
Computational Geometry 25 (2003) 67–95
www.elsevier.com/locate/comgeo

Sets of lines and cutting out polyhedral objects

Jerzy W. Jaromczyka,∗, Mirosław Kowalukb,1

a Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
b Institute of Informatics, Warsaw University, Warsaw, Poland

Received 12 July 2001; received in revised form 14 March 2002; accepted 20 June 2002

Communicated by H. Alt

Abstract

We study algorithmic questions related to cutting polyhedral shapes with a hot wire cutter. Such cutters are popu-
lar manufacturing tools for cutting expanded polystyrene (styrofoam) with a thin, moving heated wire. In particular,
we study the question of polyhedral-wise continuity:Can a given object be cut out without disconnecting and then
reattaching the wire? In an abstract setting this question translates to properties of sets of lines and segments and
therefore becomes suitable for computational geometry techniques. On the combinatorial and algorithmic levels
the results and methods are related to two problems: (1) given a setF = {f1, . . . , fk} of polygons and a polygonf ,
decide if there is a subset of lines in the set of lines not stabbingF that coverf ; (2) construct the connectivity
graph for free movements of lines that maintain contact with the polyhedral shape. Problem (1) is solved with the
dual projection and arrangements of convex and concavex-monotone curves. Problem (2) can be solved with a
combination of the skewed projections [6] and hyperbola arrangements proposed by McKenna and O’Rourke [11].
We provide an O(n5) algorithm for constructing a cutting path, if it exists. The complexity of the algorithm is
determined by the O(n4) size of the connectivity graph and the cost of solving (2).
 2002 Elsevier Science B.V. All rights reserved.

Keywords:Polyhedral objects; Dual projection; Skewed projection; Manufacturing; Hot-wire cutting

1. Introduction

With the tools of computational geometry we study algorithmic problems related to manufacturing
applications of hot wire cutters. Such a cutter is a thin, electrically heated wire (geometrically, a line) that
slices through a block of styrofoam while cutting out a desired object (in this study, a polyhedral shape).

* Corresponding author.
E-mail address:jurek@cs.engr.uky.edu (J.W. Jaromczyk).

1 Partially supported by grant KBN 8T11C03915. This research was partially supported by the Center for Computational
Sciences of the University of Kentucky.

0925-7721/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0925-7721(02)00131-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82469139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


68 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Fig. 1. A schematic view of a cutter. A cutter can be either operated manually or be computer-controlled. The picture shows the
wire in park after cutting out a prism with a triangular base from a block of styrofoam.

The wire is mounted on a mobile frame (gantry) that moves above the stationary block of foam during
the cutting process. The block sits on a table. A schematic view of such a cutter is shown in Fig. 1.

More advanced models are equipped with a turntable so the block of styrofoam can be rotated, which
allows for cutting shapes with rotational symmetry. The two ends of the wire are attached to the opposite
sides of the frame and they can move vertically on the frame. Foam hot wire cutters are used for a
variety of applications ranging from serious manufacturing jobs to crafts and hobbies. Products that
can be manufactured with hot wire cutters include reverse molds for the concrete industry, packaging
projects, signs and retail graphics, props and exhibit stands, pre-production prototypes, packaging molds,
architectural and building components, foam props for retail designs, movie sets and stage props, pipe
insulation, hobby items (such as railroad models), and craft projects. These products can be either cut-out
from a block of styrofoam or assembled from a number of separately cut-out elements.

In spite of a long list of capabilities of the hot-wire cutters, it is clear that there are shapes that cannot
be manufactured with this method, at least not without assembling them from separately cut modules.
Examples include shapes with cavities. The objective of this paper is to study both the shapes that can be
produced with foam cutters and the algorithmic problems related to wire cutting. Specifically, we look at
the following questions:

• 1–1 cutting—can the object be cut out in such a way that each point of its faces is touched exactly
once (e.g., consider a square with a small cube attached to its center)?

• face-wise continuity—can each face be cut out without moving the wire away from the plane
containing this face and then returning to this plane (e.g., consider a triangle with two small cubes
attached to it)?

• polyhedron-wise continuity—can the polyhedral set be cut out without disconnecting and reattaching
the wire (e.g., consider a cube with a hole through the middle)?

• feasibility—what shapes can be cut out?
• cutting-path description—can the ends of the wire move along any curve, or piece-wise linear curves

only?

