symporter (vSGLT), a close structural homologue exhibiting the same topological fold. Based on the topological identity we also used the x-ray structure of Aquifex aeolicus lactose transporter (LeuT) to further improve the model of our system. Sequence alignment was performed to identify important residues and potential substrate/ion binding sites. Radioactive labeled biomarkers were used as potential substrates/inhibitors, in line with the clinical applications. Aside from the radio-labeled iodide, we considered tetrafluorohorate, perchlorate, bromide, and thiocyanate. Firstly, the binding sites were identified through a docking process. Following which in order to enhance I- and inhibitor transport, necessary for improved imaging, we had to expand our system beyond the wild-type protein. The mutants we considered are essential for transport and they are Q72N, I147C, E636A, and M68A. By inducing different rates of transport we can deduce how the protein responds to specific mutations. We have successfully identified a favorable response to our mutations and we are hopeful our approach to the engineered NIS protein will further aid in the treatment and imaging of thyroidal and extrathyroidal cancers.

1545-Pos Board B496
Effect of Mutations on Transport by the Sodium/Iodide Symporter (NIS) Yuly E. Sanchez 1,2, L. Mario Amzel 1, Nancy Carrasco 3, Juan Pablo Nicola 4, Giuseppe Ferrandino 1
1Pontificia Universidad Javeriana, Bogota, Colombia, 2Physics, Universidad Nacional de Colombia, Bogota, Colombia, 3Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, BALTIMORE, MD, USA, 4Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.

The Na+/I- symporter (NIS) mediates iodide transport into the thyroid and other endocrine glands, stomach, lactating breast, and small intestine. To understand the observed effects of single amino acid substitutions in the mechanism of transport by NIS, wild type NIS and NIS mutated at selected positions were studied using computational methods. Normal modes analysis with the Anisotropic Network Model (ANM) was used to explore the changes in global movements between NIS and the mutants in the presence or absence of the ions they transport (Na+, I-, and ClO4−). ANM has been shown to be a useful computational tool for predicting the dynamics of membrane proteins in many applications. The lowest normal modes generated by the ANM provide valuable insight into the global dynamics of biomolecules that are relevant to their function. We employed a modified version of ANM in which closeness of side chains are also used to assign alpha-carbons connections, allowing us to identify differences due to mutations and the influence of ions on these global movements, thus enabling a first approximation to the influence of mutations on the transport mechanism of NIS.

To address questions relating to the coordination of the transported ions in the wild type and in mutants, we carried out molecular dynamics simulations in a lipid bilayer using an implicit solvent model with GBMV (Generalized Born Molecular Volume) in both wild-type NIS and NIS mutants and their ions. A homology model of NIS based on the structure of the bacterial homologue vSGLT (Vibrio parahaemolyticus Na+/galactose transporter) was used in both the normal modes analysis and the molecular dynamics simulations.

1546-Pos Board B497
Towards the Mechanism of Sodium/Proton Antipporter in E. coli Yandong Huang, Jana Shen.
Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.

NhaA is a secondary active transporter that regulates the cellular concentrations of proton and sodium ions. Sodium binding to two conserved aspartates Asp163 and Asp164 is thought to induce a conformational change from the inward- to the outward-facing state. The dimeric crystal structure of E. coli NhaA in the inward-facing state at acidic pH was recently determined. In contrast to the previous monomeric crystal structure, a salt bridge between the conserved residues Asp163 and Lys300 is formed, while the transmembrane helix that contains Lys300 is disrupted. To delineate the mechanism implicated by the structures, we calculate the pKa values of Asp163, Asp164 and Lys300 using all-atom constant pH molecular dynamics simulations with pH-based replica-exchange sampling protocol. The results provide new insights into the working of the antipporter NhaA.

1547-Pos Board B498
The Molecular Basis for Substrate Specificity in Lactose Permease Magnus Andersson 1, Erik Lindahl 2, Stephen H. White 1, Ronald H. Kaback 1
1Department of Theoretical Physics, KTH Royal Institute of Technology, Stockholm, Sweden, 2Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden, 3University of California, Irvine, Irvine, CA, USA, 4University of California, Los Angeles, Los Angeles, CA, USA.

