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1. IXTRODUCTION 

During the past decade a considerable number of systems of ordinary auto- 
nomous differential equations have been investigated which exhibit the pheno- 
menon of Hopf bifurcation, i.e. the appearance of periodic solutions (limit 
cycles) branching off from a stationary state of the system when certain changes 
of the parameters occur. Most of the examples known to us are models of 
chemical and biological systems. In spite of the fact that Hopf’s original work 
on this subject appeared in 1942 [I], investigators had to rely on numerical 
methods until recently. Through the work of Andronov et al. [2], Cohen and 
Keener [3], Poorc [4], Marsden and McCracken [5], Hsii and Kazarinoff [6], 
Llru~linskaya [7], and Hassard and Wan [8], alternative formulations of the 
theory have been established which facilitate its application. 

Since the work of Andronov and his cn-workers [2] it is known that the 
bifurcation of several limit cycles fro111 a focus is directly related with the 
stability of the focus. They assign to a focus a set of numbers (01~ , CY:~ , LYE ,.,.) 
which they call focal values. ar is simply related to the real part of the eigcn- 
values of the Jacobian of the system, 01:~ corresponds to pa commonly used in 
bifurcation theory. The sign of the first nonvanishing focal value determines 
the stability of the focus. Furthermore, the number of the leading oli’s 
(; : 1, 3, 5,...) which vanish simultaneously is the number of limit cycles 
which may bifurcate from a focus. This is the reason why the investigation of 
the bifurcation of limit cycles deals with the computations of focal values. 

As far as we know, an explicit expression for the second focal value C+ was 
given for the first time by Andronov et al. [2]. They restricted themselves to 
systems with two variables. Equivalent expressions for systems with three 
variables were derived in [3] and for systems of higher dimension in [4, 5, 61, 
and under special assumptions in [7]. Hassard and Wan [8] gave an expression 
for the third focal value without noting the rrlation to the bifurcation of several 
limit cycles. This problem was recently investigated by Chafce [9] for systems of 
higher dimension. 
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In this paper we apply Ljapunov’s direct method to the bifurcation problem. 
Ljapunov was the first who did this (cited by Malkin [I 11). His approach is 
somewhat more appealing than ours, but his result, a general expression for all 
focal values, is not readily applicable. We restrict ourselves to systems with 
two variables. The construction of an appropriate Ljapunov function reduces the 
stability pro&m of a focus to the solution of a sequence of systems of linear 
equations. The derivatives which arc necessary in other approaches (see [5, 
p. 1251) are very complicated because of the use of complex numbers and/or 
of powers of trigonometric functions. Roth do not occur in our approach. 

We derive explicit expressions for focal values of two-dimensional systems up 
to the fourth, which is a new result of this paper. Our second and third focal 
\-alues agree with those given by Hassard and \Van [8]. 

In the following section WC discuss a two-dimensional system of differential 
equations which was recently investigated by Troy- [IO], Hsii and Kazarinoff [6], 
and Hadeler et al. [12]. This system exhibits the bifurcation of two limit cycles. 
In Section 3 we sketch how Ljapunor’s direct method is applied and how the 
focal values can be derived. In Section 4 we consider the behat-ior of a system 
close to bifurcation and show where limit cycles may appear, where a pair of 
limit cycles may co-exist, and where limit cycles disappear by coalescence. In 
Section 5 we establish the relation of our results to those of Andronov et al. 
In the Appendix we describe our calculations in greater detail and list our 
results. 

The system of two equations 

i =: .x + 4’ +- s - xy3 

j = p(a - x - by) 
V-1) 

has been proposed by Fitzhugh as a rather simplified model of the nerve impulse. 
It was recently investigated by Troy [lo], Hadeler et al. [12], and Hsii and 
Kazarinoff [6]. We adopt essentially the representation of Hsti and Kazarinoff. 
Two of the parameters b and p are restricted to the interval (0, 1). By introducing 
x,, as the x-value of the unique stationary state of the system, the stability of the 
stationary state and that of possible limit cycles may be stated as follows: 

1. The stationary state (x,, , ~~‘0) is stable (unstable) if the quatity 01~ is 
negative (positive) with 

g = 1 - X0” - bp. (2.2) 

2. A bifurcating limit cycle is stable (unstable) for negative (positive) CQ 

05 = 2b - 1 - pb2. (2.3) 



MULTIPLE HOPF BIFURCATION 335 

The bifurcation takes place at a point (X ,, , b, p)O in the parameter space with 
~1~ = 0 on that side where CY~ assumes the sign different from that of 05 (stable 
focus with unstable limit cycle or unstable focus with stable limit cycle). 

