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We show that for n-dimensional Einstein gravity coupled to a scalar field with mass-squared m2
0 =

−n(n − 2)/(4�2), the first law of thermodynamics of (charged) AdS black holes will be modified by
the boundary conditions of the scalar field at asymptotic infinity. Such scalars can arise in gauged
supergravities in four and six dimensions, but not in five or seven. The result provides a guiding principle
for constructing designer black holes and solitons in general dimensions, where the properties of the dual
field theories depend on the boundary conditions.
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1. Introduction

Black holes are one of the most important classes of objects
predicted by Einstein’s theory of gravity. Many important prop-
erties of black holes have been studied and established. Black
holes that are asymptotic to anti-de Sitter spacetime (AdS) are par-
ticularly useful in the AdS/CFT correspondence [1], for studying
quantum field theory or even condensed matter physics at finite
temperature. Numerical evidence suggests that black holes can de-
velop scalar “hair” in both asymptotic AdS or flat spacetimes [2].
Recently, many explicit examples of scalar hairy black holes in four
and higher dimensions have been found [3]. This leads to a natu-
ral question as to whether there exist scalar charges, analogous to
those associated with electromagnetic fields. The subject of scalar
charge and its contribution to the first law of black hole thermo-
dynamics is not well understood.

If a theory with a scalar φ has a global symmetry with a con-
stant shift, φ → φ + c, as in the case of the dilaton in ungauged
supergravities, the asymptotic value φ0 at infinity is an integration
constant, and can be treated as a scalar charge [4]. If the scalar
has a potential with a stationary point φ = φ0, the global symme-
try disappears and φ takes the fixed value φ0 at infinity. In this
situation, there is no obvious definition of a scalar charge and one
might expect that the first law would not be modified by the con-
tribution from the scalar. In four dimensions, it was shown that a
massless scalar (in the AdS sense) with the large-r boundary be-
havior
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φ = φ1 

r
+ φ2 

r2 
+ · · · (1)

can break some of the boundary AdS symmetries unless one of the
following three conditions is satisfied: (1) φ1 = 0, or (2) φ2 = 0 [5],
or (3) φ2/φ

2
1 is some fixed constant [6]. (See also [7].) Solitons

that violate all these three conditions were constructed numeri-
cally in [8], giving rise to “designer gravity”, where the properties
of the field theory depend on the boundary conditions. In [9],
a Kaluza–Klein dyonic AdS black hole in four-dimensional max-
imal gauged supergravity was constructed, for which the scalar
boundary behavior also violates these three criteria. The conse-
quence is that the naively-expected first law of thermodynamics
dM = T dS + Φe dQ e + Φp dQ p for the dyon does not hold. Instead
dM in the first law is shifted by a 1-form −X dY ≡ Z , given by [9]

Z = 1 

12�2 
(2φ2 dφ1 − φ1 dφ2), (2)

where � is the radius of the asymptotic AdS. The first law becomes

dM = T dS + Φe dQ e + Φp dQ p + X dY . (3)

It reduces to the standard one if any of the three criteria men-
tioned above is met.

In this Letter, we show that this phenomenon can occur also
in higher dimensions, and we determine the conditions for a non-
vanishing Z . We begin by considering n-dimensional Einstein grav-
ity coupled to a scalar field with a generic potential

L = √−g

(
R − 1

2 
(∂φ)2 − V (φ)

)
≡ √−gL0. (4)

The equations of motion are

Eμν ≡ Rμν − 1
∂μφ∂νφ − 1 

V gμν = 0, �φ = dV
. (5)
2 n − 2 dφ
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Many explicit examples of exact solutions for hairy black holes
have been obtained for some specific choices of the scalar poten-
tial [3]. We would like to examine whether these solutions admit
a non-vanishing Z .

2. Wald’s canonical charge

We begin by reviewing Wald’s formalism for deriving the first
law of thermodynamics by the Noether procedure [10]. We first
consider a generic variation of the Lagrangian (4):

δL = e.o.m. + √−g∇μ Jμ, (6)

where e.o.m. denotes the equations of motion for the fields, and

Jμ = gμρ gνσ (∇σ δgνρ − ∇ρδgνσ ) − ∇μφδφ. (7)

From this one can define a 1-form J (1) = Jμ dxμ and its Hodge
dual Θ(n−1) = (−1)n+1∗ J (1) . We now specialize to a variation that
is induced by an infinitesimal diffeomorphism δxμ = ξμ . One can
show that

J (n−1) ≡ Θ(n−1) − iξ∗L0 = e.o.m. − d∗ J (2), (8)

where iξ denotes a contraction of ξμ on the first index of the
n-form ∗L0, and J (2) = dξ(1) with ξ(1) = ξμ dxμ . One can thus de-
fine an (n − 2)-form Q (n−2) ≡ − ∗ J (2) , such that J (n−1) = dQ (n−2) .
Note that we use the subscript notation “(p)” to denote a p-form.
To make contact with the first law of black hole thermodynamics,
we take ξμ to be the time-like Killing vector that is null on the
horizon. Wald shows that the variation of the Hamiltonian with
respect to the integration constants of a given solution is [10]

δH = 1

16π
δ

∫
c

J (n−1) −
∫
c

d(iξΘ(n−1))

= 1

16π

∫
Σ(n−2)

(δQ (n−2) − iξΘ(n−1)), (9)

where c denotes a Cauchy surface and Σ(n−2) is its two bound-
aries, one at infinity and one on the horizon.

