Stable Cycles for Attractors of Strongly Monotone Discrete-Time Dynamical Systems

Jiang Ji-Fa*

Department of Mathematics, The University of Science and Technology of China, Hefei, China

etadata, citation and similar papers at <u>core.ac.uk</u> brought to you by the you by the you by the you by the you

Yu Shu-Xiang*

Institute of Mathematics, Academia Sinica, Beijing, China

Submitted by Hal L. Smith

Received May 17, 1994

INTRODUCTION

At the present time, there is considerable interest in the study of asymptotic behavior of strongly monotone dynamical systems. The pathbreaking work of M. W. Hirsch [1] and later improvements by Smith and Thieme $[5, 6]$ established that most positive orbits of a strongly monotone continuous-time local semiflow on a strongly ordered space *X* tend to the set *E* of equilibria. Not long ago, there was an attempt to show similar convergence properties (that is, most orbits converge to the set of fixed points) for strongly monotone discrete-time dynamical systems. However, examples of stable *k*-cycles, $k \geq 2$, for strongly monotone discrete-time dynamical systems have been constructed by Takáč [8-11] and Dancer and Hess $[12, 13]$. By imposing suitable conditions and using some ideas from Takáč [9], Poláčik and Tereščák [14, 15] have proved that most positive orbits of a strongly monotone discrete-time dynamical system converge to a cycle. These convergent results show that a strongly monotone dynamical system cannot be very chaotic. The results on attractors obtained by

^{*} Research supported by the National Science Foundation of China.

Hirsch $[2, 3]$ further indicate this fact. In Chapter III of $[2]$, he studied the structure of attractors for strongly monotone continuous-time flows. He showed that every attractor K contains an order-stable equilibrium (see [2, Theorem 4.1) and that if the number of equilibria in \overline{K} is finite then \overline{K} contains an asymptotically order-stable equilibrium (see $[2,$ Theorem 5.6 $]$). In the same paper, he still obtained the following conclusion (see $[2, 2]$ Theorem 4.3]):

THEOREM A. *Let K be an attractor for the strongly monotone continuous-time flow φ. Suppose z is attracted to K but is not quasiconvergent. Then K contains two order-stable equilibria p, q such that* $p \ll \omega(z) \ll q$ *.*

In earlier work $[16]$, it is verified that the result of Theorem A still holds if the condition "nonquasiconvergent" is replaced by "nonconvergent" (see $[16,$ Theorem 2]).

For attractors of strongly monotone discrete-time dynamical systems, replacing the term "equilibrium" by "cycle," Hirsch [3] proved that every one of the above-mentioned results, except Theorem A and its generalization [16, Theorem 2], holds. Observing the processes of proofs for Theorem A and its generalization, we find that they strongly depend on the following ω -limit set dichotomy theorem for the continuous-time case: if $x < y$, then either $\omega(x) \ll \omega(y)$ or else $\omega(x) = \omega(y) \subset E$, the set of equilibria. The existence of stable cycles for strongly monotone discretetime dynamical systems (see $[8-13]$) shows that the limit set dichotomy of Hirsch [1] for strongly monotone semiflows does not carry over to strongly monotone discrete-time dynamical systems. Therefore, the methods used in the proofs of Theorem A and its generalization are not valid for strongly monotone discrete-time dynamical systems. In our opinion, this is the reason Theorem A has not been generalized to strongly monotone discrete-time dynamical systems.

In this paper, using the decomposition of the omega limit set and monotonicity, we shall prove that the result similar to Theorem A and Theorem 2 in $[16]$ holds. Somewhat more precisely, we shall show that if K is an attractor for the strongly monotone map *T* and *z* is attracted to *K* but $\omega(z)$ is not a cycle, then *K* contains two order-stable cycles. Moreover, we shall give various conditions under which one obtains order-stable cycles, asymptotically order-stable cycles, and a globally asymptotically order-stable cycle.

This paper is organized as follows. In Section 1 we agree on some notation, give important definitions, and state some known results which will be essential to our proofs. In Section 2 we state our main results. The proofs are contained in Section 3.

1. DEFINITIONS AND PRELIMINARY RESULTS

We start with some notation and a few definitions.

The space *X* is called ordered if it is a topological space together with a closed partial order relation $R \subset X \times X$. We write

> $x \leq y$ if $(x, y) \in R$, $x < y$ if $x \le y$ and $x \ne y$, $x \leq y$ if $(x, y) \in \text{Int } R$,

where Int indicates the interior of a set. Notations such as $y > x$ have the obvious meanings.

If $A, B \subset X$ are subsets then $A \subset B$ means $a \subset b$ for all $a \in A, b \in B$; and similarly for $A \leq B$, $A \leq B$, etc.

