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INTRODUCTION

At the present time, there is considerable interest in the study of
asymptotic behavior of strongly monotone dynamical systems. The path-

w xbreaking work of M. W. Hirsch 1 and later improvements by Smith and
w xThieme 5, 6 established that most positive orbits of a strongly monotone

continuous-time local semiflow on a strongly ordered space X tend to the
set E of equilibria. Not long ago, there was an attempt to show similar

Žconvergence properties that is, most orbits converge to the set of fixed
.points for strongly monotone discrete-time dynamical systems. However,

examples of stable k-cycles, k G 2, for strongly monotone discrete-time
w xdynamical systems have been constructed by Takac 8]11 and Dancer and´ˇ

w xHess 12, 13 . By imposing suitable conditions and using some ideas from
w x w xTakac 9 , Polacik and Terescak 14, 15 have proved that most positive´ˇ ´ˇ ˇ̌ ´

orbits of a strongly monotone discrete-time dynamical system converge to
a cycle. These convergent results show that a strongly monotone dynamical
system cannot be very chaotic. The results on attractors obtained by
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w x w xHirsch 2, 3 further indicate this fact. In Chapter III of 2 , he studied the
structure of attractors for strongly monotone continuous-time flows. He

Ž wshowed that every attractor K contains an order-stable equilibrium see 2,
x.Theorem 4.1 and that if the number of equilibria in K is finite then K

Ž w x.contains an asymptotically order-stable equilibrium see 2, Theorem 5.6 .
Ž wIn the same paper, he still obtained the following conclusion see 2,

x.Theorem 4.3 :

THEOREM A. Let K be an attractor for the strongly monotone
continuous-time flow f. Suppose z is attracted to K but is not quasicon̈ ergent.

Ž .Then K contains two order-stable equilibria p, q such that p g v z g q.

w xIn earlier work 16 , it is verified that the result of Theorem A still holds
Žif the condition ‘‘nonquasiconvergent’’ is replaced by ‘‘nonconvergent’’ see

w x.16, Theorem 2 .
For attractors of strongly monotone discrete-time dynamical systems,

w xreplacing the term ‘‘equilibrium’’ by ‘‘cycle,’’ Hirsch 3 proved that every
one of the above-mentioned results, except Theorem A and its generaliza-

w xtion 16, Theorem 2 , holds. Observing the processes of proofs for Theo-
rem A and its generalization, we find that they strongly depend on the
following v-limit set dichotomy theorem for the continuous-time case: if

Ž . Ž . Ž . Ž .x - y, then either v x g v y or else v x s v y ; E, the set of
equilibria. The existence of stable cycles for strongly monotone discrete-

Ž w x.time dynamical systems see 8]13 shows that the limit set dichotomy of
w xHirsch 1 for strongly monotone semiflows does not carry over to strongly

monotone discrete-time dynamical systems. Therefore, the methods used
in the proofs of Theorem A and its generalization are not valid for strongly
monotone discrete-time dynamical systems. In our opinion, this is the
reason Theorem A has not been generalized to strongly monotone dis-
crete-time dynamical systems.

In this paper, using the decomposition of the omega limit set and
monotonicity, we shall prove that the result similar to Theorem A and

w xTheorem 2 in 16 holds. Somewhat more precisely, we shall show that if K
is an attractor for the strongly monotone map T and z is attracted to K

Ž .but v z is not a cycle, then K contains two order-stable cycles. Moreover,
we shall give various conditions under which one obtains order-stable
cycles, asymptotically order-stable cycles, and a globally asymptotically
order-stable cycle.

This paper is organized as follows. In Section 1 we agree on some
notation, give important definitions, and state some known results which
will be essential to our proofs. In Section 2 we state our main results. The
proofs are contained in Section 3.
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1. DEFINITIONS AND PRELIMINARY RESULTS

We start with some notation and a few definitions.
The space X is called ordered if it is a topological space together with a

closed partial order relation R ; X = X. We write

x F y if x , y g R ,Ž .
x - y if x F y and x / y ,

x g y if x , y g Int R ,Ž .

where Int indicates the interior of a set. Notations such as y ) x have the
obvious meanings.

If A, B ; X are subsets then A - B means a - b for all a g A, b g B;
and similarly for A F B, A g B, etc.