3. Application in Einstein-scalar theory

We now apply Wald’s formalism to the Einstein-scalar the-
ory (4). In this Letter, we shall mainly consider static and spher-
ically-symmetric solutions. For our purpose, it is convenient to
write the metric ansatz in Schwarzschild-like coordinates, with

ds2
n = −h(r)dt2 + dr2

h̃(r)
+ r2 dΩ2

n−2, (10)

where dΩ2
n−2 is the metric on the unit Sn−2. Assuming that the

metric is well behaved at asymptotic infinity with h ∼ h̃ ∼ �−2r2,
the properly-normalized time-like Killing vector is ξ = ∂/∂t . We
then find

Q (n−2) = rn−2h′
√

h̃

h
Ω(n−2), (11)

where a prime denotes a derivative with respect to r and Ω(n−2)

is the volume form of the unit Sn−2. The quantity iξΘ(n−1) has
contributions from both the gravity sector and the scalar sector:

iξΘ
grav
(n−1) = rn−2

(
δ

(
h′

√
h̃

h

)
+ n − 2

r

√
h

h̃
δh̃

)
Ω(n−2),

iξΘ
φ = rn−2

√
hh̃φ′δφΩ(n−2). (12)
(n−1)
It is clear that the scalar contribution vanishes on the horizon
where h and h̃ vanish, and so δH evaluated on the horizon is sim-
ply T dS . It then remains to evaluate the contributions from the
sphere at infinity. We consider only the case where the mass con-
tributes the leading-order deviation of gtt from the AdS, namely

h = �−2r2 + 1 − m

rn−3
+ m1

rn−2
+ · · · . (13)

We find

δH = 1

16π

∫
r→∞

(δQ − iξΘ)

= −ωn−2

16π
lim

r→∞ rn−2
(

n − 2

r
δh̃ +

√
hh̃φ′δφ

)
= δM + Z , (14)

where

M = (n − 2)ωn−2

16π
m,

Z = −ωn−2

16π
lim

r→∞ rn−2
(

n − 2

r
δ(h̃ − h) + �−2r2φ′δφ

)
. (15)

Here ωn−2 = ∫
Ω(n−2) and M is the mass. Thus whether the quan-

tity Z diverges, converges or vanishes depend on the specific
falloffs of φ and h̃ − h. For solutions with no scalar, such as the
Schwarzschild or Reissner–Nordstrøm AdS black holes, h = h̃ and
hence Z vanishes identically. It was shown that the quantity Z for
the Kaluza–Klein dyonic AdS black hole in four dimensions is finite
and non-vanishing [9]. More general solutions involving multiple
dyonic charges in the STU gauged supergravity model were con-
structed in [11]. The non-vanishing of Z was interpreted in [11]
as indicating that the mass is not well defined. We prefer to take
the view proposed in [9], that one can still give a meaningful def-
inition of mass, but with the first law modified by the addition of
Z = −X dY .

At the first sight, one may think that the quantity Z could only
be evaluated in explicit solutions, where the falloffs of φ and the
metric functions are known. In fact rather general statements can
be made without knowing the explicit solutions. Two linear com-
binations of the Einstein equations (5) do not involve the scalar
potential. In particular, the combination Et

t − Ei
i = 0, where i de-

notes any specific sphere direction, does not involve the scalar at
all:

h′′

h
− h′ 2

2h2
+ h′h̃′

2hh̃
+ (n − 3)h′

rh′

− h̃′

rh̃
− 2(n − 3)(h̃ − 1)

r2h̃
= 0. (16)

Thus we find that for (13), the leading falloff for h̃ − h is given
by �1

rn−4 , where �1 is the integration constant, proportional to m1

in (13). From Et
t − Er

r = 0, we have

φ′ 2 = (n − 2)(h̃h′ − hh̃′)
rhh̃

. (17)

Thus the leading falloff for φ is φ1
r(n−2)/2 . Assuming that the solutions

are well defined at infinity and can be expanded as

h = �−2r2 + 1 − m

rn−3
+ m1

rn−2
+ · · · ,

h̃ − h = �1

rn−4
+ �2

rn−3
+ · · · , (18)

φ = φ1
(n−2)/2

+ φ2
n/2

+ · · · , (19)

r r
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we find that �1 and �2 are related to φ1 and φ2 by

�1 = 1

4
�−2φ2

1 , �2 = n

2(n − 1)
�−2φ1φ2. (20)

