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a b s t r a c t

It was characterized that the rapid response to 1a,25(OH)2-vitaminD3 (1,25D3) on
45Ca2þ influx in rat Sertoli

cells was mediated by voltage-dependent Ca2þ channels (VDCCs), PKC, ERK1/2 and p38MAPK pathways. In
primary culture of 10 day-old rat Sertoli cells as well as in the whole testis, the time-course of 45Ca2þ influx
did not change significantly in basal conditions. However,1,25D3 showed stimulatory effect on 45Ca2þ influx
from 10�15 to 10�8 M after 60 s of incubation. The maximum effect was around 140% at 10�12 M on purified
Sertoli cells showing a steady state on 45Ca2þ influx between 10�11 and 10�9 M. Under this experimental
condition, 1,25D3 stimulated 45Ca2þ influx from 73% to 106% and no effect was observed at 10�16, 10�8 and
10�7 M inwhole testis. VDCC activities are mandatory for a full and complete stimulatory effect of 1,25D3 in
these approaches. Kþ and Cl� channels also are strongly involved in this rapid response coordinated by
1,25D3. The participation of some selected kinases, points to PKC and ERK1/2 upstream activity to p38MAPK
activation suggesting an intracellular cross-talk between rapid 45Ca2þ influx and nuclear events. In addition,
the comparative effect of microtubule disassembles and ClC-3 channel blocker on 45Ca2þ influx provides
evidenceof secretoryactivity of Sertoli cells triggeredby1,25D3.Our results suggest that 1,25D3 activates p38
MAPK and reorganizes microtubules, involving Ca2þ, PKC and ERK1/2 as upstream regulators and that
extracellular Ca2þ have a central role to rapidly start hormone-induced gene transcription and/or the
secretory activity of Sertoli cell.
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1. Introduction

The steroid hormone 1a,25(OH)2-vitamin D3 (1,25D3) activates
multiple signaling pathways in its target cells [1,2]. The vitamin D
receptor (VDR), a member of the superfamily of nuclear receptors
exerts 1,25D3-dependent responses in the nucleus as a ligand-
activated transcription factor [3]. In addition to these relatively
slow (hours to days) genomic effects, 1,25D3 generates rapid
responses (seconds to minutes) including Ca2þ uptake. The first
clear demonstration of 1,25D3-induced nongenomic response
emanated from the ex vivo study in perfused chick intestine, was
transcaltachia (the rapid hormonal stimulation of intestinal Ca2þ

absorption). In that study, it was observed that the transfer of
45Ca2þ present in chick intestine to the circulatory system was
stimulated within 4e5 min after addition of physiological
2.
a).

nder the Elsevier OA license.
concentrations of 1,25D3 in the celiac artery [4]. Numerous rapid
responses mediated by 1,25D3 have been reported, including
modulation of voltage-dependent Ca2þ and Cl� channels [1,5],
exocytosis of bone material [6], and modulatory effect on protein
kinase A (PKA), protein kinase C (PKC), extracellular signal-
regulated kinase (ERK) and mitogen-activated protein kinase
(MAPK) [2,5,7].

There is accumulating evidence that vitamin D and VDR are
important in reproductive tract. Successful fertility rates are
significantly decreased in vitamin D deficient male rats [8,9]. 1,25D3
effects on cellular Ca2þ homeostasis have been reported in a variety
of cell types as chicken intestinal mucosa [10], and osteoblastic cells
[6]. It has been described that VDR are present in the cytoplasm and
nucleus of male and female reproductive tissues [11]. In addition,
the wide expression of VDR as well as the biological functions was
demonstrated by autoradiographic receptor studies onmouse testis
[12]. The presence of VDR in the nucleus of a mouse Sertoli cell line
and the stimulatory effect of 1,25D3 on 45Ca2þ influx, DNA synthesis
and protein content have been shown [13].
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In previous studies in whole immature rat testis, we demon-
strated the stimulatory effect of 1,25D3 through a specific and
selective plasma membrane amino acid transport system [14].
These results pointed to both genomic effects, which can be trig-
gered by PKA, and to rapid responses involving Ca2þ/Kþ channels
on the plasma membrane. Furthermore, it was demonstrated that
extracellular Ca2þ as well as voltage-dependent Ca2þ channels
(VDCCs) are necessary to mediate plasma membrane effect of
1,25D3 [14], similar to results observed for thyroxin in immature rat
testis [15]. Recently, we demonstrated for the first time 1,25D3
potentiation of Cl� currents required for exocytosis, and identified
protein kinase signaling underlying ion channel modulation by this
hormone in TM4 cells [5]. So, the present study was conducted to
analyze the rapid response and underlying the mechanism of
action of 1,25D3 targeting the 45Ca2þ influx in purified Sertoli cell
cultures and whole testis from 10 day-old rats.

