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An upper bound for the mean value of a non-negative submultiplicative 
function by R. R. Hall [3] is sharpened and generalised. Hall’s inequality implies 
a certain rather accurate upper sieve estimate, and this aspect of Hall’s result 
is exploited in deriving good lower bounds for m(x) via the sieve. 

1. INTRODUCTION 

Throughout this note let h denote a non-negative arithmetic function that 
is sub-multiplicative in the sense that 

h(mn) < h(m) h(n) if (m, 4 = 1. (1.0 

In [3], R.R. Hall proved the following elegant result: 

If h is sub-multiplicative and satis3es also 

h(l) = 1, 0 < h(n) < I for all n, 

then 

C h(n) 4 eYx (1 + 0 ( ‘ok:; ” )) 
“-3 

n (1 - $(l + Lp + y + . ..). (1.2) 
p<* 

* In memory of P. TurCtn. 
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As Hall pointed out, special interest attaches to the following case: let K 
be a positive integer none of whose prime factors exceeds X, and take 

hx(n) := 1, (n, a = 1, 
.- .- 0, (n, K) > I. 

Hall’s result evidently applies to h, and one derives easily from (1.2) that 

c 1 < ey q X (1 + 0 ( lo;o;tX)\. (1.3) 
-3 / 

(n.K)=l 

Now (1.3) is an upper sieve estimate, admittedly of a special kind, which 
has the remarkable feature of being best possible (apart from the error term) 
as reference to the prime number theorem shows; to put it in another way, 
the Selberg sieve applied to the sum on the left of (1.3) would lead to an 
estimate which is (essentially) twice that given on the right of (1.3) (cf. van Lint 
and Richert [6], or Halberstam and Richert [2], Chapter 3). 

Such improvements of standard sieve estimates are potentially important, 
as will be illustrated in a simple sieve application in section 3. Therefore it is 
perhaps of interest to give a simpler and more transparent proof of Hall’s 
inequality; this proof leads at the same time to a result which is more general 
in several respects. Moreover, Hall used the prime number theorem in his 
argument; this turns out to be unnecessary and we shall use instead (1.4) 
below, which may be considered as a (generalized) upper CebyEev estimate. 

THEOREM 1. Let h be a non-negative sub-multiplicative arithmetic function 
such that h(1) = 1, satisfying also 

c h(p) 1% P G K?! + 0 (j&j) (Y 2 2) 
P&?, 

for some constant K > 0, and 

c h(p3 1 
--logp’<- 

P’ 1% Y 
(Y z 2). 

P,‘>U 
9s 

(1.4) 

(1.3 

Let 

and de$ne 

P(z) := np. 
P-S 
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where 

m(x,z) := C h(n) 

,n.%L 

Iz. 

The U-constant in (1.6) depends at most on K and on the O-constants implied 
by (1.4) and (1.5). 

If we put z = 2 in Theorem 1, the condition (n, P(z)) = 1 becomes void, 
and we obtain as a special case 

THEOREM 2. Under the assumptions of Theorem 1 we have 

The main feature of (1.6) is of course the reduction to m(x, z), a function 
which can often be evaluated asymptotically (cf. also Levin and Fainleib [5]), 
as we shall demonstrate in one special case in section 4. However, it is 
immediate from (1.1) that 

and by a well-known result of Mertens 

Hence Theorem 2 implies (1.2) on taking K = 1, and the factor loglog x in 
the error term can be avoided, as had been conjectured (cf. [3]); in particular, 
we now obtain (1.3) in the improved form 

where the O-constant is absolute. 
Condition (1.4) requires that h(p) is at most K on average; and it is easy to 
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verify that (1.5) holds (in even sharper form) if we impose the Wirsing 
condition 

h(p") d yly2r (r = 2, 3, 4,...) 

where y1 , yz are constants satisfying 0 < y1 , 0 < yz < 2. 
If one requires a result like (1.6) but one attaches no importance to the 

quality of the final error term one may replace the hypotheses (1.4) and (1.5) 
by 

1 h(P) l‘% P < KY + 0 (&)Y 
P(Y 

and 

h W) 
c P’ 

-1ogp < a, 
P.T>2 

respectively, where g(y) is a positive function tending to infinity with y in 
such a way that 

Then one derives, in the same way, (1.6) with O(xm(x, z)/log2 X) replaced by 
o(xm(x, z)/log x). 