The ordered space X is called strongly ordered if every open subset U
of X satisfies:

Ž .SO1 If x g U then a g x g b for some a, b g U. It is easy to see
this implies

Ž .SO2 If a, b g U and a g b then a g x g b for some x g U.

Suppose that V is a real Banach space and V ; V is a closed convexq
Ž . � 4cone satisfying V F yV s 0 . We write y G x if y y x g V andq q q

y ) x if y G x but / x. If Int V / B, then V is strongly ordered.q
Throughout the rest of this paper X denotes a strongly ordered space.
Any points a, b in X determine the closed order interval

w x � 4a, b s x g X : a F x F b

and the open order interval

w x � 4a, b s x g X : a g x g b .

If A and B are subsets of X then we define

w x � 4A , B s x g X : A g x g B

w xand similarly for A, B .
Let X be strongly ordered. A topological space X is defined by giving

ww xxthe set X the topology generated by all open order intervals a, b with
w xa g b. T : X ª X is called order-compact if T a, b has a compact closure

w xin X for each a, b in X.
The orbit of x g X is the set

O x s T m x : m g Z ,� 4Ž . q
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Ž .where Z denotes the set of nonnegative integers. The closure of O x ,q
Ž .denoted by O x , called the orbit closure of x. The v-limit set of x is

Ž . � nk Ž .defined by v x s y g X : T x ª y k ª ` for some sequence n ª `k
4 Ž . Ž .in Z . Notice that if O x is compact in X, then v x / B and is totallyq

Ž . Ž .invariant, i.e., Tv x s v x .
A point p g X is wandering if there exist a neighborhood U of p and

n g Z such that0 q

U l T nU s B n ) n .Ž .0

The nonwandering set is

� 4V s p g X : p is not wandering .

V contains all limit points.
Ž . Ž .A set K ; K attracts a point y g X if O y is compact and v y ; K.

Ž .An attractor K is a compact nonempty invariant set i.e., TK ; K which
Ž .attracts some neighborhood of K. The basin of K is denoted by B K s

� Ž . 4x g X : v x ; K .
It follows easily from Zorn’s lemma that every nonempty compact subset

of X contains a maximal and a minimal element. Let K be an attractor.
Then the set V l K is compact, invariant, and nonempty. For any z g V
l K there are minimal and maximal elements p, q of V l K such that
p F z F q.

Ž . kThe point p is called a k- periodic point of T if T p s p. We call
Ž .O p a cycle, or a k-cycle. If Tp s p, then we say p is a fixed point. Let P

denote the set of all periodic points.
A fixed point p g X is upper stable if for every y c p there exists

ww xxz g p, y such that

nw x w xT p , z ; p , y , for any n g Z .q

If in addition z can always be chosen so that

n w xlim T x s p x g p , zŽ .
nª`

then p is called asymptotically upper stable. We define lower stable and
asymptotically lower stable analogously.

If p is either upper stable or lower stable, then p is said to be
semistable. If p is both upper stable and lower stable we say p is
order-stable. If p is both asymptotically upper stable and asymptotically
lower stable we call p asymptotically order-stable.

Ž .Now let q g X have period m ) 1. We say the m-cycle O q is upper
stable provided q is an upper stable fixed point for the map T m. The other
types of stability defined above are similarly extended to cycles.
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Ž .It is easy to see that an m-cycle O p is asymptotically upper stable if
and only if there exists x c p such that

lim T jm x s p ,
jª`

and analogously for asymptotically lower stable.
Finally, we state several known results.

THEOREM 1.1. Let K be an attractor for the strongly monotone map T :
X ª X. Then there exists an integer m ) 0 such that K contains an order-sta-
ble m-cycle.

THEOREM 1.2. Let K be an attractor for the strongly monotone map T :
X ª X and p g K an m-periodic point which is not lower stable. Then there
exists a unique m-periodic point q g K with the following property: q g p,
Ž . nmO q is asymptotically upper stable, and lim T x s q for all x such thatnª`

q - x - p. A similar result holds when p is not upper stable.

Ž .THEOREM 1.3 Nonordering of Limit Sets . An omega limit set of a
strongly monotone map cannot contain two points related by ) .