2. Materials and methods

2.1. Chemicals

1a,25(OH)2-vitamin D3 (1,25D3), verapamil, flunarizine, nifedi-
pine, 9-anthracene carboxylic acid (9-AC), 4, 40-diisothiocyanatos-
tilbene-2,20-disulfonic acid (DIDS), tolbutamide, apamine, KT-5720,
H-89, RO 31-8220, SB 23,9063, PD 98059, and colchicine were
purchased from Sigma Chemical Company (St. Louis, MO, USA).
Dulbecco’s modified Eagle’s medium (DMEM), Ham’s F12 medium,
penicillin, streptomycin, kanamycin and amphotericin B were from
Sigma Chemical Company (St. Louis, MO, USA). Collagena-
seedispase and bovine serum albumin (BSA) were from Roche
Diagnostics (Mannheim, Germany). Serum Remplacement 3,
bovine pancreas deoxyribonuclease (DNase type I), hyaluronidase
(type IeS), trypsine, soybean trypsin inhibitor, sodium pyruvate, D-
glucose, Hepes, sodium bicarbonate were purchased from Sigma
Chemical Company (St. Louis, MO, USA). [45Ca]CaCl2 (sp. act. 321
KBq/mg Ca2þ) and Optiphase Hisafe III biodegradable liquid scin-
tillation were purchased from PerkinElmer (Boston, USA). The
antibodies p44/42 MAP Kinase (anti-ERK1/2), phospho-p44/42
MAP Kinase (Thr202/Tyr204) were obtained from Cell Signaling
Technology (Boston, MA, USA) and peroxidase conjugated anti-
rabbit IgG from GE Healthcare (Amersham, Buckinghamshire,
UK). The Immobilon� Western chemiluminescent HRP substrate
was obtained fromMillipore. All other chemicals were of analytical
grade.

2.2. Animals

Wistar rats were bred in animal house and maintained in an air-
conditioned room (about 21 �C) with controlled lighting (12 h/12 h
light/dark cycle). The suckling rats were kept with their mothers
until euthanasia. Pelleted food (Nuvital, Nuvilab CR1, Curitiba, PR,
Brazil) and tap water were available ad libitum. All animals were
carefully monitored and maintained in accordance with ethical
recommendations of the Brazilian Veterinary Medicine Council and
the Brazilian College of Animal Experimentation (Protocol CEUA/
PP00023).

2.3. Primary Sertoli cell culture and 45Ca2þ influx

Sertoli cells were obtained from 10 day-old Wistar rats. Rats
were killed by decapitation, testes were removed and decapsulated.
Sertoli cells were obtained by sequential enzymatic digestion as
previously described by Dorrington et al. [16]. The cells were
seeded at the concentration of 200 000 cells/cm2 in 24 wells Falcon
culture plates (Deutscher, Brummath, France) and cultured for 72 h
in Ham’s F12/DMEM (1:1) medium supplemented with serum
replacement 3, 2.2 g/L sodium bicarbonate and antibiotics (50,000
IU/L penicillin, 50 mg/L streptomycin, 50 mg/L kanamycin), fungi-
cide (0.25 mg/L amphotericin B), in a humidified atmosphere of 5%
CO2:95% air at 34 �C. Three days after plating, residual germ cells
were removed by a brief hypotonic treatment using 20 mM
TriseHCl (pH 7.2). After 2.5 min of incubation the hypotonic solu-
tion was removed, the cells were washed with PBS (PAN, Dutscher,
Brumath, France) and fresh medium Ham’s F12/DMEM (1:1) was
added. This method, which is based on the differential response of
Sertoli and germ cells to osmolarity changes, is highly efficient in
removing germ cells and in obtaining pure Sertoli cell cultures. The
hypotonic treatment did not alter the morphology, functional
activities and FSH responsiveness of Sertoli cells [17]. On day 5 after
plating cells were pre-incubated in Krebs Ringer-bicarbonate (KRb)
buffer (122 mM NaCl; 3 mM KCl; 1.2 mM MgSO4; 1.3 mM CaCl2;
0.4mMKH2PO4; 25mMNaHCO3) for 15min in a Dubnoff metabolic
incubator at 34 �C, (pH 7.4) and gassed with O2:CO2 (95:5; v/v).
After that, the medium was changed by fresh KRb containing
0.1 mCi/mL 45Ca2þ during 60 min. For Ca2þ influx measurements,
cells were incubated for a further 30, 60, 150, 300 or 600 s in the
absence (control) or presence of 1,25D3 (10�13 to 10�7 M) [14,15]. In
some experiments channel blockers or kinase inhibitors were
added during the last 20 min before the hormone addition and
maintained during all the incubation period (see figures). The
following drugs were used: Flunarizine (1 mM), nifedipine
(100 mM), verapamil (100 mM), 9-AC (1 mM), DIDS (200 mM),
tolbutamide (100 mM), apamine (0.1 mM), H-89 (10 mM), KT-5720
(1 mM), RO 31-8220 (20 mM), SB 23,9063 (10 mM), PD 98059
(10 mM), and colchicine (10 mM) [14,15,18e20]. The results are
expressed as pmol 45Ca2þ/mg protein or % of control which repre-
sents an average of 204.55 � 18.26 pmol 45Ca2þ/mg protein.