The ordered space *X* is called strongly ordered if every open subset *U* of *X* satisfies:

(SO1) If $x \in U$ then $a \ll x \ll b$ for some $a, b \in U$. It is easy to see this implies

 $(SO2)$ If *a*, $b \in U$ and $a \le b$ then $a \le x \le b$ for some $x \in U$.

Suppose that *V* is a real Banach space and $V₊ \subset V$ is a closed convex cone satisfying $V_+ \cap (-V_+) = \{0\}$. We write $y \ge x$ if $y - x \in V_+$ and $y > x$ if $y \ge x$ but $\ne x$. If Int $V_+ \ne \emptyset$, then *V* is strongly ordered.

Throughout the rest of this paper *X* denotes a strongly ordered space. Any points *a*, *b* in *X* determine the closed order interval

$$
[a, b] = \{x \in X : a \le x \le b\}
$$

and the open order interval

$$
[[a, b]] = \{x \in X : a \ll x \ll b\}.
$$

If *A* and *B* are subsets of *X* then we define

$$
[[A, B]] = \{x \in X : A \ll x \ll B\}
$$

and similarly for $[A, B]$.

Let X be strongly ordered. A topological space X is defined by giving the set X the topology generated by all open order intervals $[[a, b]]$ with $a \ll b$. *T*: $X \to \overrightarrow{X}$ is called order-compact if $T[a, b]$ has a compact closure in *X* for each $[a, b]$ in *X*.

The orbit of $x \in X$ is the set

$$
O(x) = \{T^m x : m \in Z_+\},\
$$

where Z_+ denotes the set of nonnegative integers. The closure of $O(x)$, denoted by $\overline{O}(x)$, called the orbit closure of x. The ω -limit set of x is defined by $\omega(x) = \{ y \in X : T^{n_k} x \to y (k \to \infty) \text{ for some sequence } n_k \to \infty \}$ in Z_+). Notice that if $\overline{O}(x)$ is compact in *X*, then $\omega(x) \neq \emptyset$ and is totally invariant, i.e., $T\omega(x) = \omega(x)$.

A point $p \in X$ is wandering if there exist a neighborhood *U* of *p* and $n_0 \in Z_+$ such that

$$
U \cap T^nU = \varnothing \qquad (n > n_0).
$$

The nonwandering set is

 $\Omega = \{ p \in X : p \text{ is not wandering} \}.$

 Ω contains all limit points.

A set $K \subset K$ attracts a point $y \in X$ if $\overline{O}(y)$ is compact and $\omega(y) \subset K$. An attractor *K* is a compact nonempty invariant set (i.e., $TK \subset K$) which attracts some neighborhood of *K*. The basin of *K* is denoted by $B(K)$ = ${x \in X: \omega(x) \subset K}.$

It follows easily from Zorn's lemma that every nonempty compact subset of *X* contains a maximal and a minimal element. Let *K* be an attractor. Then the set $\Omega \cap K$ is compact, invariant, and nonempty. For any $z \in \Omega$ $\cap K$ there are minimal and maximal elements p, q of $\Omega \cap K$ such that $p \leq z \leq q$.

The point *p* is called a $(k-)$ periodic point of *T* if $T^k p = p$. We call $O(p)$ a cycle, or a *k*-cycle. If $Tp = p$, then we say *p* is a fixed point. Let P denote the set of all periodic points.

A fixed point $p \in X$ is upper stable if for every $y \ge p$ there exists $z \in \mathbb{F}$ *p*, *y p* such that

$$
T^{n}[p, z] \subset [p, y], \quad \text{for any } n \in Z_{+}.
$$

If in addition *z* can always be chosen so that

$$
\lim_{n \to \infty} T^n x = p \qquad (x \in [p, z])
$$

then *p* is called asymptotically upper stable. We define lower stable and asymptotically lower stable analogously.

If p is either upper stable or lower stable, then p is said to be semistable. If p is both upper stable and lower stable we say p is order-stable. If *p* is both asymptotically upper stable and asymptotically lower stable we call *p* asymptotically order-stable.

Now let $q \in X$ have period $m > 1$. We say the *m*-cycle $O(q)$ is upper stable provided q is an upper stable fixed point for the map T^m . The other types of stability defined above are similarly extended to cycles.

It is easy to see that an *m*-cycle $O(p)$ is asymptotically upper stable if and only if there exists $x \ge p$ such that

$$
\lim_{j\to\infty}T^{jm}x=p,
$$

and analogously for asymptotically lower stable. Finally, we state several known results.

THEOREM 1.1. *Let K be an attractor for the strongly monotone map T*: $X \rightarrow X$. Then there exists an integer $m > 0$ such that K contains an order-sta*ble m*-*cycle*.