Inspection of Equations (2.2) and (2.3) h s ows that for a fixed value of x0 with 
xt.uz < 1 the conditions 01~ = 0 and oia = 0 can be fulfilled inside the square 
b, p t‘ (0, I). 

For 
b, :- - 1 !( 1 + $2) 
p. -= I - X”” 

both 01~ and LYE vanish simultaneously. 
According to a theorem of Andronov et al. [2, p. 254, Theorem 401, any 

neighborhood of (b, , po) should contain points (b, p) giving rise to a pair of 
limit cycles as solutions to system (2.1). These were found by Hadeler et al. [12] 
by numerical methods. Our own numerical results are shown in Figs. 1 and 2. 
The subject of this paper is the prediction of this kind of behavior by analytical 
methods. 

D’ 

1~10. 1. Section of the parameter space of system (2.1) with x,, 7 0.8 and p E (0.36, 
0.72) and h E (0.5, I .O). The two solid curves show where ~r and a, , respectively, vanish. 
These curves separate four regions of different sign patterns of cxr and =a , given in brackets. 
A limit cycle bifurcates at the curve z1 = 0 on that side of the curve where the signs 

become different. The stability of the limit cycle is determined by the sign of ova (aa < 0 
means a stable limit cycle). The stable limit cycle (SLC) bifurcates between A and the 
intersection point I. The SLC persists in the (+ +)-region and between C and I an 

unstable limit cycle bifurcates inside of the stable one (2LC). The two coalesce and 
disappear at the dashed curve between E and 1. This kind of behavior can be predicted 
qualitatively if it is known that the quantity Pa derived in this paper is negative at I. 
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d 

I 

A B C E. 

FIG. 2. Diameters d of the limit cycles of system (2.1) m arbitrary units. ‘I’hc param- 

eters are varied along the margin of the rectangle of Fig. 1 starting at point A. l’he stable 
limit cycle is represented b>- the solid curve, the unstable one by the dashed curve. 

3. THE STABILITY 0~ A Focr:s 

From the work of Hopf and of Andronov et aE. it is known that bifurcation 
of limit cycles may occur if a focus changes stability. Here we shall show how 
the stability of a focus may be determined in the marginal case where the 
Jacobian of a system has purely imaginary eigenvalues and therefore the stability 
cannot be deduced by linear stability analysis. R’c assume that the system under 
investigation has been transformed into a convcnicnt form which is called the 
canonical form by Andronov et al.: 

* rx. q.qjq :. -014’ 4. ; $ I;,~~,,,.y”’ ‘J’, 

7: 2 1 4 

(3.1) 

This canonical form looks rather special, but it can be derived from a given 
system under fairly general conditions. Consider a system of differential equa- 
tions with two variables u and z‘: 

ti = U(u, CL’; a), 

d r= V(u, 21; a). 
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The vector a denotes the parameters of the system. The functions U and V are 
assumed to be P-functions of u and ZI and Cl-functions of the parameters. 
Suppose that a, is a bifurcation point of the system, i.e. one of the critical points 

(%I 9 E,,) of the system is a focus and the Jacobian of the system at this point 
has purely imaginary eigenvalues &AJ (we assume w + 0 throughout) at this 
critical point. 

Then one has to shift the origin into the point (u,, , v,,) and to apply a non- 
singular linear transformation (see [2], p. 253) which yields an antisymmetric 
Jacobian of the transformed system. The original system is expressed in the new 
coordinates and the right hand sides are expanded into Taylor series about the 
origin with terms up to the order K, which results in a system of the canonical 
form (3.1). Terms of order higher than K are neglected. 