Lactose permease (LaY) has become a model system for monitoring substrate transport across the lipid bilayer. As a result of considerable experimental and structural studies, the underlying mechanisms of specificity and affinity, as well as a mechanism for symport have been postulated. We have now monitored LaY structural dynamics in a lipid environment for 10 microseconds by using molecular dynamics simulations of a recent mutant LaY crystal structure trapped in a novel occluded state with bound high-affinity substrate. On this timescale, the sugar molecule exits the protein and re-enters. Therefore, the accompanying dynamics provide important clues regarding substrate affinity and specificity. In particular, Phc27 and neighboring lipid molecules assist in directing the sugar molecule to its binding position. In addition, simulations of substrates with different binding affinities enabled characterization of the structural framework governing substrate affinity in LaY.

1548-Pos Board B499
Defining the Conformational States in an Mfs Transporter, FucP
Jo Lee, Philip C. Biggin.
Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
The plethora of X-ray crystal structures in the Major Facilitator Superfamily has provided a series of snapshots that define the alternating access mechanism for ligand transport. A sticking point, however, is that there is not yet a series of conformations of states observed from an organism to support the proposed mechanism of transport. This is a problem that Molecular Dynamics (MD), using atomistic simulation, is ideally suited for to help improve the overall working hypotheses of how conformational changes in transmembrane helices occur during ligand transport.

FucP is the only X-ray crystal structure in an outward facing conformation and it is a L-fucose/H+ symporter, much like LaY. The resting state for this protein is thought to be accessible to the periplasm (outward facing) and the protonation of E135 in the central, solvent-accessible cavity along with the binding of the transported ligand, L-fucose is what destabilizes the conformation, causing a movement to the inward-open state, allowing ligand transport into the cytoplasm.

Using MD simulation, the conformational changes FucP undergoes on ligand binding can be characterised and related to the specific roles of each of the 12 transmembrane helices. In particular helices 1 and 4 are believed to be pivotal to proton translocation via residues D46 and E135 [1], with E135 also involved in L-fucose binding. On protonation, the interaction between E135 and Y365 (helix 10) is destabilised and this is investigated using both biased and unbiased MD simulations to better define the degree to which the protein is ‘open’.


1549-Pos Board B500
The Human Proton-Coupled Folate Transporter: Determination of Conformation and Identification of the Folate-Binding Pocket
Swapnaeta Date, Cheng-Yen Charles Chen, Yidong Chen, Michaela Jansen.
Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
Folate cofactors play crucial roles in hundreds of reactions in cells including DNA and protein synthesis. The human proton-coupled folate transporter (PCFT) is the only means of absorption of dietary folates in humans. PCFT expression and function is associated with many disorders including hereditary folate malabsorption, neural tube defects, Down syndrome, cancer, heart diseases, Alzheimer’s and Parkinson’s disease. Uptregulation of PCFT expression in tumor cells is of significant consideration for development of PCFT-targeted chemotherapeutic agents. However, not much is known about the structure and function of PCFT, which contributes to the low clinical success rate of folate-based agents. To address this gap in the knowledge we performed extensive Cys-mutation studies. We analyzed 40 residues towards the extracellular face of PCFT, 35 positions to-wards the cytoplasmic face of PCFT and 28 positions along the proposed folate-biding pocket of PCFT. Based on the accessibility studies of the extracellular face of PCFT we determined loop-helix boundaries of this face and identified the glycerol-3-phosphate transporter (PDB#1PW4) and tripeptide-proton symporter (PDB#4APS) as the best templates for modeling PCFT. Based on the accessibility studies of the cytoplasmic face of PCFT, we identified loop-helix boundaries of this face. Here, we show that our accessibility studies support the hypothesis that PCFT is present predominantly in an inward-open conformation in the absence of substrate (pH 7.5 and no folic acid). We also show that the folate-binding pocket of PCFT is formed by residues present in PCFT transmembrane helices I, IV, V, X and XI. Our results are of high significance in understanding the details of folate-homeostasis mechanisms and in design of PCFT-targeted therapeutic and diagnostic agents.