THEOREM 1.2. *Let K be an attractor for the strongly monotone map T*: $X \to X$ and $p \in K$ an *m*-*periodic point which is not lower stable. Then there exists a unique m-periodic point* $q \in K$ *with the following property:* $q \leq p$ *,* $O(q)$ is asymptotically upper stable, and $\lim_{n\to\infty} T^{nm}x = q$ for all x such that $q \leq x \leq p$. *A similar result holds when p is not upper stable.*

THEOREM 1.3 (Nonordering of Limit Sets). An omega limit set of a *strongly monotone map cannot contain two points related by* > .

THEOREM 1.4 (Krein-Rutman). Let *V* be a Banach space with $\text{Int } V_+ \neq \emptyset$ *and T be a compact and strongly positive linear operator on V. Then the spectral radius* $r(T) > 0$ *is a simple eigenvalue of T with an eigenvector* $\overline{v} \in \text{Int } V_+$ and $|\lambda| < r(T)$ for all eigenvalues $\lambda \neq r(T)$.

Theorems 1.1 and 1.2 are due to Hirsch and can be found in $[3]$; Theorem 1.3 is contained in $[9, p. 112]$; Theorem 1.4 is adapted from Deimling $[19, p. 228]$.

2. THE MAIN RESULTS

Assume that *T*: $X \to X$ is strongly monotone, $\overline{O}(z)$ is compact for the point $z \in X$, and that *m* is a positive integer. Let $\omega_m^0(z)$ denote the ω -limit set of *z* for the strongly monotone map T^m . Then we first give the decomposition of $\omega(z)$ as

$$
\omega(z) = \bigcup_{j=0}^{m-1} \omega_m^j(z), \qquad (2.1)
$$

where $\omega_m^j(z) = T^j \omega_m^0(z)$ for $j = 1, 2, ..., m - 1$.

By the definition of $\omega(z)$, it is obvious that $\bigcup_{i=0}^{m-1} \omega_m^j(z) \subset \omega(z)$.

Fix any point $y \in \omega(z)$. Then there exists a sequence $n_k \in Z_+$ such that $n_k \to \infty$ and $T^{n_k}z \to y$ as $k \to \infty$. Divide n_k by m and we get $h_k \in Z_+$ and j_k/m , that is,

$$
n_k = mh_k + j_k,
$$

where $0 \le j_{\nu} < m$. It is easy to see that $h_{\nu} \to \infty$ as $k \to \infty$ and there exist a sequence k_i in Z_+ and $j \in \{0, 1, 2, ..., m-1\}$ such that $j_k \equiv j$ for $i = 1, 2, \ldots$. Therefore, we can assume without loss of generality that $T^{m h_k} z \rightarrow x$ as $k \rightarrow \infty$ and $j_k \equiv j$ for $k = 1, 2, \ldots$. By the continuity of *T*, *y* = *T*^{*j*}*x*. It follows from the definition of $\omega_m^0(z)$ and $\omega_m^j(z)$ that $x \in \omega_m^0(z)$ and $y \in \omega_m^j(z)$. Since y is an arbitrary point in $\omega(y)$, $\omega(z) \subset \bigcup_{i=0}^{m-1} \omega_m^j(z)$. This proves (2.1).

We are in position to state our main results.

THEOREM 1. Let K be an attractor for strongly monotone map $T: X \to X$. *Suppose that z is attracted to K such that either* $\omega(z)$ *is not a cycle or* $\omega(z)$ *is a* cycle but is not semistable. Then there exist an order-stable n-cycle $O(p) \subset K$ *and an order-stable m-cycle* $O(q) \subset K$ *such that*

$$
p \ll \omega_{mn}^0(z) \ll q.
$$

THEOREM 2. Let $X \subset V$ be order-open where V is a real Banach space *with* Int $V_{+} \neq \emptyset$. *Suppose that* $T: X \rightarrow X$ *is analytic and order-compact. If* $DT(x)$ *is a strongly positive operator for each* $x \in X$ *, then every stable cycle in an attractor K is asymptotically stable. Moreover, if z is attracted to K but* $\omega(z)$ is not a cycle, then K contains two asymptotically stable cycles.

THEOREM 3. Suppose every nonempty and compact subset of the strongly *ordered space X has both a greatest lower bound and a least upper bound in X*. *If* $T: X \rightarrow X$ *is monotone, then* T *has a globally asymptotically order-stable fixed point if and only if*

- (a) $O(z)$ is compact for any $z \in X$, and
- (b) there is not more than one fixed point.

Remark. Theorem 1 is a generalization of [3, Theorem 4.3] and [16, Theorem 2], where the order relation between $\omega(z)$ and p, q was given. Because the limit set dichotomy theorem for strongly monotone flows does not carry over to strongly monotone discrete-time dynamical systems, there is great possibility that the order relation $O(p) \ll \omega(z) \ll O(q)$ does not hold in our Theorem 1. But if the basin $B(K)$ of K has the property that any two elements of *B* have both a least upper bound and a greatest lower bound in B , then p and q in Theorem 1 are fixed points (see [3, Theorem 5.1]) and $p \ll \omega(z) \ll q$. Moreover, if $K \cap \mathbb{P}$ is finite, then *K* contains two asymptotically order-stable cycles. If *T* is a strongly monotone map, then Theorem 3 has been proved by Takáč in either $[9,$ Theorem 2.4] or $[9,$

Corollary 6.5]. Thus, Theorem 3 is in the spirit of without strong assumption and gives a proper credit to $[9]$ for original results. Therefore, Theorem 3 here generalized [4, Theorem 9; 17, Theorem B; 18, Theorem B1.