Ž .THEOREM 1.4 Krein-Rutman . Let V be a Banach space with Int V / Bq
and T be a compact and strongly positï e linear operator on V. Then the

Ž .spectral radius r T ) 0 is a simple eigen¨alue of T with an eigen¨ector
< < Ž . Ž .¨ g Int V and l - r T for all eigen¨alues l / r T .q

w xTheorems 1.1 and 1.2 are due to Hirsch and can be found in 3 ;
w xTheorem 1.3 is contained in 9, p. 112 ; Theorem 1.4 is adapted from

w xDeimling 19, p. 228 .

2. THE MAIN RESULTS

Ž .Assume that T : X ª X is strongly monotone, O z is compact for the
0 Ž .point z g X, and that m is a positive integer. Let v z denote them

v-limit set of z for the strongly monotone map T m. Then we first give the
Ž .decomposition of v z as

my1
jv z s v z , 2.1Ž . Ž . Ž .D m

js0

j Ž . j 0 Ž .where v z s T v z for j s 1, 2, . . . , m y 1.m m
Ž . my 1 j Ž . Ž .By the definition of v z , it is obvious that D v z ; v z .js0 m

Ž .Fix any point y g v z . Then there exists a sequence n g Z suchk q
that n ª ` and T nk z ª y as k ª `. Divide n by m and we get h g Zk k k q
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and j rm, that is,k

n s mh q j ,k k k

where 0 F j - m. It is easy to see that h ª ` as k ª ` and there exist ak k
� 4sequence k in Z and j g 0, 1, 2, . . . , m y 1 such that j ' j fori q k i

i s 1, 2, . . . . Therefore, we can assume without loss of generality that
T m hk z ª x as k ª ` and j ' j for k s 1, 2, . . . . By the continuity ofk

j 0 Ž . j Ž .T , y s T x. It follows from the definition of v z and v z thatm m
0 Ž . j Ž . Ž . Ž .x g v z and y g v z . Since y is an arbitrary point in v y , v z ;m m

my 1 j Ž . Ž .D v z . This proves 2.1 .js0 m
We are in position to state our main results.

THEOREM 1. Let K be an attractor for strongly monotone map T : X ª X.
Ž . Ž .Suppose that z is attracted to K such that either v z is not a cycle or v z is

Ž .a cycle but is not semistable. Then there exist an order-stable n-cycle O p ; K
Ž .and an order-stable m-cycle O q ; K such that

p g v 0 z g q.Ž .m n

THEOREM 2. Let X ; V be order-open where V is a real Banach space
with Int V / B. Suppose that T : X ª X is analytic and order-compact. Ifq

Ž .DT x is a strongly positï e operator for each x g X, then e¨ery stable cycle in
an attractor K is asymptotically stable. Moreo¨er, if z is attracted to K but
Ž .v z is not a cycle, then K contains two asymptotically stable cycles.

THEOREM 3. Suppose e¨ery nonempty and compact subset of the strongly
ordered space X has both a greatest lower bound and a least upper bound in X.
If T : X ª X is monotone, then T has a globally asymptotically order-stable
fixed point if and only if

Ž . Ž .a O z is compact for any z g X, and
Ž .b there is not more than one fixed point.

w x wRemark. Theorem 1 is a generalization of 3, Theorem 4.3 and 16,
x Ž .Theorem 2 , where the order relation between v z and p, q was given.

Because the limit set dichotomy theorem for strongly monotone flows does
not carry over to strongly monotone discrete-time dynamical systems, there

Ž . Ž . Ž .is great possibility that the order relation O p g v z g O q does not
Ž .hold in our Theorem 1. But if the basin B K of K has the property that

any two elements of B have both a least upper bound and a greatest lower
Ž wbound in B, then p and q in Theorem 1 are fixed points see 3, Theorem

x. Ž .5.1 and p g v z g q. Moreover, if K l P is finite, then K contains two
asymptotically order-stable cycles. If T is a strongly monotone map, then

w x wTheorem 3 has been proved by Takac in either 9, Theorem 2.4 or 9,´ˇ
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xCorollary 6.5 . Thus, Theorem 3 is in the spirit of without strong assump-
w xtion and gives a proper credit to 9 for original results. Therefore,

wTheorem 3 here generalized 4, Theorem 9; 17, Theorem B; 18, Theorem
xB .