It would be interesting to know to what extend the conditions in both 
theorems can be weakened without affecting the outcome. Also, it would be 
both interesting and important, to derive corresponding results for arbitrary 
intervals of length x, and/or for arithmetic progressions, at some level of 
generality (cf. Hall’s remarks on p. 348 of [3] concerning the twin primes 
problem and n(x + v) - n(x)). This has been underlined recently by the 
successful application of the sieve by Iwaniec and Jutila [4] to the location of 
primes in short intervals. 

2. PROOF OF THEOREM 1 

Throughout the proof we indicate by Z’ that the variables of summation 
have to be coprime with P(z). Let 

M(x, z) := C h(n) = C’ h(n). 
n<r 

(n,P(z))=l 
11 <z 

and 

1(x, z) := iz + dt = c' h(n) log G 
n&z 

641/11/r-6 
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We observe at once that 

M(x, 2) + Z(x, 4 = C’ h(n) (log $ + 1) < C’ h(n) x, 
n<= n<:2 

which implies both 

and 

M(x, z) < xm(x, z), w 

I&, 2) < x4x, ~1; (2.2) 

and we remark at this stage also that m(x, z) is monotonic increasing in x, a 
fact that will be used often in the argument below. 

The proof depends on the identity 

M(x, z) log x = C’ h(n) log Iz + C’ h(n) log $ 
n<r %X 

= C’ h(n) c log pr + 1(x, z> 
n<2 mfl 

= ax, ‘4 + Z(x, 4, (2.3) 

say. We begin by showing (cf. (1.6)) that 

(2.4) 

We have immediately that 

Z(x, z) = 2 h(p*m) logp’ < C’ h(m) h(pr) logp’ 

(;:izl arm@ 

by (l.l), so that 

qx, z) =G C’ h(n) h(p) logp + c’ w MP’) log P’ 
?m@ P*%$ 

722 

< C’ h(n) c 
XPl~ =3K=‘ln 

h(P) logp + c MP’) logp’ M ($7 z). 
P ‘<r 
1>2 (2.5) 
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We now apply (I .4) in the more convenient equivalent form 

c h(P) &P 9 KY + 0 (2&*-g&) (Y 2 2); Kg 
then 

< KXm ($3 z) + 0 ( C’ Nn) %=I2 c -&) 
2<1<xln 

and therefore, from (2.9, 

(2.6) 
r>2 

If now we apply the trivial bound (2.1) we have 

and, since m( y, z) is monotonic increasing in y, 

2(.X., Z) < .um(.U, Z) (K + o(1) + 1 

23.+>2 
y log p’) < xm(x, z) (2.7) 

provided only that 

c h(P3 - logp’ < co, 
P,@ p’ 

which certainly is implied by (1.5). Now (2.3) with (2.7) and (2.2) proves 
(2.4). 
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We are able to complete the proof of the theorem on the basis of (2.3) and 
(2.4). First of all, by (2.4) 

X 
1(x, z) < lx a dt < m(x, z) - . 

log x 

Hence, by (2.3), 

M(x, z) = e + 0 ( “gf ). (2.8) 

We deal with Z(X, z) on the basis of (2.6). Take first the O-term. We have, by 
(2.4) and (2.1) (in that order) that 

(2.9) 

Finally, the last expression on the right of (2.6) is at most 

( c ‘%$P w 
< 4x, 4 

log x c slogpT + xm(x, z) C 
W’l 

D;s;~~ p 
- log p’ 

, 
p%;/* p’ 