3. THE PROOF OF RESULTS

Before proceeding to the proof of our main results, we present two lemmas which are taken from [9].

LEMMA 3.1. Suppose $x \leq y$ and $\omega(x) \neq \omega(y)$. Then:

(i) If
$$
\omega(x) = \{p, Tp, ..., T^{m-1}p\}
$$
 is an *m*-cycle and $\omega_m^0(x) = p$, then

$$
T^{j}p \ll \omega_{m}^{j}(y), \qquad j = 0, 1, ..., m - 1.
$$
 (3.1)

(ii) If
$$
\omega(y) = \{p, Tp, ..., T^{m-1}p\}
$$
 is an *m*-cycle and $\omega_m^0(y) = p$, then

$$
\omega_m^j(x) \ll T^j p, \qquad j = 0, 1, 2, \dots, m - 1. \tag{3.2}
$$

Lemma 3.1 is a corollary of Theorem 3.10 in [9]. Applying it, we can give the proof of the following lemma. Since this proof has been presented in Takáč's proof of $[9,$ Theorem 6.1], we omit it.

LEMMA 3.2. *Let K be an attractor for the strong monotone map T*. *Suppose z is attracted to K and either* $\omega(z)$ *is not a cycle or it is a cycle but is not semistable. Then we have:*

(i) There exist an asymptotically lower stable n-cycle $O(y) \subset K$ and $z_1 = T^N z \in O(z)$ such that

 $y \ll z_1$,

and

$$
T^j y \ll \omega_n^j(z_1), \qquad j = 0, 1, 2, \dots, n-1. \tag{3.3}
$$

(ii) *There exists an asymptotically upper stable m-cycle* $O(w) \subset K$ *such that*

$$
z_1 \ll w,
$$

and

$$
\omega_m^j(z_1) \ll T^j w, \qquad j = 0, 1, 2, \dots, m - 1,
$$
 (3.4)

where z_1 *is the same point as (i). Moreover, we can choose N to be a multiple of mn*.

Proof of Theorem 1. Recall from (i) of Lemma 3.2 that there exist a point $z_1 \in O(z)$ and an asymptotically lower stable *n*-cycle $O(y) \subset K$ such that

$$
y \ll z_1,
$$

and

$$
T^j y \ll \omega_n^j(z_1), \quad j = 0, 1, 2, ..., n-1.
$$

Set

 $\mathbb{P}_0 = \{x \in K \cap \mathbb{P} : O(x) \text{ is a lower stable } n\text{-cycle and } x \leq \omega_n^0(z_1)\}.$

Obviously, $y \in P_0$.

Denote by $\mathbb {Y}$ the set of all simply ordered subsets *Y* of $\mathbb {P}_0$ such that they contain *y*. We shall show that the ordered set \mathbb{Y} endowed with the \subset ordering possesses a maximal element. Consider a nonempty, simply ordered subset \mathbb{Y}' of \mathbb{Y} . Set

$$
Z = \bigcup \{ Y : Y \in \mathbb{Y}' \}.
$$

It is easy to see that $y \in Z$ and $Z \subset \mathbb{P}_0$. For any $q, r \in Z$, there exist $Y_a, Y_r \subset Z$ such that $q \in Y_a$ and $r \in Y_r$. Since Y' is simply ordered under the ordering \subset , either $Y_q \subset Y_r$ or $Y_r \subset Y_q$, which implies that either $q, r \in Y_r$ or $q, r \in Y_q$. Because Y_q and Y_r are simply ordered subsets of \mathbb{P}_0 , *q* and *r* are related by *R*; that is, *Z* is a simply ordered subset of \mathbb{P}_0 . This proves $Z \in \mathcal{Y}$ is an upper bound of \mathcal{Y}' . Hence, we may apply Zorn's lemma to conclude that Y possesses a maximal element, say *H*. Since all points in *H* are *n*-periodic, for any $x, y \in H$ with $x \neq y$, either $x \leq y$ or $y \ll x$. We shall show that *H* has the following properties:

- (i) *H* has an upper bound *p* in *H*; and
- (ii) such a p is upper stable.