2.4. 45Ca2þ influx in whole testis

One gonad (alternately left and right) from 10 day-old rats was
used as treated and the contralateral one as the control. The testes
were weighed, decapsulated and pre-incubated in KRb buffer as
described for Sertoli cells. After that, the testes were transferred to
another series of wells with fresh KRb containing 0.1 mCi/mL 45Ca2þ

during 60 min. Finally, 1,25D3 was included in this KRb containing
45Ca2þ and the tissues were incubated with different doses of
1,25D3 (10�16 to 10�7 M) for 60 s. In some experiments ionic
channel blockers were added during the last 20 min before the
hormone addition and maintained during all the incubation period
as described above [15,19,20].

Extracellular 45Ca2þ from either primary Sertoli cell culture or
whole testis was thoroughly washed off in 127.5 mM NaCl, 4.6 mM
KCl, 1.2 mM MgSO4, 10 mM HEPES, 11 mM Glucose, 10 mM LaCl3
solution, pH 7.4 for 30 min. The presence of La3þ, in washing solu-
tion, was found to be essential to prevent release of the intracellular
45Ca2þ [21]. After La3þ cells or tissuewashing, theywere removed to
screwcap tubes containing 1mL of distilledwater. Theywere frozen
at�20 �C and afterwards boiled for 10min; 100 mL aliquots of tissue
medium were placed in scintillation fluid and in a LKB rack beta
liquid scintillation spectrometer (model LS 6500; Multi-Porpose
Scintillation Counter-Beckman Coulter, Boston, USA) [20]. The
results are expressed as pmol 45Ca2þ/mg protein or % of control
which represents an average 14.50 � 1.0 pmol 45Ca2þ/mg protein.

2.5. Western blot analysis

Sertoli cells were incubated with/without 10�10 M 1,25D3 for
1 min at 34 �C in the KRb. After hormone treatment, the cells were
rapidly homogenized in 100 mL of a lysis solution containing 2 mM
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EDTA, 50 mM TriseHCl, pH 6.8, 4% (w/v) and protein concentration
was determined. For electrophoresis analysis, samples were dis-
solved in 20% (v/v) of a solution containing 40% glycerol, 5% mer-
captoethanol, 50 mM TriseHCl, pH 6.8 and boiled for 3 min. Equal
protein concentrations (40 mg) were loaded onto 10% poly-
acrylamide gels and analyzed by SDS-PAGE according to the
discontinuous system of Laemli [22] and transferred to nitrocellu-
lose membranes for 60 min at 15 V in transfer buffer (48 mM
Trizma, 39 mM glycine, 20% methanol and 0.25% SDS). The nitro-
cellulose membranes were washed for 10 min in Tris-buffered
saline (TBS; 0.5 M NaCl, 20 mM Trizma, pH 7.5), followed by
120 min of incubation in blocking solution (TBS plus 5% defatted
dried milk). After incubation, the blot was washed twice for 5 min
with TBS plus 0.05% Tween-20 (TTBS), and then incubated over-
night at 4 �C with anti-ERK1/2 and anti-phospho ERK1/2 (Thr202/
Tyr204) diluted 1:1000 in TBS containing 5% albumin. The blot was
then washed twice for 5 min with TTBS and incubated for 120 min
in TBS with 5% albumin containing anti-rabbit IgG 1:1000. The blot
was washed twice again for 5 min with TTBS and twice for 5 min
with TBS. The blot was then developed using the Immobilon�
Western chemiluminescence HRP substrate kit [23]. Autoradio-
grams and immunoblots were quantified by scanning the films
with a Hewlett-Packard Scanjet 6100C scanner and determining
optical densities with an OptiQuant version 02.00 software (Pack-
ard Instrument Company).

2.6. Statistical analysis

The results are means � S.E.M. expressed as pmol 45Ca2þ/mg of
protein, pmol 45Ca2þ/mg of tissue or % of control. The total
Fig. 1. Basal 45Ca2þ influx in Sertoli cells (A) and testis (B). Pre-incubation time: 60 min in th
time 30, 60, 150, 300 and 600 s, in the same solution. Doseeresponse curve of 1,25D3 on 45Ca
or testis were incubated with or without different concentration of 1,25D3 for 60 s in t
experiments carried out in quadruplicate. ***P < 0.001, **p < 0.01 and *p < 0.05 compare
protein was measured according to the Bradford method [24].
When multiple comparisons were performed, evaluation was
done using one-way ANOVA followed by Bonferroni multiple
comparison test. Differences were considered to be significant
when p < 0.05.