For an investigation of the system for points close to a,, it sufhces to consider 
deviations from a,, of the form a = a, + l b. b is an arbitrary but fixed vector in 
parameter space and E is a sufIiciently small factor. In this case the critical 
point is a function of E, say (t(e), T(E)) with ((0) = uU and -/l(O) == u,, , which is 
unique for small values of E because we assume a non-singular Jacobian of the 
original system at (uO, Q). By shifting the origin into (f(e), T(E)) and applying 
the same linear transformation as mentioned above, one obtains a system of the 
form (4.1) by a Taylor expansion of the right hand sides including first order 
terms in E. 

We try to find a function V(X, y) with 

(i) l-(0,0) = 0, 

(ii) 1 *(x, y) > 0, 

(iii) P-(X, y) == FV, + GV, definite 

for some sufficiently small neighborhood of the origin. Then 1,’ is a Ljapunov 
function and the sign of P determines whether or not the origin is a stable 
focus of system (3.1). 

The first two conditions are satisfied by the function 

(3.2) 

with V,, : = I,;,,, -. 2 and V,, == 0. In this case the second order terms of V are 
(x? -k 3*)/2 -: r*/2 and r is approximately equal to r”/2 for small values of T. 

The function r is the directional derivative of r on the vectors ($9)‘. By 
the form of V and that of F and G, it is easily seen that P also starts with second 
order terms, but these are zero. We assume that P has been arranged by powers 
of x and y, and by renaming the coefficients we obtain: 



In the Appendix we shall describe the calculations in detail; therefore, we give 
here only the results and sketch how they are obtained. The I’, ,;,l, are linear 
functions of the I,*,, .,.1 with iz 7 /I. ‘V’s with lz :,. ~1 do not occur. ‘rhis is the 

reason why the P’s and then the T’S can be determined step by step starting 
with /L :.= 3. The P’s are determined by the following rules: 

(a) I’;, ,,,~ =z 0 if ,L or c’ or both arc odd numbers, 

(1~) I’,-,,,, : ((p/2, v/2) I’,, if both p and v  arc even numbers. 

By c(p/2, v!2) we mean the v,‘2th coefficient of the binomial formula with 
the power p/2. P, is a new quantity which is uniquely determined by these 

equations. After this w-e arrive at 

(3.4) 

The expressions P4 , N-hich \vas first published by Andronov et al., I’, and l’s arc 
given in the Appendix. After these coefficients are known, the stability of the 
origin is easily determined by Ljapunov’s stability theory: in some neighborhood 
of the origin, with the exception of the origin itself, 17 is a definite function with 
the sign of the first non-vanishing coefficient P4, P, ,.... Thus, the focus is 

asymptotically stable if the first non-vanishing coefficient is negative and 
unstable in the opposite case. 

4. BIFI~Rc.~~Ios oh- LliWT CYCLES FROM A Focus 

From the result of the preceding section we are able to decide whether or not a 

focus of a system in the form of (3.1) is stable. Here we shall investigate how 

small perturbations of such a system may give rise to the creation of limit cycles. 
The perturbed system may be written in the form 

2 -:= F(r, y) 1 Ef(X, 3’), 

j := G(.r, y) + q(x, y), (4. ’ 1 
(j-(0,0) -= g(0, 0) = 0). 

The functions f  and g are assumed to he given as polynomials in s and y  like 
the functions F and G of Eq. (3.1). But their linear terms are completely deter- 
mined by the process described below Eq. (3.1). Therefore, no special assump- 
tion on these terms can be made. As becomes apparent below, it is just the 
fact that the Jacobian of system (4.1) may have eigenvalues apart from the 
imaginary axis which gives rise to the bifurcation of limit cycles. 
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As a 1,japunov function we try some function IV, which deviates by a small 

amount from the Ljapunov function V of system (3.1): 

W(x, y; c) --- qx, y) + E7/(.IC, y). (4.2) 