3. THE PROOF OF RESULTS

Before proceeding to the proof of our main results, we present two
w xlemmas which are taken from 9 .

Ž . Ž .LEMMA 3.1. Suppose x g y and v x / v y . Then:

Ž . Ž . � my 1 4 0 Ž .i If v x s p, Tp, . . . , T p is an m-cycle and v x s p, thenm

T jp g v j y , j s 0, 1, . . . , m y 1. 3.1Ž . Ž .m

Ž . Ž . � my 1 4 0 Ž .ii If v y s p, Tp, . . . , T p is an m-cycle and v y s p, thenm

v j x g T jp , j s 0, 1, 2, . . . , m y 1. 3.2Ž . Ž .m

w xLemma 3.1 is a corollary of Theorem 3.10 in 9 . Applying it, we can give
the proof of the following lemma. Since this proof has been presented in

w xTakac’s proof of 9, Theorem 6.1 , we omit it.´ˇ
LEMMA 3.2. Let K be an attractor for the strong monotone map T.

Ž .Suppose z is attracted to K and either v z is not a cycle or it is a cycle but is
not semistable. Then we ha¨e:

Ž . Ž .i There exist an asymptotically lower stable n-cycle O y ; K and
N Ž .z s T z g O z such that1

y g z ,1

and

T j y g v j z , j s 0, 1, 2, . . . , n y 1. 3.3Ž . Ž .n 1

Ž . Ž .ii There exists an asymptotically upper stable m-cycle O w ; K such
that

z g w ,1

and

v j z g T jw , j s 0, 1, 2, . . . , m y 1, 3.4Ž . Ž .m 1

Ž .where z is the same point as i . Moreo¨er, we can choose N to be a multiple1
of mn.
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Ž .Proof of Theorem 1. Recall from i of Lemma 3.2 that there exist a
Ž . Ž .point z g O z and an asymptotically lower stable n-cycle O y ; K such1

that

y g z ,1

and

T j y g v j z , j s 0, 1, 2, . . . , n y 1.Ž .n 1

Set

P s x g K l P : O x is a lower stable n-cycle and x g v 0 z .Ž . Ž .� 40 n 1

Obviously, y g P .0
Denote by Y the set of all simply ordered subsets Y of P such that they0

contain y. We shall show that the ordered set Y endowed with the ;
ordering possesses a maximal element. Consider a nonempty, simply
ordered subset Y

X of Y. Set

� X 4Z s D Y : Y g Y .

It is easy to see that y g Z and Z ; P . For any q, r g Z, there exist0
Y , Y ; Z such that q g Y and r g Y . Since Y

X is simply ordered underq r q r

the ordering ; , either Y ; Y or Y ; Y , which implies that eitherq r r q
q, r g Y or q, r g Y . Because Y and Y are simply ordered subsets ofr q q r
P , q and r are related by R; that is, Z is a simply ordered subset of P .0 0
This proves Z g Y is an upper bound of Y

X. Hence, we may apply Zorn’s
lemma to conclude that Y possesses a maximal element, say H. Since all
points in H are n-periodic, for any x, y g H with x / y, either x g y or
y g x. We shall show that H has the following properties:

Ž .i H has an upper bound p in H; and
Ž .ii such a p is upper stable.

Ž .i Since clos H is a nonempty compact set, it follows from Zorn’s
lemma that clos H contains a maximal element p. If p g H, then h F p
for every element h of H. Otherwise, there is h g H such that h F p
doesn’t hold. Since H is simply ordered and p, h g H, we have p g h, a
contradiction to the maximality of p. So if p g H then it is an upper

Ž .bound of H. In order to prove i , it suffices to show that p g H. Suppose
� 4not, then p g clos H y H. By definition, there is a sequence p ; Hi

such that p ª p as i ª `. We assert that for any h g H, there exists ii h
such that h g p for i ) i . In fact, if it is not true, there are a pointi h
h g H and a sequence i ª ` as k ª ` such that h c p . Now lettingk ik

k ª `, we have h G p. Since h / p, h c p, contradicting that p is a
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maximal element of clos H. Hence, our assertion holds. Letting i ª `, we
obtain h F p for any h g H, that is, p is an upper bound of H. It is easy

� 4to see that we can choose the sequence p such that it is monotone, thati
is, p g p for i s 1, 2, . . . . Hence, p is also n-periodic and lower stable.i iq1

0 0 0Ž . Ž . Ž .Because p g v z for all i, p F v z . We claim that p g v z . Ifi n 1 n 1 n 1
Ž . Ž . Ž .v z s v z is not a periodic orbit, then from 2.1 we conclude that1

0 0Ž . Ž . Ž .p / v z . Theorem 1.3 implies that p g v z . If v z is a periodicn 1 n 1
Ž . Ž . Ž .orbit, by supposition, v z is not semistable, which shows v z / O p .