(i) Since clos H is a nonempty compact set, it follows from Zorn's lemma that clos *H* contains a maximal element *p*. If $p \in H$, then $h \leq p$ for every element *h* of *H*. Otherwise, there is $h \in H$ such that $h \leq p$ doesn't hold. Since *H* is simply ordered and $p, h \in H$, we have $p \le h$, a contradiction to the maximality of *p*. So if $p \in H$ then it is an upper bound of *H*. In order to prove (i), it suffices to show that $p \in H$. Suppose not, then $p \in \text{clos } H - H$. By definition, there is a sequence $\{p_i\} \subset H$ such that $p_i \rightarrow p$ as $i \rightarrow \infty$. We assert that for any $h \in H$, there exists i_h such that $h \ll p_i$ for $i > i_h$. In fact, if it is not true, there are a point $h \in H$ and a sequence $i_k \to \infty$ as $k \to \infty$ such that $h \ge p_{i_k}$. Now letting $k \to \infty$, we have $h \ge p$. Since $h \ne p$, $h \ge p$, contradicting that p is a

maximal element of clos H. Hence, our assertion holds. Letting $i \to \infty$, we obtain $h \leq p$ for any $h \in H$, that is, p is an upper bound of H. It is easy to see that we can choose the sequence $\{p_i\}$ such that it is monotone, that is, $p_i \ll p_{i+1}$ for $i = 1, 2, \ldots$. Hence, p is also *n*-periodic and lower stable. Because $p_i \ll \omega_n^0(z_1)$ for all $i, p \le \omega_n^0(z_1)$. We claim that $p \in \omega_n^0(z_1)$. If $\omega(z) = \omega(z_1)$ is not a periodic orbit, then from (2.1) we conclude that $p \neq \omega_n^0(z_1)$. Theorem 1.3 implies that $p \in \omega_n^0(z_1)$. If $\omega(z)$ is a periodic orbit, by supposition, $\omega(z)$ is not semistable, which shows $\omega(z) \neq O(p)$. Therefore, the claim is also true, i.e., $p < \omega_n^0(z_1)$. By the strong monotonicity of T^n , $p \ll \omega_n^0(z_1)$. This proves $p \in \mathbb{P}_0$. The above proof shows that $H \cup \{p\}$ is simply ordered and $H \cup \{p\} - H = \{p\}$, contradicting the maximality of *H*. This proves (i).

(ii) We claim that the point p obtained in (i) is upper stable. In order to prove this claim, let us assume the contrary. Then it follows from Theorem 1.2 that there is a unique *n*-periodic point $q \in K$ with the following property: $p \ll q$, $O(q)$ is asymptotically lower stable, and $T^{mn}x$ $\rightarrow q$ as $m \rightarrow \infty$ for all *x* such that $p \le x \le q$. We shall prove that $q \ll \omega_n^0(z_1)$. Since $p \ll \omega_n^0(z_1)$, we can choose $x \in [[p, q]]$ such that $x \ll \frac{p}{2}$ $\omega_n^0(z_1)$. By strong monotonicity, $T^{mn}x \ll T^{mn}\omega_n^0(z_1) = \omega_n^0(z_1)$ for $m = 1, 2, \dots$. Letting $m \to \infty$, we get that $q \le \omega_n^0(z_1)$. By supposition, $\omega_n^0(z_1)$ $\neq q$. Theorem 1.3 implies that $q < \omega_n^0(z_1)$. Again, using the strong mono*tonicity of* T^n *, we obtain that* $q \ll \omega_n^0(z_1)$ *. This shows* $q \in \mathbb{P}_0$ *. Obviously, H* \cup $\{q\}$ is simply ordered and *H* \cup $\{q\}$ – *H* = $\{q\}$, contradicting the maximality of H . This proves (ii). So far, we have proved that K contains an order-stable *n*-periodic point *p* such that $p \ll \omega_n^0(z_1)$.

Similarly, we set

$$
\mathbb{P}^0 = \{x \in K \cap \mathbb{P}: O(x) \text{ is a upper stable } m\text{-cycle and } x \geq \omega_m^0(z_1)\},
$$

where *m* and z_1 are given in (ii) of Lemma 3.2. It follows from (ii) of Lemma 3.2, $w \in \mathbb{P}^0$. In quite the same manner, we can prove that \mathbb{P}^0 contains an order-stable *m*-periodic point *q* such that $\omega_m^0(z_1) \ll q$. Finally, from

$$
\omega_{mn}^0(z_1) \subset \omega_m^0(z_1) \cap \omega_n^0(z_1),
$$

we conclude that $p \ll \omega_{mn}^0(z_1) \ll q$. Since $z_1 = T^N z$ and N is a multiple of *mn*, $\omega_{mn}^0(z_1) = \omega_{mn}^0(z)$, therefore, $p \ll \omega_{mn}^0(z) \ll q$. The proof of Theorem 1 is complete.