The technological rationale behind 1–1 cutting is to avoid overheating of the cut surface, behind
face-wise continuous cutting to avoid inaccuracies in cutting the surface, and behind polyhedron-wise
continuity to allow the wire to cut out the shape without changing the tool.



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 69

Fig. 2. These upside-down tables appear similar but only the one on the right can be cut out with a wire.

Preliminary results addressing the above questions were presented in two conference papers [7]
and [8].

Clearly, from a manufacturing point of view we need not only to answer the feasibility problem but
also to construct a description of the cutting path for the wire (via moving its endpoints) and develop a
framework for constructing and describing cutting paths. It is possible to see that there are two major
obstacles to this type of cutting. The first difficulty may be posed by the connectivity structure (for
example a cube with a hole). The second arises from the possibly complex relations between facets of
polyhedral sets. This issue is well-illustrated in Fig. 2. Although the shapes seem to be similar, only the
table on the right side can be cut out.

Let us formalize our problem to be able to study it with the tools of computational geometry. LetP be
an open polyhedral shape (later simply called a polyhedron) understood for the purpose of this paper as a
3-dimensional solid bounded by planar facets, and assume that its closure�P has a total ofn faces, edges
and vertices. For technical reasons it is convenient to consider open polyhedra rather than closed ones
(think that the wire is peeling off the boundary of the object). Edges ofP are defined as the corresponding
edges of�P . It is convenient to define faces ofP to be the interiors of the corresponding faces in�P .

A pathp of lines is a continuous mapping from an interval[a, b] into the space of lines inR3. Such
a path can be described with a pair of functions representing the location (in some coordinate system) of
two selected points of the line (wire) as a function of time.

The concepts of paths, subpaths and continuity can be formalized further by introducing a natural
topology in the space of lines represented with Plücker coordinates following [1,15]. This formalization
led to a number of strong results for lines in three dimensional spaces, including some relevant to our
study of lines moving among obstacles. In particular, [15] mentions applications related to modeling
radiation or light beams.

Paths of lines that do not intersectP (P is open) and intersect the boundary of�P are calledadmissible.
The rationale behind this definition is that in this paper we are planning for paths that always stay in
contact with the closure�P of P (compliant motions). Note that admissible paths can contain lines that
are tangent to two skewed edges ofP and are not necessarily in contact with a face.

We say that a path of lines cuts outP if (1) it is admissible and (2) the union of the intersections of
the lines in the path with�P is equal to the boundary of�P .

We further say that a line (in the path)cutsa facetf , defined as the interior of the corresponding facet
in �P , if it is admissible, lies in the plane supportingf and has in this plane a non-empty intersection
with f . A pathp cuts outf if it is admissible and the intersection of lines inp with the closure ofP
containsf . Note thatp that cuts outf can cut or cut out facets ofP that are coplanar withf . Alsof can



70 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

be cut out with a number of subpathsp1, . . . , pm of p, each cutting out only a portion off . This leads to
the next definition. We say thatf is cut out with the face-wise continuity if there is a continuous subpath
p′ of p that cuts outf and all lines inp′ cut f . A face-wise continuous cutting pathp for f such that
each point off belongs to exactly one line ofp is called a 1–1 cutting path.

Finally, we say that subpathsp1, . . . , pm cutting out facets ofP can beblendedinto a cut-out path for
P if there exists a sequenceq1, . . . , qm−1 of admissible paths forP such thatp = p1q1p2q2 . . . qm−1pm

is a continuous path that cuts outP .
The problem of wire cutting with polyhedron-wise continuity can be now defined as: “Given an open

polyhedral setP find a (continuous) cut-out pathp for P , if it exists”.

2. Overview of results and methods

A solution to the problem of planning a cutting path requires a schedule for moving the wire between
the faces ofP to cut them out. Individual faces may require more than one visit of the wire to avoid
obstacles during cutting (consider as an example the task of cutting out the bottom of a table with four
legs).

Our solution has, therefore, two components: (a) build a graph of admissible movements for the cutting
wire and (b) verify if there is a path in this graph that visits all the faces in such a way that allows them
to be cut out, in portions if necessary.