3. Results

3.1. Basal time-course and doseeresponse curve of 1,25D3 on
45Ca2þ influx

After the Ca2þ equilibrium in the Sertoli cells and in the testis for
60 min of incubation, Ca2þ measurement was additionally moni-
tored for 30, 60, 150, 300 and 600 s without stimuli. Fig. 1A and B,
show that no significant changes on 45Ca2þ influx was observed
neither in Sertoli cells nor in the testis during this time-course
studied.

As illustrated in Fig. 1C, 1,25D3 stimulates 45Ca2þ influx from
10�12 to 10�8 M after 60 s of incubation. It was observed that the
maximum stimulatory effect of 1,25D3 was around 140% at 10�12 M,
compared with control group. An initial peak rise followed by
a sustained rise from 10�12 to 10�9 M was evident and significant
decrease on 45Ca2þ influx between 10�12 and 10�8 Mwas observed.

The effect of 1,25D3 (from 10�16 to 10�7 M) on 45Ca2þ influx was
also studied inwhole testis after 60 s of incubation. The stimulatory
action was observed from 10�15 to 10�9 M with a peak rise of Ca2þ

at 10�15 M and a sustained effect until 10�9 M of 1,25D3. No stim-
ulatory effect was observed at 10�16, 10�8 and 10�7 M. Although the
stimulatory effect profile of 1,25D3 on 45Ca2þ influx was similar, in
terms of percentage, the average of 1,25D3 stimulatory effect on
e presence of 45Ca2þ 0.1 mCi/mL. After that the groups were incubated for an additional
2þ influx in Sertoli cells (C) and testis (D). Pre-incubation: 60 min. After that Sertoli cells
he presence of 45Ca2þ 0.1 mCi/mL. Values are means � S.E.M for three independent
d with control group.
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45Ca2þ influx was around 110% in Sertoli cells and 90% in whole
testis (Fig. 1C and D).

3.2. Involvement of voltage-dependent Ca2þ channels in the
stimulatory effect of 1,25D3 on 45Ca2þ influx

Although we have reported the involvement of extracellular
Ca2þ in the mechanism of action of 1,25D3 in amino acid accumu-
lation in immature rat testis [14], in the present study, we also used
45Ca2þ influx as a tool to demonstrate the direct effect of 1,25D3 and
rapid response of Sertoli cells and testis to this hormone.

Fig. 2A shows the involvement of two Ca2þ channel subtypes in
the stimulatory action of 1,25D3 on 45Ca2þ influx in Sertoli cells. We
first demonstrated that the blockers themselves, at the concen-
trations used, did not alter the basal Ca2þ cellular equilibrium. It
was observed that when Sertoli cells were incubated for 25 min
with 100 mM nifedipine or 1 mM flunarizine, L- and T-type VDCC
blockers respectively, the effect of the hormone was partially pre-
vented. To better characterize the high-voltage Ca2þ currents
involvement in the 1,25D3 stimulatory effect on 45Ca2þ influx, we
used another specific L-VDDC blocker, verapamil, which completely
abolished the 1,25D3 effect.

Considering our previous data of nongenomic actions of 1,25D3
in intact whole testis [14], we take advantage of this approach to
compare the profile of 45Ca2þ influx stimulated by 1,25D3 with that
in isolated Sertoli cells. As showed in Fig. 2B, the efficacy of the
L- and T-VDCC blockers (without disturbing the basal Ca2þ

balance), was similar to that observed in isolated purified Sertoli
cells strengthening therefore, the view that 1,25D3 was able to
activate these channels in the testis.

3.3. Involvement of Kþ channels in the stimulatory effect of 1,25D3

on 45Ca2þ influx

It is well know that Ca2þ currents can be influenced by other
ions as demonstrated by the presence of Ca2þ-dependent Kþ

channels and Ca2þ-dependent Cl� channels [5,25,26]. Moreover, Kþ

is one of the ionic components engaged to keep the basal electrical
characteristics of the cells. In the present study, we demonstrated
that both 0.1 mM apamine (specific of Ca2þ-dependent Kþ channel
blocker) and 100 mM tolbutamide (ATP-dependent Kþ channel
blocker) prevented the stimulatory effect of 1,25D3 on 45Ca2þ influx
both in cultured Sertoli cells and in whole testis (Fig. 3A and B).
Fig. 2. Involvement of voltage-dependent Ca2þ channels (T and L types) on the stimulatory
60 min in the presence of 45Ca2þ 0.1 mCi/mL. Drugs were added 25 min before the incubat
means � S.E.M for three independent experiments carried out in quadruplicate. ***P < 0.001
compared with 1,25D3 group.
3.4. Involvement of Cl� channels in the stimulatory effect of 1,25D3

