T with respect to $(i, k):=\left(i^{(1)}, k^{(1)}\right)$ is horizontal.
Claim. $J_{i k}(T)$ is connected.
If $i=1$, our claim holds. Now suppose $i>1$. Since T is connected, $\{(i, k+1)$, $(i+1, k),(i+1, k+1)\}$ is a subset of $|\tau|$. Furthermore, since $J_{i k}(T)$ is a skew tableau and the (i, k)-taquin path of T is horizontal, even $(i, k+2) \in|T|$. Hence $H_{1, k+1}(T) \subseteq\left|J_{i k}(T)\right|$. Our claim follows.
Case 2.2. The taquin path of T with respect to $(i, k):=\left(i^{(s)}, k^{(s)}\right)$ is vertical.
Claim. $J_{i k}(T)$ is connected.
Proof. Similar to Case 2.1.
Case 2.3. The $\left(i^{(1)}, k^{(1)}\right.$-taquin path of T is vertical and the $\left(i^{(s)}, k^{(s)}\right)$-taquin path of T is horizontal.
In this case there exists a $p, 1 \leqslant p<s$, such that the taquin path of T with respect to $\left(i^{(p)}, k^{(p)}\right)=:(i, k)$ is vertical and the taquin path of T with respect to $\left(i^{(p+1)}, j^{(p+1)}\right)=:\left(i^{\prime}, j^{\prime}\right)$ is horizontal.
Claim. $J_{i k}(T)$ and $J_{i^{\prime} k^{\prime}}(T)$ are connected.
Similarly to Case 2.1 one shows that both $\left\{\left(i^{\prime}, k^{\prime}+1\right),\left(i^{\prime}+1, k^{\prime}\right),\left(i^{\prime}+1, k^{\prime}+1\right)\right.$, $\left.\left(i^{\prime}, k^{\prime}+2\right)\right\}$ and $\{(i, k+1),(i+1, k),(i+1, k+1),(i+2, k)\}$ are subsets of $|T|$. Hence the hooks of $T, J_{i k}(T)$ and $J_{i^{\prime}} \cdot(T)$ with common corner $\left(i+1, k^{\prime}+1\right)$ are equal; this implies the connectedness of $J_{i k}(T)$ and $J_{i{ }^{\prime} k^{\prime}}(T)$.
This completes the proof of the Theorem.

References

[1] A. Lascoux and M.P. Schützenberger, Le monoïde plaxique, Quaderni de la Ricera Scientifica 109 (1981) 129-156.
[2] G.P. Thomas, On a construction of Schützenberger; Discrete Math. 17 (1977) 107-118.