LEMMA 3.3. *Let V be a real Banach space with* $Int V_{+} \neq \emptyset$ and $X \subseteq V$ be *order-open. Suppose* $T: X \rightarrow X$ *is analytic and order-compact. If p is a fixed point of T and DT(p) is strongly positive with* $r(DT(p)) = 1$ *, then there exist a neighborhood* Ω *of p and a simply ordered arc* $C \subset \Omega$ *containing p such*

that either C consists of fixed points of T or p is a unique fixed point of T in Ω *. In the latter case*, *if p is order*-*stable*, *then it is asymptotically order*-*stable*.

Proof. Since T is order-compact, $DT(p)$ is compact. By the Krein–Rutman theorem, $r(DT(p)) = 1$ is a simple eigenvalue of $DT(p)$ to which there exists a positive eigenvector $v \in \text{Int } V_+$.

Let $L \subset V$ be a one-dimensional space spanned by v . By the Hahn-Banach Theorem, *L* has a complementary closed linear subspace $M \subset V$ so that $V = M \oplus L$. Thus, without loss of generality, we may assume that $p = 0$ and

$$
T(x) = (y + f(y, z), Az + g(y, z)), \quad y \in L \text{ and } z \in M,
$$

where *f* and *g* are analytic near 0 with $Df(0) = 0$ and $Dg(0) = 0$. The Krein-Rutman Theorem implies that all eigenvalues of *A* have modulus less than 1. Now we restrict our attention to $U \times W$, where *U* is a neighborhood of the origin in *L* and *W* is a neighborhood of the origin in *M*. Since each eigenvalue of *A* has modulus less than 1, $A - I$ is invertible where *I*: $M \rightarrow \overline{M}$ is the identity operator. It is easy to see that $(A - I)z +$ $g(y, z)$ vanishes at the origin. By the Implicit Function Theorem (see [19, Theorem 15.3]), there is a neighborhood $\Omega = U_1 \times W_1 \subset U \times W$ of $(0, 0)$ and an analytic function $\varphi: U_1 \to W_1$, $\varphi(0) = 0$ such that $(A - I)z +$ $g(y, z) = 0$ for $(y, z) \in \Omega$ if and only if $z = \varphi(y)$. This proves that all fixed points of *T* in Ω lie on the arc *C*: $z = \varphi(y)$ for $y \in U_1$. Let $F(y) = f(y, \varphi(y))$, $y \in U_1$. Then the set of fixed points for *T* contained in Ω is

$$
\{(y, z) : F(y) = 0, z = \varphi(y), y \in U_1\}.
$$

Since *f* and φ are analytic, so is *F*. Thus either

(a) there is an integer $q \geq 2$ and a nonzero constant β such that

$$
F(y) = \beta y^q + O(|y|^{q+1})
$$
 as $|y| \to 0$;

or else

(b) $F(y) \equiv 0$ for $y \in U_1$.

If (a) occurs, then $(0, 0)$ is a unique fixed point in Ω . If (b) occurs, then C is composed of fixed points for *T*.

Since $(A - I)\varphi(y) + g(y, \varphi(y)) \equiv 0$ for $y \in U_1$ and $Dg(0) = 0$, and $A - I$ is invertible, $D\varphi(0) = 0$. This implies that *C* is tangent to v at $p = 0$. Therefore, *C* can be regarded as a simply ordered curve. It is easy to see that in the case (a) , $(0, 0)$ is asymptotically order-stable if and only if *q* is odd and β < 0. Therefore, if $(0, 0)$ is order-stable and isolated, then *q* is odd and β < 0. This shows that $p = (0, 0)$ is asymptotically order-stable.

Proof of Theorem 2. We note that if $T: X \rightarrow X$ is strongly monotone and order-compact then the concepts of stability and order-stability for discrete-time dynamical systems in \overline{X} are equivalent. Therefore, by Theorems 1.1 and 1, and replacing *T* by T^m for some $m > 0$, in order to prove Theorem 2, we only have to prove that every order-stable fixed point in *K* is asymptotically order-stable. By Lemma 3.3, it suffices to show that every order-stable fixed point in *K* is isolated.

Let $p \in K$ be an order-stable fixed point for *T*. Suppose that *r* is the spectral radius of the strongly positive operator $DT(p)$. Then it follows from the stability of *p* that $r \leq 1$. If $r < 1$, then *p* is asymptotically stable, and hence it is isolated. We only have to consider the case $r = 1$. Suppose $p \in K$ is not an isolated order-stable fixed point for *T*. Then, by Lemma 3.3, there exists a neighborhood Ω of p in which the set of all fixed points of *T* is simply ordered arc *C*. Let $D \subset K$ be a simply ordered arc of fixed points of *T* such that $p \in D$, and *D* is maximal with respect to set inclusion; such a *D* exists by Zorn's lemma. By maximality we know that *D* is compact, hence, *D* has a least upper bound $q \in D$. Since the fixed point *q* is not isolated and lower stable, the spectral radius of $DT(q)$ is 1. Applying Lemma 3.3, we conclude that the simply ordered arc *D* of fixed points can be property extended, in contradiction to its maximality. This proves Theorem 2.