on 45Ca2þ influx

The independent movement of either Kþ efflux or Cl� influx in
cells can produce hyperpolarization that changes completely the
activity of the voltage-dependent channels in the plasma
membrane. Taking this into account, we investigated the involve-
ment of Ca2þ-activated Cl� currents on the effect of 1,25D3 on
45Ca2þ influx by using 1 mM of 9-AC. The stimulatory action of the
hormonewas prevented by this blocker, suggesting that the activity
of this type of channelmight be part of the regulatorymechanism of
1,25D3 effects initiated on the plasmamembrane. Also, we analyzed
the involvement of voltage-dependent Cl� channels in isolated
Sertoli cells and in the whole testis. The selective voltage-
dependent Cl� channels blocker (DIDS) was able to partially
inhibit (55%) the stimulatory effect of 1,25D3 on 45Ca2þ influx
(Fig. 4A and B).

3.5. Involvement of PKC and PKA in the stimulatory effect of 1,25D3

on 45Ca2þ influx

As shown in Fig. 5A, treatment of Sertoli cells with RO 31-8220
(20 mM), a PKC inhibitor, did not have any effect on control group;
however, it significantly abolished the stimulatory effect of 1,25D3
on 45Ca2þ influx. We also found that incubation of Sertoli cells with
PKA inhibitors KT-5720 and H-89, selective and potent PKA
blockers did change neither basal 45Ca2þ influx nor stimulatory
effect of 1,25D3 on 45Ca2þ influx (Fig. 5B).

3.6. Involvement of MEK/MAPK pathways in the stimulatory effect
of 1,25D3 on 45Ca2þ influx

There are increasing evidence that 1,25D3 stimulates non-
genomic effects associated with Ca2þ-activated and kinase
signaling pathways. In this context, in Sertoli cells, we performed
the 45Ca2þ influx assay in the presence of PD 98059, a inhibitor of
mitogen-activated protein kinase (MAPK) cascade, or SB 23,9063
that inhibits its established targets p38a and p38b, as already
demonstrated [2,15,18,27]. Fig. 6A shows that the presence of 10 mM
PD 98059 significantly diminished the stimulatory effect of 1,25D3

on 45Ca2þ influx. However, p38 MAK inhibitor (10 mM) completely
blocked 45Ca2þ influx stimulated by 1,25D3 (Fig. 6B), evidencing
a kinase-dependent mechanism.
effect of 1,25D3 on 45Ca2þ influx in Sertoli cells (A) and testis (B). Pre-incubation time:
ion time. Incubation: 60 s in the presence of 1,25D3 and 45Ca2þ 0.1 mCi/mL. Values are
and **p< 0.01 compared with control group; #p < 0.05, ##p < 0.01 and ###p < 0.001



Fig. 3. Involvement of Kþ channels on the stimulatory effect of 1,25D3 on 45Ca2þ influx in Sertoli cells (A) and testis (B). Pre-incubation time: 60 min in the presence of 45Ca2þ

0.1 mCi/mL. Drugs were added 25 min before the incubation time. Incubation: 60 s in the presence of 1,25D3 and 45Ca2þ 0.1 mCi/mL. Values are means � S.E.M for three independent
experiments carried out in quadruplicate. ***P < 0.001 and **p < 0.01 compared with control group; #p < 0.05 and ###p < 0.001 compared with 1,25D3 group.
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3.7. Effect of 1,25D3 on total and phospho ERK1/2 levels in Sertoli
cells

Considering that our findings support the involvement of ERK
MAPK on 1,25D3 action in 10 day-old rat Sertoli cells, the effect of
1,25D3 on total and phospho ERK1/2 levels was investigated.
Results showed that 1,25D3 did not alter the total immunocontent
of ERK1/2 after 1 min incubation (Fig. 7A). On the other hand, the
hormone induced a rapid phosphorylation and activation of ERK1/2
in Sertoli cell cultures (Fig. 7B). The Coomassie blue stained gel was
presented as a protein loading control (Fig. 7C).