The first component is based on analyzing the structure of the space of free lines (admissible
movements for the cutting wire). We build the connectivity graph (the lattice structure) of this space, from
whose connected components and edges we can derive answers to our questions. This general approach of
constructing free-spaces, introduced by Lozano-Pérez [9], is commonly used in robotics for robot motion
planning, see [17]. The connectivity-graph technique was introduced and used in a series of papers by
Schwartz and Sharir, see [16]. Questions related to collision-free translations in three dimensions for
lines and polyhedra have been studied in the computational geometry literature. In particular, an O(n)

algorithm for translating convex polyhedra withn vertices is given in [12]. Simple polyhedra withn
edges each can be translated in O(n4 logn), as presented in [13]. Pellegrini [14] solves the problem of
separating a set ofn blue lines from a set ofm red lines in O(n3/4m3/4+ε +m1+ε + n1+ε) whereε is an
arbitrary small positive number and the asymptotic constant may depend onε. Our problem is different
and pertains to the feasibility of moving a line (wire) along faces of a given polyhedron—a compliant
motion.

Before presenting the connectivity-graph for the wire motion, we will discuss cutting out individual
faces, consecutively focusing on 1–1 cutting, face-wise continuous cutting and the feasibility of cutting.
As we will see, the problems involve lines that avoid certain polygons (obstacles), and the dual
transformation is used as the major technique. Specifically, we will analyze lines inplane(f ), the plane
supporting facef , that intersectf without intersecting (the interiors of)f1, . . . , fk . It is convenient
to look at such lines using the dual projection that maps points into lines and vice versa using the
following transformation:(a, b) → y = ax − b, see [3,4]. The dual projection depends on the choice
of the coordinate system and is not defined for lines parallel to theOY axis.



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 71

3. Cutting out single faces

This section addresses the problem of cutting out single faces: face-wise continuous cutting, 1–1
cutting, and arbitrary cutting.

P is bounded by planar facets. Letf be a facet and letplane(f ) be the supporting plane forf .
Consider the intersectionplane(f )∩ �P . This intersection is a set of polygons that includef and perhaps
some other facets ofP as well as cross-sectionsf1, . . . , fk of P with plane(f ). Polygonsf1, . . . , fk are
potential obstacles for the wire cutter. Since a line intersectsfi if and only if it intersectsconv(fi), in
the further discussion we can assume that all off1, . . . , fk are convex polygons. Additionally, we will
allow the cutting line to cut the boundaries off1, . . . , fk so when neededf1, . . . , fk will be considered
without their boundaries. For each facef its obstacles can be found in O(n logn) time assuming that a
set of sequences of edges of the faces of the polyhedral shape is available. The process can be organized
as follows: for each facefp we find the intersections of the edges of this face withplane(f ). If there are
intersection points, we connect them, based on the list of edges offp, to form segments that correspond
to the intersection off andfp. The cost of finding such segments for all faces is O(n). Knowing that
these segments form disjoint cross-sections onf we can sweep the plane to identify segments with joint
endpoints. The cost of this step is O(n logn). Based on the list of edges in the faces, we can group such
connected segments into polygons in O(n logn) total time.

Since most of the results of this section are based on the dual projection, let us start with a number of
its properties.

3.1. Dual projections for cutting lines, faces and obstacles

It is well known that the dual of a line segmente is a double wedge, see [3,4]. The double wedge is
that part ofR2 that is bounded by the two dual lines of the endpoints ofe and does not contain a vertical
line parallel toOY .

The dualS(f ) of a convex polygonf with edgese1, . . . , ep, which for the sake of this section
is considered as a closed polygon inR2, is the union of the double wedges of the edges off , i.e.,
S(f )= ⋃p

i=1S(ei).
S(f ) does not contain any line parallel toOY, and each vertical line is intersected once by each

boundary. Therefore it makes sense to talk about the upper boundary and the lower boundary ofS(f );
they will be denoted byU(S(f )) andL(S(f )). The image of a convex polygon in the dual projection is
illustrated in Fig. 3.

There are a number of elementary properties ofS(f ), some of them well-known, that will be useful
in the sequel.

Lemma 3.1. The boundary ofS(f ) consists of two polylinesU(S(f )) andL(S(f )) whose angles are
reflex.

Proof. S(f ) is the union of double wedges whose boundaries are piecewise linear. Each vertex of the
boundary is either the vertex of a double wedge, and thus reflex, or it is the intersection of halflines from
the boundaries of some double wedges and their union forms a reflex angle at this intersection.✷

Due to their shape dual projections of convex polygons will be calledbutterflies.