Proof of Theorem 3. Suppose *T* is monotone and has a globally asymptotically order-stable fixed point, then it is obvious that (a) and (b) hold.

We shall prove the converse (the "if" half of Theorem 3). Fix any $x \in X$, by (a), $\omega(x) \subset X$ is compact. By assumption, $\omega(x)$ has both a greatest lower bound *p* and a least upper bound *q*. Therefore, $p \le \omega(x) \le q$. By the total invariance of $\omega(x)$ and the monotonicity of *T*, $Tp \leq \omega(x) \leq Tq$. It follows from the definitions of *p* and *q* that $Tp \leq p$ and $Tq \geq q$. Applying Lemma 3.1 in [3, p. 145], we know that $\omega(p)$ is a singleton, and so is $\omega(q)$. Since $T^n p \leq p$ for $n = 1, 2, \ldots, \omega(p) \leq p$. Similarly, $q \leq \omega(q)$. So far we have proved that $\omega(p)$ and $\omega(q)$ are fixed points and $\omega(p) \leq p$ $\leq \omega(x) \leq q \leq \omega(q)$. By (b), $\omega(p) = \omega(q) = r$, the unique fixed point of *T*, and $\omega(x) = r$, that is, *T* has the unique fixed point *r* such that $T^n x \to r$, as $n \to \infty$ for any $x \in X$. Since X is strongly ordered, (SO1) tells us that there exist $x, y \in X$ with $x \le r \le y$. $\omega(x) = \omega(y) = r$ implies that *r* is asymptotically order-stable, hence it is globally asymptotically orderstable.

Finally, we shall present two examples to show applications of our results.

EXAMPLE 1. Consider the system of ordinary differential equations

$$
\dot{x} = f(t, x), \qquad x \in X, \tag{3.5}
$$

where $X = \mathbb{R}^n$ or \mathbb{R}^n_+ and $f: \mathbb{R} \times X \to \mathbb{R}^n$ is analytic and 2π -periodic in *t*. If (1.1) is cooperative in x , $Df(t, x)$ has all off-diagonal terms nonnegative for each (t, x) . Assume that $Df(t, x)$ is irreducible for every $(t, x) \in \mathbb{R} \times X$. It is know that the Poincaré map $T(x) = \phi(2\pi, x)$, i.e., the period map of this equation, has strongly positive derivatives and is analytic in *X*. Suppose that the system (3.5) is dissipative, i.e., there is a compact set $K \subset X$ such that all solutions of (3.5) will eventually enter the compact set *K*. Then from Theorems 1 and 2 we can conclude that either every solution of (3.5) is asymptotic to a semistable $2m\pi$ -periodic solution or (3.5) has at least two asymptotically stable subharmonic solutions. This result can be applied to the single loop positive feedback system in \mathbb{R}^n_+ (see [7])

$$
\frac{dx_1}{dt} = f(t, x_n) - \alpha_1(t) x_1
$$
\n
$$
\frac{dx_i}{dt} = x_{i-1} - \alpha_i(t) x_1; \qquad i = 2, 3, ..., n,
$$
\n(3.6)

where we assume that $\alpha_i(t)$ and $f(t, x_n)$ are analytic and 2π -periodic in $t \in \mathbb{R}$ and that

$$
f(t, u) \le au + b, \qquad a, b > 0
$$

$$
\alpha_i(t) \ge \alpha_i > 0, \qquad 1 \le i \le n
$$

$$
a < \prod_{i=1}^n \alpha_i.
$$

If $f(0,0) > 0$ and $(\partial f/\partial u)(t, u) > 0$ for all $u \ge 0$, $t \in \mathbb{R}$, then (3.6) is cooperative and irreducible. Therefore, it follows from [7] that there exists a closed order interval $[x_0, y_0]$ such that all solutions of (3.6) will eventually enter it. Thus, either every solution of (3.6) is asymptotic to a semistable subharmonic solution or (3.6) has at least two asymptotically stable subharmonic solutions.

EXAMPLE 2. Consider a time-periodic reaction diffusion equation

$$
u_{t} = \Delta u + f(t, x, u), \quad \text{on } \Omega \times (0, \infty)
$$

\n
$$
\frac{\partial u}{\partial n}\Big|_{\partial \Omega} = 0 \quad \text{on } \partial \Omega \times (0, \infty)
$$