/ 

(2.10) 

on the way we have used once more first (2.4), then (2.1) and, at the last stage, 
(1.5). Hence, from (2.6), (2.9) and (2.10), 

qx, z) < KXrn (3,z) + 0 ( xy$,) ), 

and Theorem 1 now follows from (2.8). 
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3. A LOWER ESTIMATE FOR n(x) 

It has often been said in criticism of sieves that not even the most sophisti- 
cated sieve can give so much as Cebycev’s lower estimate 

44 2+ j& . (3.1) 

lwaniec remarked to one of us a year ago (in conversation) that if Hall’s 
inequality is admissible as a sieve result then this criticism is no longer 
justified. We shall now show how to obtain a result of type (3.1). 

Define 

Tr(x,z):= c 1 (z 3 2) 
I@@ 

(n.PLz))=l 

so that (for x # m2) 

n-(x, x1’2) = ?-r(x) - “(x1~2) + 1. 

By Buchstab’s identity ([Z], Lemma 7.1), applied to the sequence J&’ = 
{n: 1 < n ,< x>, and assuming x > x0 from now on, we therefore have 

77(x) g3 77(x, xl’“) = 77(x, xl’“) - c 77 5 ) p ( 1 (2 < xl/u < x1/2) 
s’/u<p<&/a 

(3.2) 
and by Theorem 8.4 of [2], which, so far as information about the distribution 
of primes is concerned, requires nothing deeper than Mertens’ prime number 
theory, 

Tr(x, xl/y > & (e-wf(u) + O(u log-l/14 x)) (u > 2) (3.3) 

(forfsee below). It is clear that (3.2) and (3.3) will lead to a lower bound for 
r(x) provided that upper estimates of sufficient quality are available for 
a(x/p, p), x+ < p < x1/2. 

Now Theorem 1, with h(n) = I, reduces this problem to estimating 

for (1.4) is in effect a CebyEev upper bound estimate of a quality determined 
by K and (1.5) is easily checked. Hence, by (1.6), 

(3.4) 
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Put 

log x 
u=logz 

Without appealing to the prime number theorem, we shall show in section 4 
that uniformly in u > 0 

wrk 4 = $44 + 0 (&) (z 3 2) (3.5) 

with a continuous function I,@) defined by 

*w = 1, O<u<l, (3.6) 

4’&) = +(u - 1) 
u ’ 

u > 1. 

From (3.6) and (3.7) we see immediately that 4(u) is always positive and 
increasing, and by induction we infer that 

$b(u - 1) < 24, U > 1. (3.8) 

4(u) is linked with the above function f(u) via the Buchstab functions W(U) 
and p(u) (cf. [2], Chapter 8): 

where 

e-Wf(u) = uw(u) - p(u), 24 > 0, (3.9) 

uw(u)=l,p(u)=l,ifO<u<2, (3.10) 

(uw(u))’ = w(u - I), (24 - 1) p’(u) = -p(u - l), if u > 2, (3.11) 

(at u = 2 the right hand derivative has to be taken). 
From these definitions it is easily checked that for u > 1 

and 

dJ’W = 44 

a - 1) = UW(U). 

From (3.4), (3.5) and (3.8) we infer now that 

(3.12) 

+, z) < K j$-+4- o+o( ;f;,x, (u>2). (3.13) 
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This should, in view of (3.12), be compared with the result of Buchstab [l] 
who proved, on the basis of the prime number theorem, that 

?T(x, z) = (1 f o(1)) & ZIM’(U). 

From (3.13) it follows that for u > 2 

Using Mertens’ well-known formula 

lo&/P) 
O ( p log3 p )I 

(3.14) 

(3.15) 

and Stieltjes integration, we obtain readily from (3.14) and (3.8) that 

where, at the last stage, we have used (3.7) and (3.6). 
We substitute (3.3) and (3.16) in (3.2) and obtain by (3.9) and (3.12) 

4x) 3 & (Z(u) + O(u log-l/l” x) + O(u” log-l x)) for any II > 2, 

(3.17) 
where 

z(U) = UN’(U) - ,0(U) - K(UW(U) - 1). 