Then the directional derivative I& of IV on vectors (n,?)’ is 

The partial derivatives v, and c, are multiplied in the same way withF and G as 

I,7Z and I;, in the previous section. The new terms fV, and gVV consist of 
quantities which have been determined before or are given by (4.1). Thus, if 
Z(X, y) is written in the form of (3.2), then the coefficients ~‘~-r,r are determined 

by the same systems of linear equations as the lg -r,r but with different right 
hand sides, which contain the new terms. It is therefore possible to arrive at 

li. == +y -! (p4 + cp,) y4 + (P6 + cp,) y6 -I- ... !- $(...)* (4.4) 

Apart from the terms with cp, which we neglect because we are only interested 

in small vahies of E, li; is a polynomial in the cariablc Ye. A positive zero of this 
polynomial means that for a circle with the corresponding Y, l$ changes its sign. 
If  some curve can be found, which is defined by IV(x, y; C) --_ ISi and lies 
entirely in a region of one sign (say negative) of I@, all vectors (~$9)’ point 

inwards on this curve. If  this curve encloses a circle with li’ .: 0, another curve 
with W(.X, J: l ) == IV1 may be found inside of this circle with l%’ > 0. Then, 
according to the Poincare--Rendixson theorem, hetwecn the two curves with 
constant W’ --= II/:, and IV :: IV1 lies a limit cycle or a critical point of system 
(4. I). IIere we only consider zeroes of C,i; which are continuations of the multiple 

root r2 :---: 0 of v  and therefore thev are arbitrarily small if small values of E are 
considered. I;or small values of Y  and E the curves of constant IV are close to 
circles and a second critical point of system (4.1) is excluded because the origin 
is an isolated critical point of this system if u # 0. Under these assumptions, a 
zero of TV is associated with a limit cycle nearby, which is stable if l$‘changes 
from positive to negative values with increasing r. 

Case I. P., ,I!- 0. The smallest root of @apart from the trivial one (r2 : 0) 
is near to 

1.1’) == -(cpp)lP4. (4.5) 

It is positive for different signs of (+J and P4 . As shown in the appendix, cp2 
is the real part of the eigenvalues associated with the origin of system (4.1). Thus, 
we have the result: 

I f  the focus of system (3.1) is stable because of negative P4 , a stable limit 
cycle bifurcates for that sign of l where the origin of system (4.1) becomes an 
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unstable focus because of the linear terms. For positive P4 an unstable limit 
cycle bifurcates. 

Wc do not investigate the case p, --= 0. The radius of the limit cycle increases 
proportionally to ! E jr !5, which has an infinite derivative at t 0. 

Case 2. Pd = 0, P, # 0. Suppose we have found a point a” in the para- 
meter space of system (4.1) which gives rise to purely imaginary eigcnvalues of 

the system and to P4 =: 0. In order to see what happens for points a close to an, 
we have to consider a two parameter bifurcation. The first parameter S measures 
deviations from a0 along a direction where the eigenvalues remain imaginary. 
For a point with fixed S the deviation along a different direction measured by E 

is considered with sufficiently small E. Then the essential terms of II’ with 
respect to the small roots are: 

The first nontrivial roots of ware approximately 

2 
Yl .s - --(6p,i2P,) 5: [(Sp,,2P,)” - (Ep,,.P,)]l,“. (4.7) 

It is easily seen that a sufficient condition for one positive solution of (4.7) is 
that (ups) and P, have opposite signs. The stability of the corresponding limit 
cycle is determined by the sign of P, . It is stable for negative E’, . ‘I’his result is 

essentially the same as in Case 1 if P, is replaced by P, . 
For E := 0, (4.7) has a positive root for different signs of (Sp,) and P,; . In this 

case a second positive root appears according to Case 1 if small values are chosen 

which yield a sign of (EP~) different from that of (Sp,). The two positive roots 
coincide for 

(Sp,)’ - 4(c,p,) P, : 0 (4.8) 

and disappear as complex roots if E esceeds this bound (C may be negative). ‘The 
interval (0, Q), where E,, is only an approximation of the true value, is the interval 

of coexistence of two limit cycles for some given 6. Because E,, is proportional 
to S2 , the region of coexistence of two limit cycles becomes an arbitrarily small 
fraction of a neighbourhood of the point a0 in parameter space if the neighbour- 
hood chosen is small enough. WC state our results for negative Pti by the pattern 
of signs of (ep, , Sp, , P,) which designate different regions of a neighbourhood 
of aa: 