Note that the relations (20) are fixed by Eq. (17). The coefficient
of the 1/r2(n−3) falloff in h turns out always to be zero in the
absence of electromagnetic charges. Substituting these asymptotic
behaviors into (15), we find

Z = ωn−2

16π

(
−(n − 2)δ�2 + 1

2
�−2(nφ2δφ1 − (n − 2)φ1δφ2

))

= ωn−2

32π(n − 1)�2

(
nφ2δφ1 − (n − 2)φ1δφ2

)
. (21)

It is important to note that the �1 contribution to Z yields a di-
vergent result, but it cancels precisely the contribution from the
leading term from φ′δφ. Thus we conclude that Z is finite, and in
general non-vanishing unless either (1) φ1 = 0, or (2) φ2 = 0, or
(3) φ2/φ

n/(n−2)

1 is a fixed constant. In four dimensions, we recover
the result obtained in [9]. Note that if we have multiple scalars in
a linear σ -model, the quantity Z is then simply the summation of
the contributions of each scalar as in (21). Although we focused on
solutions with spherical symmetry, the formula (21) applies also to
AdS black holes with planar horizon geometries.

4. Scalar properties

We define the mass of scalar in the linearized equation in the
AdS background as follows(

� + 2(n − 3)

�2
−M2

)
φ = 0. (22)

In this definition, scalars in gauged supergravities are massless.
From the leading falloffs of the scalar in (19), we find that

M2 = − (n − 4)(n − 6)

4�2
. (23)

Thus the required mass of the scalar is zero in four and six di-
mensions. A massless scalar has a typical falloff of 1/rn−3, which
coincides with the required falloff (19) in D = 4. In six dimensions,
the other falloff of a massless scalar is 1/r2, which coincides also
with (19). The required mass (23) implies that the leading-order
expansions of the scalar potential must be

V = −(n − 1)(n − 2)�−2 − 1

8
n(n − 2)�−2φ2 + · · · . (24)

The “bare” mass-squared is thus m2
0 = −n(n − 2)/(4�2), corre-

sponding to a conformally massless scalar. The conformal dimen-
sion of the dual (relevant) operator of the asymptotic AdS bound-
ary field theory is therefore � = n/2. Interestingly, for this partic-
ular conformal dimension, the coefficients φ1 and φ2 are the zero
modes of the two boundary fields A(x) and B(x) at asymptotic in-
finity:

φ(x, r) ∼ A(x)

rd−�
+ B(x)

r�
, (25)

where d = n−1 is the dimension of the boundary field theory. This
implies that the falloff coefficients φ1 and φ2 in (19) coincide with
the boundary values of the boundary fields A and B .

Since scalars in gauged supergravities are massless, our results
imply that they cannot contribute a non-vanishing Z in five and
seven dimensions. In six dimensions, the massless scalar can be
embedded in gauged supergravity, but only the solutions with both
the slower scalar falloff 1/r2 and the typical 1/r3 can give rise
to non-vanishing Z . In four dimensions, the requirement selects
the “normal” massless scalar, and indeed dyonic AdS black holes
of gauged supergravity with a non-vanishing Z were constructed
[9,11]. On the other hand, the quantity Z vanishes for all the hairy
black holes recently constructed in [3].

5. Charged system

We can also add a Maxwell field to the system, with the La-
grangian

e−1LA = −1

4
eaφ F 2, F = dA. (26)

The electric ansatz that satisfies both the Bianchi identity and the
Maxwell equation is

F = Q e−aφ

rn−2

√
h

h̃
dr ∧ dt. (27)

Eq. (16) is now modified by the charge, and it is straightforward
to verify that the parameter Q enters first at the 1/r2(n−3) level
in the large-r expansion of h. However, Eq. (17) is unchanged. It
is then clear that the relations (20) between �i and φi (i = 1,2),
which are determined by (17), will not be modified by the charge.
Thus we conclude that the formula (21) for Z holds also for
charged solutions.

6. Conclusions

In this Letter, we obtained the formula for calculating the mod-
ification of the first law of thermodynamics for asymptotic AdS
black holes due to scalar charges. In n dimensions, a scalar with
bare mass-squared m2

0 = −n(n − 2)/(4�2) falls off at large radius
as in (19). We find that the first law will be modified, with dM re-
placed by dM + Z where Z is given by (21). This scalar has the
unique property that the two decay modes are separated in or-
der by one inverse power of r, and hence can conspire to modify
the variation of the Hamiltonian in the Wald formalism. The dual
operator in the boundary field theory is relevant, with a confor-
mal dimension � = n/2. In four and six dimensions, such a scalar
can arise in gauged supergravities, whilst in five and seven di-
mensions, it cannot. Our results provide a guiding principle for
constructing new designer black holes and solitons, which can be
used to compute certain effective potentials of the dual field the-
ories, whose properties depend on the boundary conditions of the
scalar field.
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