72 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Fig. 3. A convex polygon and its dual image with edges on the upper and lower boundaries corresponding to the vertices of the
polygon in primal space.

Lemma 3.2. (1) Each line supporting a segment on the boundary ofS(f ) is contained inS(f ). (2) Each
line tangent to the boundary ofS(f ) at vertexv is contained inS(f ). (3) Each segment connecting a
point inU(S(f )) with a point inL(S(f )) is contained inS(f ).

Proof. (1) The line supporting a segment of the boundary belongs to the double wedge of some edgee

of f and as such is contained in the union of the double wedges; this proves the first statement.
(2) v is the dual image of the supporting line for some edges off . Each line tangent to the boundary

of S(f ) at v is in the double wedge defined by lines meeting atv and as such it is the dual image of a
point in e. Since lines intersecting the interior ofe intersectf , the dual lines of points in the interior ofe
are inS(f ).

(3) Statement (2) of this lemma implies that a line can intersect the boundary ofS(f ) at most twice.
Assume, for example, thatl intersectsU(S(f )) in two points (it cannot intersect in more because all
the vertices on the boundary are reflex). Letl′ be parallel tol and tangent to a vertex inU(S(f )). l′ is
contained inS(f ) and as such it separatesl from L(S(f )). Consequentlyl cannot intersectL(S(f )).
Therefore the segment connecting a pair of points inU(S(f )) and L(S(f )) does not intersect the
boundary in any other point and thus is entirely included inS(f ). ✷

Let f1, . . . , fk be convex polygons with a total of O(n) vertices. Denote byS(f1, . . . , fk) the union⋃k
i=1S(fi). Whenf1, . . . , fk are obstacles then, as mentioned earlier, we take the duals of their interiors.
The following holds:

Lemma 3.3. (1) R2 \ S(f1, . . . , fk) is a union of convex polygons(possibly unbounded). (2) The
combinatorial complexity ofR2 \ S(f1, . . . , fk) is O(n2), and the number of polygons in this difference
is O(n2).

Proof. (1) By virtue of Lemma 3.1 the boundary of each component of the difference is piecewise linear
with the angle at each vertex being the complement of a reflex angle, and thus convex.

(2) The combinatorial complexity is not larger than that of an arrangement of O(n) lines. In the primal
space each polygon in the difference corresponds to a set of lines not cuttingf1, . . . , fk. Note that if



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 73

Fig. 4. A set of polygons and their corresponding butterflies. Gray polygons and butterflies correspond to obstacles.

obstaclesf1, . . . , fk are arranged on a circle then each set of all of the lines passing through two gaps
between the obstacles corresponds to a polygon in the difference. Clearly, for such an arrangement of the
obstacles the number of polygons is proportional ton2. ✷

Because of our interest in cutting outf the setD(f,f1, . . . , fk)= S(f ) \ S(f1, . . . , fk) is particularly
important for our considerations. Fig. 4 illustrates the above concepts. The difference of the butterflies
for the white and shaded triangles consists of four connected components (the white areas between the
upper and lower solid lines).

As mentioned earlier, vertical lines do not have dual projections. To include them, we can use
the projective plane (see [2]) and consider its subset consisting of all the lines that are contained in
D(f,f1, . . . , fk). One of the ways to look at such a space is to identify the antipodal ends of the lines
with the points at−∞ and+∞. This point at infinity corresponds to a vertical line. This affects the
notion of continuity of curves contained inD(f,f1, . . . , fk). In particular, continuous are those curves
that consist of two pieces with one piece having endpoints at−∞ and a point on the boundary and the
other piece having endpoints on the boundary and at+∞ (the unbounded endpoints meet at infinity).

For our purposes, it is important to know that with a suitable choice of the coordinate system we
can transform curves passing through infinity into curves joining the opposite boundaries ofS(f ). For
example, assume that in a coordinate systemXOY both the endpoints of a curve passing through infinity
are inU(S(f )) and their extremalx-coordinates arex1 andx2. Select a new coordinate system with
OY ′ having slopexm = x1+x2

2 . In this new coordinate system lines with slopexm become vertical and are
mapped into a point at infinity. Also, the unbounded portions of the boundaries ofS(f ) swap positions
after such a change of the system so that curves passing through infinity that connect points both either in
U(S(f )) or in L(S(f )) change to curves joining a pair of points from the opposite boundariesU(S(f ))

andL(S(f )). This observation will be useful in selecting convenient coordinate systems and will allow
us not to have to worry about vertical positions for the cutting line.