With (3.17) we have obtained a result of type (3.1) : for (3.11) and (3.10) 
yield 

#W(U) = 1 + log@ - l), p(u) = 1 - log@ - l), 2 < u < 3, 
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so that 

Z(u) = (2 - K) log(u - l), 2 < u < 3; 

in particular, 

l(3) = (2 - K) log 2, 

which is already positive for all K in 1 < K < 2. The interval 3 ,< u < 4 leads 
for all K in 1 < K < 2 to a sharper estimate; here we obtain 

l(U) = (2 - K) k&U - l)-KJ 3<ud4. 
2 

We finally mention that for K = 1 

Z(u) = 1 - p(u) 

so that (cf. [2], Chapter 8) 

Z(u) = 1 + U(e-U), 

and here we have in fact 

Z(4) > 0.9513, I(5) > 0.9950, l(6) > 0.9997. 

4. PROOF OF (3.5) 

We put again for brevity 

log x 
u=logz 

For a proof of (3.5) we may assume that for some sufficiently large constant c 

24 < (+ log x)Y (4.1) 

To see this, observe that a crude sieve estimate (cf. [2], Theorem 2.2) gives 

Tr(t, z) < -!L 
log z 

for z < t; 

therefore, since r(t, z) = 1 if t < z, 
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so that, with (3.8), 

if u > (l/c log x)lj2. 
It further sufficies to consider the function 

since m(x, z) differs from m,(x, z) by at most l/x. Then 

m(x, z) = 1 for 2 > x. (4.2) 

It can be shown in the customary way (cf. [2], Chapter 7) that m(x, z) satisfies 
a Buchstab relation 

m(x, z) = 777(x, xlq + c -i m (; ) p), z < xl/r < x. 
Z<P<&’ JJ 

(4.3) 

As in (3.16), we obtain from (3.15) and (3.8) for 

by (3.7). Introducing 

= ?w - VW) + 0 (&), (4.4) 

Pb, 4 = m(x, 4 - VW, 

we therefore have from (4.3) and (4.4) that 

PC5 4 = p(x, xl’7 + z<p<21/T $ p (f ’ PI + O h&b c 

or 

)yr+u < z < $I? , r 2 1, (4.5) 
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with some absolute constant B. We shall now prove by induction that with 
this absolute constant B 

I ,4x, dl G B & for xl/(r+l) < z < 9, r = 1, 2 ,... . (4.6) 

By (4.2) and (3.6) we see that p(x, z) = 0 for z 3 x, so that (4.6) follows from 
(4.5) for r = 1. Let r > 2, and suppose that (4.5) has already been proved up 
to r - 1. Then, for the interval x l / ir+l) < z < x117, on noting that each p on 
the right-hand side of (4.5) can be estimated by (4.6) with r replaced by 
r - 1, we obtain from (4.5) 

’ p(x, z)’ G B ‘;, 2” + B(r - l)” &(T+&<,l,r p lo;,/,, + Y& * 

For the sum we obtain, again from (3.19, 
(4.7) 

c l .ll(r+l)(p<z 117 p b(~/P) = c:::+,) v log U?&(X,U) + * (i&I 

Hence (4.7) yields 

1 1 
<------- 

logx r - 1 
-kB+L 

log2 x 

I Pk -41 G -& 1 (r - 1)3 + (r - 1)” + II1 r(~o~,‘)3 + r2j, (4.8) 

and since, by (4.1), 

r < 1% x 
‘logz = u < (+ log x)l’2, 

we have 

B r(r - 1)3 
l log x 

<.: r(r - 1) < r(r - l), 

if only c > Bl . It therefore follows from (4.8) that 

I Pk $1 d -g-g {(r - 1)3 + (r - 1)” + r(r - 1) + rz> = -&-P. 

This proves (4.6), and (3.5) follows because of r < u. 
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