0Ž .Therefore, the claim is also true, i.e., p - v z . By the strong mono-n 1
n 0Ž .tonicity of T , p g v z . This proves p g P . The above proof showsn 1 0

� 4 � 4 � 4that H j p is simply ordered and H j p y H s p , contradicting the
Ž .maximality of H. This proves i .

Ž . Ž .ii We claim that the point p obtained in i is upper stable. In order
to prove this claim, let us assume the contrary. Then it follows from
Theorem 1.2 that there is a unique n-periodic point q g K with the

Ž . m nfollowing property: p g q, O q is asymptotically lower stable, and T x
ª q as m ª ` for all x such that p - x - q. We shall prove that

0Ž . 0Ž . ww xxq g v z . Since p g v z , we can choose x g p, q such that x gn 1 n 1
0Ž . m n m n 0Ž . 0Ž .v z . By strong monotonicity, T x g T v z s v z for m sn 1 n 1 n 1

0Ž . 0Ž .1, 2, . . . . Letting m ª `, we get that q F v z . By supposition, v zn 1 n 1
0Ž ./ q. Theorem 1.3 implies that q - v z . Again, using the strong mono-n 1

n 0Ž .tonicity of T , we obtain that q g v z . This shows q g P . Obviously,n 1 0
� 4 � 4 � 4H j q is simply ordered and H j q y H s q , contradicting the maxi-

Ž .mality of H. This proves ii . So far, we have proved that K contains an
0Ž .order-stable n-periodic point p such that p g v z .n 1

Similarly, we set

P0 s x g K l P: O x is a upper stable m-cycle and x c v 0 z ,Ž . Ž .� 4m 1

Ž . Ž .where m and z are given in ii of Lemma 3.2. It follows from ii of1
Lemma 3.2, w g P0. In quite the same manner, we can prove that P0

0 Ž .contains an order-stable m-periodic point q such that v z g q. Finally,m 1
from

v 0 z ; v 0 z l v 0 z ,Ž . Ž . Ž .m n 1 m 1 n 1

0 Ž . Nwe conclude that p g v z g q. Since z s T z and N is a multiple ofm n 1 1
0 Ž . 0 Ž . 0 Ž .mn, v z s v z , therefore, p g v z g q. The proof of Theoremm n 1 m n m n

1 is complete.

LEMMA 3.3. Let V be a real Banach space with Int V / B and X ; V beq
order-open. Suppose T : X ª X is analytic and order-compact. If p is a fixed

Ž . Ž Ž ..point of T and DT p is strongly positï e with r DT p s 1, then there exist
a neighborhood V of p and a simply ordered arc C ; V containing p such
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that either C consists of fixed points of T or p is a unique fixed point of T in V.
In the latter case, if p is order-stable, then it is asymptotically order-stable.

Ž .Proof. Since T is order-compact, DT p is compact. By the
Ž Ž .. Ž .Krein]Rutman theorem, r DT p s 1 is a simple eigenvalue of DT p

to which there exists a positive eigenvector ¨ g Int V .q
Let L ; V be a one-dimensional space spanned by ¨ . By the

Hahn]Banach Theorem, L has a complementary closed linear subspace
M ; V so that V s M [ L. Thus, without loss of generality, we may
assume that p s 0 and

T x s y q f y , z , Az q g y , z , y g L and z g M ,Ž . Ž . Ž .Ž .
Ž . Ž .where f and g are analytic near 0 with Df 0 s 0 and Dg 0 s 0. The

Krein-Rutman Theorem implies that all eigenvalues of A have modulus
less than 1. Now we restrict our attention to U = W, where U is a
neighborhood of the origin in L and W is a neighborhood of the origin in
M. Since each eigenvalue of A has modulus less than 1, A y I is invertible