Fig. 5 illustrates the dependence ofD(f,f1, . . . , fk) on the choice of the coordinate system. It also
shows a schematic view of the fragment of the projective space for the butterflies and the cuts (the value



74 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Fig. 5. A face (white), an obstacle (gray) and their dual images in three different coordinate systems. The upper picture is a
schematic view of the dual space as a projective space with lines at infinity identified. Segments represent places where the
space can be cut to represent standard coordinate systems as depicted in the second row of images.

of x) that allow the flattening of the fragment in order to present it in a standardR2 coordinate system.
Sincex coordinates in the dual space correspond to slopes in the primal space, the choice ofx determines
the direction forOY . Note that Lemma 3.2 implies that the opposite unbounded segments ofU(S(f ))

andL(S(f )) are pairwise colinear.

3.2. Face-wise continuous cutting out

Consider a convex polygonf and convex obstaclesf1, . . . , fk. In this section we are interested in
a face-wise continuous cut-out forf . Considering convexf seems to be a restriction. However, we
can work with a Boolean model where a facet is represented as the difference of a convex polygon and
obstacles or “holes”. To explain the idea let us use color coding:white for what we cut out,black for
obstacles, andgray for portions that are not inf but are not obstacles. If we start with awhite convex
polygonf and placeblackobstacles andgray regions, then only the remainingwhiteportion off must
be cut out. We cannot penetrate theblack regions, and we can but do not need to cut thegray regions. In
this model a convexf supports the facet ofP that is viewed as the difference between a convex polygon
and polygons corresponding to parts ofP that protrude fromf . Such obstacles play a different role than
obstacles disjoint withf .

Although all the following results can be stated forwhite, blackand gray regions, for the sake of
simplicity we just consider convex faces (white) and obstacles (black).

We have the following straightforward result:



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 75

Lemma 3.4. The dual image of a line that cutsf (without penetrating the obstacles) is a point in
D(f,f1, . . . , fk). Each point inD(f,f1, . . . , fk) is the dual image of some line that cutsf .

Proof. Follows directly from the definitions of cutting lines andD(f,f1, . . . , fk). Points at infinity
correspond to vertical lines.✷
Lemma 3.5. If there exists a linel in S(f ) that is not contained in anyS(fi), i = 1, . . . , k, but is contained
in S(f1, . . . , fk), thenf cannot be cut out.

Proof. l corresponds to a pointz in f but not in any obstacle. Each point inl corresponds to a linel′
passing throughz and vice versa. Since each point inl is in someS(fi), the correspondingl′ intersectsfi.
Consequently pointz cannot be cut out. ✷

Now the face-wise continuous cutting can be characterized as follows:

Theorem 3.1. f can be face-wise continuously cut out if and only if there is a continuous curveρ in
D(f,f1, . . . , fk) that intersects all lines that are contained inS(f ) and are not contained in anyS(fi),
i = 1, . . . , k. The curveρ is contained in one connected component ofD(f,f1, . . . , fk).

Proof. Note that by Lemma 3.5 ifρ intersects all lines inS(f ) but not inS(fi) for i = 1, . . . , k, then
there are no lines inS(f ) that are contained inS(f1, . . . , fk).

Points inD(f,f1, . . . , fk) correspond to lines that cutf (Lemma 3.4). Any curve inD(f,f1, . . . , fk)

induces in the primal space a continuous path of lines that cut (but do not necessarily cut out)f and do
not intersect any off1, . . . , fk. Sinceρ intersects each line inS(f ) that is not inS(fi), i = 1, . . . , k, the
corresponding path of lines in the primal space cuts each point in the facet represented byf , and the
facet is cut out.

On the other hand, if such a path does not exist then every continuous path misses some point inf ;
consequentlyf cannot be cut out in a face-wise continuous fashion.

Sinceρ is continuous it must be contained in one connected component ofD(f,f1, . . . , fk). ✷
A special type of cutting can be obtained whenρ is limited to piecewise-linear curves.
We have a simple lemma that stems directly from the properties of the dual projection:

Lemma 3.6. (1) A vertical segment inD(f,f1, . . . , fk) corresponds to a family of parallel lines that
cut f . (2) A nonvertical segment inD(f,f1, . . . , fn) corresponds to a pencil(a double wedge) of lines
cutting f . The center of this wedge is inf if and only if the line supporting this segment is contained
in S(f ).