3.8. Involvement of microtubules integrity and ClC-3 Cl� channel
activity in the stimulatory effect of 1,25D3 on 45Ca2þ influx

The contribution of microtubules integrity to the stimulatory
effect of 1,25D3 on 45Ca2þ influx was verified by using 10 mM
colchicine, a network microtubule disruptor. Fig. 8 shows that the
stimulatory effect of 1,25D3 on 45Ca2þ influx diminished signifi-
cantly in the presence of colchicine. In addition, in this figure, we
compared the effect of DIDS, a specific blocker of voltage-
dependent Cl� channels, and colchicine in the stimulatory effect
of 1,25D3 on 45Ca2þ influx. Both agents were able to disturb the
stimulatory effect of 1,25D3 on 45Ca2þ influx suggesting that, at
least in part, as much microtubules network as ClC-3 channel
activity (both involved on cellular secretion), participate on the
stimulatory effect of 1,25D3 on 45Ca2þ influx in Sertoli cells.
Fig. 4. Involvement of Cl� channels on the stimulatory effect of 1,25D3 on 45Ca2þ influx in
0.1 mCi/mL. Drugs were added 25 min before the incubation time. Incubation: 60 s in the pre
experiments carried out in quadruplicate. ***P < 0.001 and **p < 0.01 compared with con
4. Discussion

The evidence of Sertoli cells as primary site for 1,25D3 receptor
binding inmouse testiswas reported by Schleicher et al. [12]. Also, it
has been reported that 1,25D3 binds to cytosolic and nuclear frac-
tions of whole rat testis and its various cellular components [11].

The effect of 1,25D3 on 45Ca2þ influx was very rapid, occurring in
seconds, a time lag non-compatible with the classical scheme for
a nuclear receptor action, confirming a plasma membrane effect of
1,25D3 and a rapid response in Sertoli cells, as previously reported
byMenegaz et al. [14]. Our data are in agreement with Akerstrom &
Walters [13] who demonstrated that 1,25D3 induced a dose-
dependent rapid uptake of 45Ca2þ within 5 min in a mouse Ser-
toli cell line. Also, the rate of 45Ca2þ influx is in line with those
reported for retinol stimulatory effect on 45Ca2þ influx in isolated
Sertoli cells [28], as well as to testosterone in whole testis and/or
Sertoli cells [29,30].

In general, intracellular Ca2þ is tightly regulated by multiple
Ca2þ channels, pumps, exchangers and buffers. Ca2þ influx can be
regulated, at least, by three major mechanisms: VDCCs, second
messenger-mediated channels and/or receptor-mediated channels
[31e33].

Considering our previous evidence that nongenomic actions of
1,25D3 deeply involve extracellular Ca2þ in immature rat testis [14],
we then analyzed the mechanism of Ca2þ influx, by investigating
L- and T-type VDCCs, which were described to be present in the
plasma membrane of rat Sertoli cells and in the testis [34]. Indeed,
Sertoli cells (A) and testis (B). Pre-incubation time: 60 min in the presence of 45Ca2þ

sence of 1,25D3 and 45Ca2þ 0.1 mCi/mL. Values are means � S.E.M for three independent
trol group; #p < 0.05 and ##p < 0.01 compared with 1,25D3 group.



Fig. 5. Involvement of PKC (A) and PKA (B) on the stimulatory effect of 1,25D3 on 45Ca2þ influx in Sertoli cells. Pre-incubation time: 60 min in the presence of 45Ca2þ 0.1 mCi/mL.
Drugs were added 25 min before the incubation time. Incubation: 60 s in the presence of 1,25D3 and 45Ca2þ 0.1 mCi/mL. Values are means � S.E.M for three independent experiments
carried out in quadruplicate. ***P < 0.001 compared with control group; ###p < 0.001 compared with 1,25D3 group.
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our data demonstrate that Sertoli cells and whole testis treated
with L- or T-type VDCC blockers (flunarizine, nifedipine or verap-
amil), lead to an effective blockage of 1,25D3-induced Ca2þ influxes.
Therefore, we conclude that the rapid Ca2þ influx elicited by 1,25D3

in Sertoli cell and in the testis occurs predominantly through
VDCCs. However, as deeply discussed by Friel and Chiel [33], due to
the complexity of cellular Ca2þ signaling, it has been difficult to
predict how pharmacological perturbations or natural stimuli
handling calcium flux and how it reflect with ultimate effects of
calcium on cell permeability, depolarizing stimulus, protein phos-
phorylation, gene regulation and cellular secretion. Our data
corroborate the physiological importance of extracellular Ca2þ to
1,25D3 action on plasma membrane [14], and to thyroxin action, as
recently demonstrated in testis [15].

Kþ channels are a ubiquitous family of membrane proteins that
play critical roles in electrolyte transport, cell volume regulation
and also along with the coordinated activity of other ion channels
and membrane transporters. These channels are also essential for
fluid secretion. Besides, Kþ channels play an essential role to
maintain an adequate electrical driving force for Ca2þ entry [35].