(- - -) no limit cycle, 

(+ - -) a stable limit cycle bifurcates at l -= 0, 

(+ -)- -) a stable limit cycle persists. Its amplitude depends mainly on 6, 

(-- -I-- -) an unstable limit cycle inside of the stable one bifurcates at 
E := 0. The two coalesce and disappear if E exceeds a bound near to l ,, of (4.8). 
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For positive values of P, the plus and minus signs and the words “stable” 
and “unstable” have to be exchanged. The results given here are in good 
agreement with the results from numerical investigations, which are depicted 
in the Figures 1 and 2. For that example P, is negative. 

5. KELATION OF OUR RESLYLTS To THOSE OF ANDRONOV 

In their investigation of the stability of foci of systems of the form (3-l), 
Andronov et al. [2] gave an expression which determines the stability of a focus 
if the associated eigenvalues are purely imaginary. This expression is identical 
with our P4 of Section 3, apart from a positive factor. In this section we shall 
summarize their results and establish a relation between their focal values and 
our coefficients P, of the time-derivative of the Ljapunov function. 

For this discussion we transform system (3.1) into polar coordinates 
(‘2. == Y cos 0, ~7 = r sin 19): 

/,‘=2 Z---O 
(5.1) 

d, = w $ f r7(-l i [Gk.. 7,z cos 0 - Fk-7,z sin 01 COS(~-~) f3 sin 8. 
7;.-2 z=o 

liar sufficiently small values of r, a succession function d,(r) is-defined as follows: 
Consider a solution of (5.1) starting on some ray with some fixed value of 0 = 0, . 
We assume w > 0 and therefore 0 is a strictly increasing function of time as long 
as r is small enough. Thus, a solution starting at (r,, , 0,) will intersect the ray at 
(rr , 0,) (r, , e,,) ,.... Then 

4&o) = Tl - ro (5.2) 

is called the succession function of system (5.1) on the ray 0 = 0, . Zeroes of J,, 
occur if (Y,, , 0,) lies on a periodic solution or if Y,, 2-z 0. 

The mth derivative of do, with respect to Y at Y = 0 is called the nzth focal value 
of the focus (the origin). Andronov et a2. show that the focal values of even order 
m all vanish. The stability of the focus is determined by the first non-vanishing 
focal value (called the Ljapunov value of the focus); a negative Ljapunov value 
means that de, is a decreasing function of r for small values of r and that the 
focus is stable. If the inspection of the focal values of a focus yields: 

d’(0) -- d”‘(0) = . . . - #*“-l’(O) = 0, 

d’“s+l’(()) .+ 0, 71 = 1, 2,..., (5.3) 
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the focus is said to be of multiplicity n. Because d’(0) == 0 for a focus with 
purely imaginary eigenvalues, we arc concerned here with foci of multiplicity 
n> 1. 

In the framework of this paper the succession function is more conveniently 
defined in terms of 

p = (2b’)‘:‘L (5.4) 

with r expressed in polar coordinates: 

I/7 -Z 9,/z + y3( If30 cos3 (j + *. . -i- ]/-,,, sin3 0) -./- +(. .) ..:- . . . . w 

Thus, for small values of r the difference between r and p is of second and higher 
order in r. If distances from the origin are measured by p instead of Y, the results 
are identical if the limit Y -+ 0 is considered as we do here. 

The new succession function in terms of p is given by 

(5.7) 

1’ is the time elapsing between the start of a solution of system (5.1) at (ra , 0,) 
until the first intersection with the ray 8 .== 0” at (rt , 0,). The interval of time 
[0, T] is equivalent to an interval of length 277 of the angular coordinate 0. 
For small values of Y and positive w the function e(t) monotonously increases 
with t and in this case the succession function may be expressed by an integral 
over 8: 

(5.8) 

Inserting v from Eq. (3.4) and expanding the functions in the denominator into 
powers of r yields 

,eo+e 

-.I 
[P,r4 -r P,r" -i 

*o 
. ..I $ [I - r(...) .i- . ..I ; [I - ())T('..) .I- . ..I (te. 