Proof. Let us show part (1). Points(x, y) corresponding to a vertical (parallel toOY) segment can be
parametrized withx = a, y = −b+ g(t), whereg(t) describes the position of the point on the segment.
In real space it corresponds to a family of parallel linesx = ax + b− g(t) that cutf without intersecting
f1, . . . , fk . Part (2) can be showed similarly.✷

The lemma is illustrated in Fig. 5. Different segments inD(f,f1, . . . , fk), which is equal toS(f ) as
there are no obstacles in this case, correspond to different cuts forf that are either translations or rotations



76 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Fig. 6. An exampleρ and the corresponding cutting paths. Depending on the shape ofρ (see the last image in the sequence), the
cuts are (1) translations, (2) rotations or (3) more complicated motions (ifρ is not a line segment). Note that the line forming
path (4) crosses infinity (unbounded components in the butterfly) and intersectsU(f (S)) twice. The corresponding cut is a
rotation that also includes a vertical position of the cutting line; see also Fig. 5.

of the cutting line. Since the segments join the boundaries ofS(f ) and thus are intersected by all the lines
in S(f ), the paths cut outf by virtue of Theorem 3.1. The segment labeled 4 consists of two halflines
and exemplifies a continuous curve in the projective space as discussed above. The corresponding cutting
path is a rotation of the cutting line that passes through a direction parallel toOY .

We will see in the next subsection that not all faces can be cut out in a face-wise continuous fashion.
Then we will discuss 1–1 cutting out, which is a special type of face-wise continuous cutting. Finally, we
will present an algorithm to decide if a face can be cut out with a face-wise continuous cut.

3.3. Faces and obstacles

In this section we analyze cuts for specific arrangements and shapes of faces and obstacles.

Lemma 3.7. Let f be a polygon and let an obstaclef1 be placed in such a way that it overlaps or is
contained inf . Thenf cannot be1–1 cut out.

Proof. Consider consecutive verticesA,B,C of f1 such that the vertexB of the angle� ABC is insidef .
We can assume that� ABC is smaller thanπ (otherwisef clearly cannot be cut out and in particular

cannot be 1–1 cut out). Assume now thatf can be 1–1 cut out. Consider a sufficiently small�BB ′C ′
with B ′ on the linel supportingAB (B betweenA andB ′), andC ′ in BC. Line l is one of the cutting
lines; otherwise points inf close toAB could not be cut. Now every linel′ that cuts points inside



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 77

�BB ′C ′ must intersect the interiors of two edges of this triangle. To avoidf1 one of them must beBB ′,
but points in this segment are cut by bothl andl′, a contradiction. ✷

If there is one convex obstaclef1 and it is in the interior off , thenf can be face-wise continuously
cut out (from Lemma 3.7 we know that it cannot be 1–1 cut out). A cutting line that rotates aboutf1

maintaining contact withf1 and touching the consecutive edges off1 provides a face-wise continuous
cutting out forf .

In contrast, we have the following.

Lemma 3.8. If there are two convex obstaclesf1, f2 that are in the interior off , thenf cannot be cut
out in a face-wise continuous fashion.

Proof. This can be seen by analyzing the structure ofD(f,f1, f2) which has two connected components.
There are lines inS(f ) and not inS(f1) or S(f2) that intersect one but not the other component. By
Theorem 3.1 there is no continuous cutting path.✷

We can consider other combinations ofwhiteandblack polygons and use similar methods to decide
about their properties regarding cutting out. We can also addgray polygons to mark regions that do not
belong tof and thus do not need to be but can be cut. Such regions allow us to analyze non-convexf

with the techniques developed in the previous section. Fig. 7 illustrates a face, an obstacle, a portion that
does not belong tof but is not an obstacle and their corresponding dual projections. Note that facef can
be cut out by rotating the wire around the obstacle.

Another interesting case that can also be analyzed with the techniques developed in the previous
sections is cutting out coplanar faces. Fig. 8 illustrates the problem. In a 1–1 cut we cut out all the faces
at once, or each of them individually, if possible. The dual projection for this case is more complicated
than for a single face.

Fig. 7. A non-convex face and its butterfly. The light gray represents the cavity, the dark grey represents an obstacle inside the
(white) face.