We demonstrated the participation of ATP-dependent Kþ

channels and Ca2þ-dependent Kþ currents in studies involving
plasma membrane events and nongenomic responses to thyroid
hormones [15,19,36,37], as well as to 1,25D3 in immature rat testis
[14]. In the present work, the functional integrity of Kþ currents
was essential to the hormone effect, since the blockage of Kþ

channels by tolbutamide and apamine abolished the stimulatory
Fig. 6. Involvement of MEK (A) and p38 MAPK (B) on the stimulatory effect of 1,25D3 on
0.1 mCi/mL. Drugs were added 25 min before the incubation time. Incubation: 60 s in the pre
experiments carried out in quadruplicate. ***P < 0.001 compared with control group; ##p
action of 1,25D3 on Ca2þ influx. In agreement with this, several
reports sustained the role of Kþ channels and Ca2þ influx associated
with the regulation of cellular secretion [25,38].

Modulation of voltage-dependent Ca2þ conductance by
changing Cl� concentration was described in the testis [26]. We
recently showed nongenomic potentiation of 1,25D3 on outwardly
rectifying; DIDS-sensitive Cl� currents coupled to exocytosis in
mouse TM4 Sertoli cells [5]. In this context, 9-AC, an aromatic
compound that has been widely used as an anion probe to study
Ca2þ-activated Cl� currents as well as DIDS, a stilbene derivative
which blocks ClC-3 outwardly rectifying Cl� channels [39,40], were
used to study the influence of these both types of ionic currents in
the stimulatory effect of 1,25D3 on Ca2þ influx. The total blockage of
the hormone effect on Ca2þ influx by 9-AC highly suggest the
modulatory role of Cl� currents on Ca2þ influx in purified Sertoli
cells and in whole testis. However, although the presence of ClC-2,
ClC-3, ClC-4, ClC-5, ClC-6 and ClC-7 members of the family of
voltage-dependent Cl� channels were previously described to be
expressed in primary culture rat Sertoli cells [41] and inmouse TM4
Sertoli cells [5,42], they seemed not to be the main Cl� channels
currents to modulate Ca2þ influx in Sertoli cells and testis from 10
day-old rat, in our experimental conditions.

We investigated the signaling events underlying the effect of
1,25D3 on Ca2þ influx keeping in mind the role of PKC and PKA
commonly described either by phosphorylation of ionic channels or
as a target cross-talk proteins tomediate extracellular signals to the
nucleus [7,14,41,43]. It has been reported that 1,25D3 activation of
45Ca2þ influx in Sertoli cells. Pre-incubation time: 60 min in the presence of 45Ca2þ

sence of 1,25D3 and 45Ca2þ 0.1 mCi/mL. Values are means � S.E.M for three independent
< 0.01 and ###p < 0.001 compared with 1,25D3 group.



Fig. 7. Effect of 1,25D3 on total ERK1/2 (A) and phosphorylated ERK1/2 (B). Cells were incubated for 1 min with/without the hormone. Cells were lysed and prepared to immu-
noblotting analysis. The Coomassie blue stained gel is showed as a representative protein loading control (C). The total and phospho ERK1/2 levels were measured, as described in
methods section. Values are means � S.E.M for three independent experiments carried out in quadruplicate. **P < 0.01 compared with control group.
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PKC may cause PKA activation via a cross-talk mechanismwith the
cAMP pathway to mediate 1,25D3-dependent Ca2þ uptake in the
skeletal muscle [44]. Herein, we demonstrated the involvement of
PKC in 1,25D3 nongenomic modulation of Ca2þ currents that is in
agreement with results obtained in other tissues [45,46]. Also,
consistent with these findings, the results of our previous report
[14] evidenced differential mechanism of action to 1,25D3 targeting
the amino acid accumulation, supporting that 1,25D3 can non-
genomically alter distinct signal-transducting pathways.

It has been described that the conformationally flexible 1,25D3

can interact with the VDR localized in the cell nucleus to generate
genomic responses or in caveolae of the plasma membrane to
generate rapid responses [47,48]. Binding of 1,25D3 to the caveolae-
associated VDRmay result in the activation of one or more systems.
There are a number of possible outcomes including opening of cells
voltage-dependent Ca2þ or Cl� channels or generation of second
messengers. Some of these second messengers, particularly Raf/
MAPK, may be involved in cross-talk with the nucleus to modulate
gene expression [49]. We found a significant inhibition of Ca2þ

influx when PD 98059, an inhibitor of MAPK cascade was co-
incubated with 1,25D3. In addition, we detected a significant
increase on thymidine DNA incorporation at 5, 15 and 60 min,
corroborating the high nuclear activity of Sertoli cells at this age
(data not shown). Recently, we have clearly demonstrated that
1,25D3 is concerned in the aromatase expression regulation in
immature rat Sertoli cells involving a putative membrane VDR
associated with a nongenomic pathway and PKA activation [50].
These are in agreement with some reports showing the partial
involvement of MEK (ERK1/2) on rapid signal transduction of
1,25D3 in intestine [49], NB4 cells and osteoblasts [51,52].