Ž .where I: M ª M is the identity operator. It is easy to see that A y I z q
Ž . Ž wg y, z vanishes at the origin. By the Implicit Function Theorem see 19,

x. Ž .Theorem 15.3 , there is a neighborhood V s U = W ; U = W of 0, 01 1
Ž . Ž .and an analytic function w : U ª W , w 0 s 0 such that A y I z q1 1

Ž . Ž . Ž .g y, z s 0 for y, z g V if and only if z s w y . This proves that all
Ž .fixed points of T in V lie on the arc C: z s w y for y g U . Let1

Ž . Ž Ž ..F y s f y, w y , y g U . Then the set of fixed points for T contained in1
V is

y , z : F y s 0, z s w y , y g U .� 4Ž . Ž . Ž . 1

Since f and w are analytic, so is F. Thus either

Ž .a there is an integer q G 2 and a nonzero constant b such that

q < < qq1 < <F y s b y q O y as y ª 0;Ž . Ž .
or else

Ž . Ž .b F y ' 0 for y g U .1

Ž . Ž . Ž .If a occurs, then 0, 0 is a unique fixed point in V. If b occurs, then C
is composed of fixed points for T.

Ž . Ž . Ž Ž .. Ž .Since A y I w y q g y, w y ' 0 for y g U and Dg 0 s 0, and1
Ž .A y I is invertible, Dw 0 s 0. This implies that C is tangent to ¨ at

p s 0. Therefore, C can be regarded as a simply ordered curve. It is easy
Ž . Ž .to see that in the case a , 0, 0 is asymptotically order-stable if and only if

Ž .q is odd and b - 0. Therefore, if 0, 0 is order-stable and isolated, then q
Ž .is odd and b - 0. This shows that p s 0, 0 is asymptotically order-stable.
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Proof of Theorem 2. We note that if T : X ª X is strongly monotone
and order-compact then the concepts of stability and order-stability for
discrete-time dynamical systems in X are equivalent. Therefore, by Theo-
rems 1.1 and 1, and replacing T by T m for some m ) 0, in order to prove
Theorem 2, we only have to prove that every order-stable fixed point in K
is asymptotically order-stable. By Lemma 3.3, it suffices to show that every
order-stable fixed point in K is isolated.

Let p g K be an order-stable fixed point for T. Suppose that r is the
Ž .spectral radius of the strongly positive operator DT p . Then it follows

from the stability of p that r F 1. If r - 1, then p is asymptotically stable,
and hence it is isolated. We only have to consider the case r s 1. Suppose
p g K is not an isolated order-stable fixed point for T. Then, by Lemma
3.3, there exists a neighborhood V of p in which the set of all fixed points
of T is simply ordered arc C. Let D ; K be a simply ordered arc of fixed
points of T such that p g D, and D is maximal with respect to set
inclusion; such a D exists by Zorn’s lemma. By maximality we know that D
is compact, hence, D has a least upper bound q g D. Since the fixed point

Ž .q is not isolated and lower stable, the spectral radius of DT q is 1.
Applying Lemma 3.3, we conclude that the simply ordered arc D of fixed
points can be property extended, in contradiction to its maximality. This
proves Theorem 2.

Proof of Theorem 3. Suppose T is monotone and has a globally asymp-
Ž . Ž .totically order-stable fixed point, then it is obvious that a and b hold.

Ž .We shall prove the converse the ‘‘if’’ half of Theorem 3 . Fix any x g X,
Ž . Ž . Ž .by a , v x ; X is compact. By assumption, v x has both a greatest

Ž .lower bound p and a least upper bound q. Therefore, p F v x F q. By
Ž . Ž .the total invariance of v x and the monotonicity of T , Tp F v x F Tq.

It follows from the definitions of p and q that Tp F p and Tq G q.
w x Ž .Applying Lemma 3.1 in 3, p. 145 , we know that v p is a singleton, and

Ž . n Ž . Ž .so is v q . Since T p F p for n s 1, 2, . . . , v p F p. Similarly, q F v q .
Ž . Ž . Ž .So far we have proved that v p and v q are fixed points and v p F p

Ž . Ž . Ž . Ž . Ž .F v x F q F v q . By b , v p s v q s r, the unique fixed point of
Ž .T , and v x s r, that is, T has the unique fixed point r such that

n Ž .T x ª r, as n ª ` for any x g X. Since X is strongly ordered, SO1 tells
Ž . Ž .us that there exist x, y g X with x g r g y. v x s v y s r implies that

r is asymptotically order-stable, hence it is globally asymptotically order-
stable.