78 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Fig. 8. Cutting two coplanar faces with one common cut (1) and with separate cuts (2) and (3).

3.4. 1–1 cutting out

We know from the previous section that there are configurations of faces and obstacles such that a face
can be face-wise continuously cut out but not 1–1 cut out. This section presents an algorithm to decide if
a 1–1 cutting-out path exists.

An observation, which we state without proof, is that the angle swept by a 1–1 cutting-out line is
smaller thanπ . This implies that there is a coordinate system in which this 1–1 cutting path does not
pass through the vertical line direction. Although we do not know such a coordinate system, because
of the limit π on the swept angle we will be able to find two coordinate systems such that one of
them has the desired property. In the sequel we always look at two such systems and focus on curves
in D(f,f1, . . . , fk) that join opposite boundaries inS(f ). In each individual system we will look at
connected components ofD(f,f1, . . . , fk) in R2, and not in the projective space discussed earlier.

Lemma 3.9. A connected componentD of D(f,f1, . . . , fk) that has a non-empty intersection with at
most one boundary ofS(f ) cannot contain a1–1 cutting path.

Proof. Note that 1–1 cut-outs forf start and end at positions tangent tof viewed as a polygon inR2.
This means that the corresponding cutting paths start and end inL(S(f ))∪U(S(f )).

Assume thatD shares a piece of boundary withL(S(f )) but not withU(S(f )). That is, cutting paths
contained inD have both endpoints inL(S(f )). Assume thatρ is a 1–1 cutting path. Take a linel that
supports a piece ofL(S(f )) that is also inD. By Lemma 3.2,l is in S(f ), and a small rotation of it about
a vertex ofL(S(f )) on l yields a linel(ε) that is also inS(f ) and intersects the interior ofD. Let l′(ε)
andl′′(ε) be lines parallel tol(ε), in S(f ), and intersectingD (assume thatl′(ε) is the line that separates
l′′(ε) from L(S(f )). As a 1–1 cutting path,ρ must intersect bothl′(ε) andl′′(ε). Since both end-points
of ρ are inL(S(f )) andl′(ε) separatesl′′(ε) fromL(S(f )), ρ intersectsl′(ε) twice. This contradicts the
assumption thatρ is a 1–1 cutting path. ✷



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 79

On the other hand we have the following:

Lemma 3.10. A connected componentD ofD(f,f1, . . . , fk) that has a non-empty intersection with both
U(S(f )) andL(S(f )), boundaries ofS(f ), contains a1–1 cutting path.

Proof. By Lemma 3.2 and Lemma 3.3 a segment connecting points inD on the boundariesU(S(f )) and
L(S(f )) is contained inD. This segment crossesS(f ) and therefore is intersected by all lines inS(f ).
Thus, by Theorem 3.1, it induces a face-wise continuous cutting-out path. Since the segment intersects
each line inS(f ) exactly once, the cutting path is 1–1.✷

Lemma 3.10 implies a simple O(n2 logn) algorithm to verify if a convexf can be cut out in a 1–1
fashion. ConstructD(f,f1, . . . , fk). Then for each of the connected components inD(f,f1, . . . , fk), find
if it has a nonempty intersection with bothU(S(f )) andL(S(f )). Since the total number of components
and the combinatorial complexity ofD(f,f1, . . . , fk) is O(n2), the cost of this approach is O(n2 logn).

However, there is a better algorithm that is suggested by the following observation.

Lemma 3.11. There are onlyO(n) components inD(f,f1, . . . , fk) that can share boundaries with both
U(S(f )) andL(S(f )).

Proof. Butterflies corresponding to the obstacles intersect each of the boundaries ofS(f ) in O(n) points.
Two pieces of the boundary inU(S(f )) that belong to two disjoint components inD(f,f1, . . . , fk) are
disjoint and have ends in these intersections (or at infinity). Thus there are only O(n) components that
can share the boundary withU(S(f )), which implies the lemma. ✷

By Lemma 3.10 deciding if there is 1–1 cut is equivalent to finding a connected component in the
arrangementD(f,f1, . . . , fk) that shares boundaries with bothU(S(f )) andL(S(f )).