Fig. 8. Effect of microtubules integrity and ClC-3 channel activity on the stimulatory
effect of 1,25D3 on 45Ca2þ influx in Sertoli cells. Pre-incubation time: 60 min in the
presence of 45Ca2þ 0.1 mCi/mL. Drugs were added 25 min before the incubation time.
Incubation: 60 s in the presence of 1,25D3 and 45Ca2þ 0.1 mCi/mL. Values are
means � S.E.M for three independent experiments carried out in quadruplicate.
***P < 0.001 compared with control group; #p < 0.05 compared with 1,25D3 group.
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Several studies suggest that steroid hormones and related
compounds can activate members of the MAPKs, including ERK1/2
and p38 MAPK in different rapid responses linked or not to
nuclear activation [2]. Pardo et al. [7] reported that p38 MAPK
stimulation by 1,25D3 involves Ca2þ, c-Src and PKA as upstream
regulators to c-Fos induction in intestinal cells. Also, p38 MAPK
family has been involved in classic genomic events in HL60 and
THP-1 cell lines [52].

p38 MAPK downstream effectors consist in a cascade of kinases
and transcription factors [40,53]. The presence of SB 23,9063
provided strong evidence that Ca2þ and PKC are upstream modu-
lators of ERK1/2 in the activation of p38 MAPK by 1,25D3 in Sertoli
cells. In agreement with our results, extracellular Ca2þ has been
shown to modulate p38 MAPK and CREB [41,54]. Furthermore, it
has also been reported that depending on the stimulus and of the
cell type, p38 activation has been shown to be dependent [55,56],
or independent of PKC [8,57]. Taking together these results indicate
that more than one signal contributes to the 1,25D3 mechanism of
action, depending on the tissue. In this studywe found that PKC and
p38 MAPK are stimulated by 1,25D3 to generate a rapid response of
Sertoli cells connecting plasma membrane effect with genomic
activity and supporting a role for PKC in the upstream activity to
ERK1/2 and p38MAPK activation. In addition, the stimulatory effect
of 1,25D3 also on ERK1/2 phosphorylation corroborates an intra-
cellular cross-talk to connect the rapid Ca2þ influx to nuclear
activity demonstrating that there is more than one mode of 1,25D3
action targeting Ca2þ channels, suggesting multiples sites of
possible regulation.

In order to verify the contribution of microtubules assembly in
Sertoli cell in the stimulatory effect of 1,25D3 on 45Ca2þ influx, we
co-incubated the hormone with a microtubules disruptor, colchi-
cine. We showed that microtubule network has a significant
contribution on intracellular substances or vesicles traffic on Sertoli
cells as already demonstrated to plasma membrane amino acid
transport in immature rat testis, in the presence of colchicine
[34,58].

The involvement of Cl� channels activities in bone material
secretion has been reported [1,6]. In addition, ClC-3 channel, which
is known to be involved in exocytosis, is present at the membrane
of secretory vesicles. Also, recently it was reported by our group
that Cl� channels (ClC-3), highly expressed in mouse Sertoli cells
line, are found in the organelles membrane as well as on the plasma
membrane and participates on Sertoli cell secretory activities [5].
So, we compared the effect of a specific blocker of ClC-3 in the
stimulatory effect of 1,25D3 on 45Ca2þ influx demonstrated in the
Fig. 4A and B, with the colchicine effect to suggest the Ca2þ

contribution on intracellular vesicles trafficking in Sertoli cells.
Taking in account these findings, studies are underway (confocal
microscopy and electrophysiology) to clarify the involvement of
Ca2þ influx and the activation of ClC-3 channels to mediate a rapid
response of Sertoli cells to secretory activities regulated by 1,25D3.
5. Conclusion

In conclusion, these results suggest a possible interaction of
1,25D3 with the plasma membrane of Sertoli cells which might
open Kþ

ATP, Kþ
Ca2þ

and Cl� channels “hyperpolarizing” the cells. This
hyperpolarization could induce an opening of VDCCs, Ca2þ influx
and “depolarization”. The local Ca2þ transient activates PKC that
may regulate plasma membrane ionic channel activities (Ca2þ and/
or Ca2þ-dependent Cl� channels). Also, PKC has a putative central
role as upstream regulator of MEK and ERK1/2 to p38 MAPK acti-
vation. p38 MAPK can modulate cellular responses through the
activation of phosphorylation of other kinases, cytoplasmic and
membrane proteins and/or activation of specific transcription
factors altering gene transcription. Concomitantly, a specific signal
that links Ca2þ influx to microtubules movement and ClC-3 activity
can produce some of the effects commonly associated with local
Ca2þ increase, as for example, secretory activity.
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