\n
$$
u(x, 0) = u_{0}(x) \quad \text{on } \overline{\Omega}, \tag{3.7}
$$

where $\Omega \subset \mathbb{R}^n$ is a smooth compact *n*-dimensional submanifold with interior Ω and boundary $\partial \Omega$, $f(t, x, u)$: $\mathbb{R} \times \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is analytic func-

tion 2π -periodic in *t*, and $\partial/\partial n$ is the Neumann boundary operator in the outward normal direction. This equation is well posed on the space $X = C(\overline{\Omega})$ (see [20]), that is, for every $u_0 \in C(\overline{\Omega})$, (3.7) has a unique solution defined by $\phi_t(u_0)x = u(x, t)$. The period map $T(u_0) = \phi_{2\pi}(u_0)$ is analytic and compact. The space *X* with the pointwise ordering is a strongly ordered Banach space and the Parabolic Strong Maximum Principle implies that the derivative $DT(u_0)$ is a strongly positive operator for every $u_0 \in X$. If there exist constants $c_1, c_2 > c_1$ such that

$$
f(t, x, c_1) > 0 > f(t, x, c_2)
$$

for all $t \in \mathbb{R}$ and $x \in \overline{\Omega}$, then it can be shown that the order interval $[c_1, c_2]$ is positively invariant under the flow that (3.7) induces (see [21]). Let $K = \overline{T[c_1, c_2]}$. Then $K \subset [c_1, c_2]$ is compact. So *K* is an attractor. By Theorems 1 and 2, we obtain that either every orbit for *T* starting from $[c_1, c_2]$ converges to a semistable cycle or *K* contains at least two asymptotically stable cycles. Equivalently, either every solution $\phi_t(u_0)$ of (3.7) for $u_0 \in [c_1, c_2]$ is asymptotic to a semistable subharmonic solution or $[c_1, c_2]$ contains at least two asymptotically stable subharmonic solutions.

ACKNOWLEDGMENT

The authors are indebted to a referee whose suggestions led to an improvement in our results and shortened the proofs.

REFERENCES

- 1. M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, *J*. *Reine Angew. Math.* **383** (1988), 1-53.
- 2. M. W. Hirsch, The dynamical systems approach to differential equations, *Bull*. *Amer*. *Math. Soc.* **11** (1984), 1-64.
- 3. M. W. Hirsch, Attractors for discrete-time monotone dynamical systems in strongly ordered spaces, *in* ''Geometry and Topology,'' Lecture Notes in Math., Vol. 1167, Springer-Verlag, Berlin/Heidelberg/New York.
- 4. M. W. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in 3-dimensional systems, *J. Differential Equations* 80 (1989), 94-106.
- 5. H. L. Smith and H. R. Thieme, Quasiconvergence and stability for strongly order preserving semiflows, *SIAM J. Math. Anal.* **21** (1990), 673-692.
- 6. H. L. Smith and H. R. Thieme, Convergence for strongly order-preserving semiflows, *SIAM J. Math. Anal.* **22** (1991), 1081-1101.
- 7. H. L. Smith, Cooperative systems of differential equations with concave nonlinearities, *J*. *Nonlinear Anal.* **10** (1986), 1036-1052.
- 8. P. Takáč, Linearly stable subharmonic orbits in strongly monotone time-periodic dynamical systems, Proc. Amer. Math. Soc. 115 (1992), 691-698.
- 9. P. Takáč, Domains of attraction of generic ω -limit sets for strongly monotone discretetime semigroups, *J. Reine Angew. Math.* **423** (1992), 101-173.
- 10. P. Takáč, A construction of stable subharmonic orbits in monotone time-periodic dynamical systems, *Monatsh. Math.* **115** (1993), 215-244.
- 11. P. Takáč, Asymptotic behavior of strongly monotone time-periodic dynamical processes with symmetry, *J. Differential Equations* 100 (1992), 355-378.
- 12. E. N. Dancer and P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, *J. Reine Angew. Math.* **419** (1991), 125-139.
- 13. E. N. Dancer and P. Hess, Stable subharmonic solutions in periodic reaction diffusion equations, *J. Differential Equations* **108** (1994), 190-200.
- 14. P. Poláčik and I. Tereščák, Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems, *Arch*. *Rational Mech*. *Anal*. **116** (1991), 339-360.
- 15. P. Poláčik and I. Tereščák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, preprint.
- 16. J. F. Jiang, Attractors in strongly monotone flows, *J. Math. Anal. Appl.* **162** (1991), $210 - 222$.
- 17. J. F. Jiang, A note on a global stability theorem of M. W. Hirsch, *Proc*. *Amer*. *Math*. *Soc*. **112** (1991), 803-806.
- 18. J. F. Jiang, On the global stability of cooperative systems, *Bull*. *London Math*. *Soc*. **26** (1994) , $455-458$.
- 19. K. Deimling, "Nonlinear functional Analysis," Springer-Verlag, New York/Berlin, 1985.
- 20. X. Mora, Semilinear problems define semiflows on *C^k* spaces, *Trans*. *Amer*. *Math*. *Soc*. **278**, (1983), 1-55.
- 21. N. D. Alikakos, P. Hess, and H. Matano, Discrete order preserving semigroups and stability for periodic parabolic differential equations, *J. Differential Equations* 82 (1989), $322 - 341.$