(5.9) 

The lowest non-vanishing derivative of the succession function with respect to T 
does not depend on 0, at r :: 0 and it is given by 

,p-;"(o) :- 2T(2?l j- I)! Pp,a'2'"L (5. IO) 
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P ‘a+2 is the first non-vanishing coefficient of Y from Eq. (3.4). Andronov et al. 
define their focal values by 

cQn+l = d(z”+1’(0)/(2n + l)! (5.11) 

Thus, the first non-vanishing P and the first non-vanishing focal value (the 
Ljapunov value) of a focus are related by 

a2n+1 = 277P2n,2/~. (5.12) 

Because the stability of a focus depends on the sign of the first non-vanishing 
01 or P respectively, this relation seems to give contradictory results for negative 
values of W. But Andronov et al. restrict themselves to the case of positive w and 
their expression for C+ is not correct for negative values of w. 

As mentioned above, the multiplicity of a focus is equal to n if ti2n+l (or 
P 2n+2 in our notation) is the first non-vanishing focal value of the focus. The 
reason why the number ti is called multiplicity becomes apparent by a theorem of 
Andronov et al. [2, p. 254, Theorem 401. This theorem has the consequence that 
if a system as given by Eq. (4.1) h as f  or E = 0 a focus of multiplicity n, then there 
exist at most n limit cycles close to the focus for small values of E. All of these n 
limit cycles exist if the functions f and g in (4.1) are chosen in an appropriate 
manner. 

APPENDIX 

We have left the derivations of the results cited in Section 3 to this Appendix 
because of their considerable length. We rewrite Eq. (3.1) and (3.2) in a some- 
what different but equivalent form, which allows an easier manipulation of the 
subscripts: 

.e = ---WY + c c Fklxkyl, 
k=O Z-O 

9 = wx + 2 c Gkpky’, 
X=0,=0 

(A.11 

642) 

In the sequel we shall use the term “order” for the sum of subscripts belonging 
to a coefficient. The upper limits of the sums are specified below. Coefficients of 
order lower than two are set equal to zero because they do not occur in the 
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corresponding formulae in Section 3. The same applies to negative subscripts 
which occur in some formulae below. The partial derivatives of I’ are 

where i has been replaced by i -t 1 in VZ and j by j + 1 in .VU , respectively. 
The derivative of V with respect to time along a solution of (A.l) is given by: 

We wish to know if (A.4) may be transformed into Eq. (3.3) and then into 
(3.4): 

(*U-3.3) 

v = c P,(,’ + yy. (,1.6-3.4) 
,,=4,0.... 

The first step is achieved with 

pu-Y.” := 4-b - v + 1) ~u-“+l.“--l+ (v + 1) ~w”--l.“+ll 
(A.7) 

-t- 1 1 [Fu--y--i,y--j(i + 1) Vi+l,j -t G,.+i.,-j( j 4-e 1) l/,,j+l]* 
i.;o j=o 

The requirement that the order of any coefficient must be greater than one 
leads to the following inequalities: 

p 22, 1 .<i+j<p-2. 

For the twofold sums of (A.7) these inequalities have the consequence that they 
contain only V’s of order lower than p and that they al-e zero for IJ- <;2. This is 
the reason why the V’s can be determined for any order p if the V’s of lower 
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order are known. Eq. (A.7) relates the V’s of the order p with the same 
number of unknowns P by a square matrix of dimension p + 1, which is 

0 1 0 00. . 0 
-!" 0 2 00. . 0 

0(1--p) 0 30 . . 0 

(2 -CL) . . 
. . . 

(P 0. . . 0 -1 -; 1) cL 

0. . -00-10. 