Finally, we shall present two examples to show applications of our
results.

EXAMPLE 1. Consider the system of ordinary differential equations

x s f t , x , x g X , 3.5Ž . Ž .˙
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where X s R n or R n and f : R = X ª R n is analytic and 2p-periodic in t.q
Ž . Ž .If 1.1 is cooperative in x, Df t, x has all off-diagonal terms nonnegative

Ž . Ž . Ž .for each t, x . Assume that Df t, x is irreducible for every t, x g R = X.
Ž . Ž .It is know that the Poincare map T x s f 2p , x , i.e., the period map of´

this equation, has strongly positive derivatives and is analytic in X.
Ž .Suppose that the system 3.5 is dissipative, i.e., there is a compact set

Ž .K ; X such that all solutions of 3.5 will eventually enter the compact set
K. Then from Theorems 1 and 2 we can conclude that either every solution

Ž . Ž .of 3.5 is asymptotic to a semistable 2mp-periodic solution or 3.5 has at
least two asymptotically stable subharmonic solutions. This result can be

n Ž w x.applied to the single loop positive feedback system in R see 7q

dx1 s f t , x y a t xŽ . Ž .n 1 1dt
3.6Ž .

dxi s x y a t x ; i s 2, 3, . . . , n ,Ž .iy1 i 1dt

Ž . Ž .where we assume that a t and f t, x are analytic and 2p-periodic ini n
t g R and that

f t , u F au q b , a, b ) 0Ž .
a t G a ) 0, 1 F i F nŽ .i i

n

a - a .Ł i
is1

Ž . Ž .Ž . Ž .If f 0, 0 ) 0 and ­ fr­ u t, u ) 0 for all u G 0, t g R, then 3.6 is
w xcooperative and irreducible. Therefore, it follows from 7 that there exists

w x Ž .a closed order interval x , y such that all solutions of 3.6 will eventu-0 0
Ž .ally enter it. Thus, either every solution of 3.6 is asymptotic to a

Ž .semistable subharmonic solution or 3.6 has at least two asymptotically
stable subharmonic solutions.

EXAMPLE 2. Consider a time-periodic reaction diffusion equation

u s Du q f t , x , u , on V = 0, `Ž . Ž .t

­ u
s 0 on ­ V = 0, `Ž .

­ n ­ V

3.7Ž .

u x , 0 s u x on V ,Ž . Ž .0

where V ; R n is a smooth compact n-dimensional submanifold with
Ž .interior V and boundary ­ V, f t, x, u : R = V = R ª R is analytic func-
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tion 2p-periodic in t, and ­r­ n is the Neumann boundary operator in the
outward normal direction. This equation is well posed on the space

Ž . Ž w x. Ž . Ž .X [ C V see 20 , that is, for every u g C V , 3.7 has a unique0
Ž . Ž . Ž . Ž .solution defined by f u x s u x, t . The period map T u s f u ist 0 0 2p 0

analytic and compact. The space X with the pointwise ordering is a
strongly ordered Banach space and the Parabolic Strong Maximum Princi-

Ž .ple implies that the derivative DT u is a strongly positive operator for0
every u g X. If there exist constants c , c ) c such that0 1 2 1

f t , x , c ) 0 ) f t , x , cŽ . Ž .1 2

for all t g R and x g V, then it can be shown that the order interval
w x Ž . Ž w x.c , c is positively invariant under the flow that 3.7 induces see 21 .1 2

w xw xLet K s T c , c . Then K ; c , c is compact. So K is an attractor. By1 2 1 2
Theorems 1 and 2, we obtain that either every orbit for T starting from
w xc , c converges to a semistable cycle or K contains at least two asymp-1 2

Ž . Ž .totically stable cycles. Equivalently, either every solution f u of 3.7 fort 0
w x w xu g c , c is asymptotic to a semistable subharmonic solution or c , c0 1 2 1 2

contains at least two asymptotically stable subharmonic solutions.
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