(A4 

By operations which do not change the determinant of this matrix with the rows 
with odd numbers starting with the first row, it is easy to see that this matrix is 
singular if p is an even number and nonsingular for odd p. Thus, the set of 
equations given by (A.7) can be solved in a simple manner only if p is odd. 
Because li as expressed by (A.6) does not contain odd exponents of x or y, the 
first rule in determining the P’s is: 

P LL-“.” T 0 if p or v or both are odd numbers. 

With this rule, the V’s of odd order can be computed from (A.7). For even 
numbers p the system of equations (A.7) has to be decomposed into two parts. 
Since (A.7) related the P’s with even v with V’s with odd v and vice versa, the 
numbers of unknowns in both parts are different. Those Pupy,, with odd v are 
zero and the V’s related with them must be restricted by an arbitrary equation 
(for example, I:,-,,, = 0 for one V) in order to obtain a unique solution. 

If both subscripts p and v are even, the identity of the right hand sides of 
(A.5) and (A.6) yields 

P,‘-“.” = 442, v/2) P,L , 

where c(i,j) is thejth binomial coefficient of order i. Because there are ~9 + 1 
coefficients P,,-,,, with TV and Y even, which are related by (A.7) with the ~112 
coefficients V of order p with odd subscripts, the above relations complete the 
system of equations (A.7) to the necessary number of equations by introducing 
the one new unknown P, . Because WC are looking essentially for the quantities 
p4 9 p, ,..’ it is important to note that any P,, can be computed before the V’s 
of the same order are known. 

The case p == 2 has to be considered separately. From Eq. (A.7) follows 
Pz,o = -Po,z and V,,, L= V,,, . Therefore, a definite r can only be obtained 
with Pz,” = P,,,z r-.: Vii L= 0. By the choice V2a :.-- V0a L-.: .i, we obtain a 
Ljapunov function V, which is positive definite in a neighbourhood of the 
origin and one factor in the partial derivatives of V becomes unity. 
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In Section 4 we investigated how the system (3. I) is affected by small changes 
of the parameters which are expressed by small values of E in Eq. (4.1). If the 
time derivative li/ of the Ljapunov function W, associated with the perturbed 
system, shows a qualitative behavior which is different from the behavior of P’ 
in a neighbourhood of the origin, this is due to the second order term of I# 
with the coefficient +Q (see Eq. (4.4)). This quantity can be computed from 
Eq. (4.3). Using the same notation as before with small letters, the second order 
terms of the first bracket of (4.3) are: 

The right hand sides of (4.3) and (4.4) become identical with respect to the 
terms of second order in x and y and of first order in E if pa,, =-: p,, := p, and 
p,, = 0. For a unique solution of these equations we need an additional equation 
(for example, neo = 0). The first two equations yield 

Pz == Ko + RoJ2. (A.lO) 

It is easily seen that +a is just one half of the trace of the Jacobian of system 
(4.1) at the origin and therefore it is identical with the real part of the eigenvalues 
of this matrix. 

Below we give the results of our computation up to P,: 

pci - .= h ((29-m -i 5F,,) j/‘50 L (25G,,, $- 5G,,) V,, + (5G,, -1.. G,B2 ?- 4FH) v4, 

-I- (5F0, --t Fx, -!- 4G,,) VI4 $ (3F,, -t 3F,, + 2G,,) I’,, 

t (3Gw -!- 3Gm +- ZF,,) Vm -I- (2OF,, + 4F,,) V,, + (2OG,,, -t- 4G,,) v,, 

+ (5G,, t 3F0, i- 3F21 -t G,,) V,, + (5Fu3 -I- 3G,, -t- 3G,, -I- F,,) v,, 

-i (15F40 -.; 3F22 i- 3F,,) V,,, + (15G,, + 3G,, 7. 3G4,,) v,,s 

L (5G,, t G,, L Go, t 2Fx $- 2FlJ V,, 

+ (5F,, 4 F2z L- Fu, -t 2G,, $ 2Gs1) V,, 

+ 5(F,, -I-- GoA -i Fa $- Gm + F14 + G4A 

P# = & {35(C, i C,) -;- 5(C3 ‘+ C,) + 3c,j 
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with 
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vzl -7 .-- I fi;,, ) 
0, 

t,;, = -!- G,,, , 
w 
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