A simplified but helpful view of this situation is to visualize a white horizontal strip(S(f )) shaped
like � with gray strips (corresponding toS(fi)) lying across it, which can be thought of as fences. The
goal is to find a piece of the upper boundary and a piece of the lower boundary ofS(f ) that are not
fenced off from one another. To find if these exist, we will sweep the lower and upper boundaries ofS(f )

with two points moving along them in a synchronized way. We want to find a location for the sweeping
points such that they can see each other. Such positions must satisfy two basic conditions: (1) each of the
sweeping points is located on a non-covered piece of the boundary, and (2) each of the sweeping points
has crossed the same fences. The second condition simply means that the sweeping points are not on
opposite sides of some obstacle. Technical complications to this general process may result from fences
that do not completely cross the white strip.

The pattern of intersections between the butterfly off and the butterfly of an obstaclefi depends on
the mutual position off andfi in the given coordinate system. Specifically, the intersections depend on
the location of the external and internal tangents tof andfi . To see this, recall that the dual projection
maps parallel lines into points with the samex coordinates. Letslab(α, f ) be a family of all parallel lines
between a pair of tangents tof with slopeα. Similarly, let slab(α, fi) be a family of all parallel lines
between a pair of tangents tofi with slopeα. Each such slab maps into a vertical line segment in the
dual space, and this segment connects the upper and lower boundaries ofS(f ). A similar situation holds
for fi andS(fi).



80 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Fig. 9.f (white) andfi (gray), their tangents, and the corresponding intersections between their boundaries in the dual space.
Upper tangents, denoted withL andl, correspond to the lower boundaries.

Lemma 3.12. Boundaries ofS(f ) and S(fi) intersect at a point with coordinatex = α if there is a
common tangent tof andfi with slopeα. If α is ∞, then this intersection is at infinity.

Proof. ButterfliesS(f ) andS(fi) contain a common vertical segment withx = α if slab(α, f ) intersects
slab(α, fi); the intersection corresponds to the dual image of the common parallel lines in the intersecting
slabs. If a line with the slopeα is tangent to bothf andfi , thenslab(α, f ) andslab(α, fi) share the
boundary that maps into a common point in the dual space; this point is the intersection of the boundaries
of the butterflies. If the slope of the common tangent is∞ in the given coordinate system, then the dual
image of such a line does not exist; this corresponds to an intersection of the boundaries at infinity.✷

Depending on the position of the common tangents, the corresponding intersection point in the dual
space is between upper or lower boundaries ofS(f ) andS(fi). The total number of intersection points
is four (including intersections at infinity), the same as the number of common tangent lines.

Fig. 9 illustrates a few cases of possible intersections. For example, the leftmost image in Fig. 10
shows four intersections of the upper boundaryu = U(S(fi)) with the boundaries ofS(f ). Note that
l = L(S(fi)) does not intersectS(f ) at all. This is because the common tangents off andfi occur only
among the tangents tofi that are mapped into the upper boundary ofS(fi). Such an intersection causes
portions of one boundary ofS(f ) to be separated from the other boundary, and in our algorithm we
need to exclude those separated portions. Additional cases may be constructed similarly. For example,
consider the leftmost image in Fig. 9 with the gray butterfly shifted upwards to totally containL(S(F ));
the gray butterfly separatesL(S(f )) from U(S(f )).

The algorithm to find a component inD(f,f1, . . . , fk) that contains a path connectingU(S(f )) and
L(S(f )) can be organized as follows:



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 81

Fig. 10. ButterflyS(f ) (white) is intersected by a butterfly of group (1) (dark gray) and of group (2) (light gray).

Algorithm 1-1 Cutting out
Input: ButterfliesS(f ), S(fi), i = 1, . . . , k.
Question: Doesf have a 1–1 cut-out?
Method: Finds a component ofD(f,f1, . . . , fk) that shares a piece of boundary withL(S(f )) and
U(S(f )). Uses two data structures,TL and TU , to store the sweeping point status. The sweeping is
conducted with two points moving in a synchronized way alongL(S(f )) andU(S(f )).

Step 1. Select a coordinate system. ComputeS(f ) andS(fi) for i = 1, . . . , k. Find the intersections
of the boundaries of butterfliesS(fi), i = 1, . . . , k, with U(S(f )) andL(S(f )). Divide the
butterfliesS(fi), i = 1, . . . , k, into two groups: (1) those properly intersectingL(S(f )) and
U(S(f )) at four points in such a way that each boundary ofS(fi) intersects each boundary of
S(f ) twice and there are no intersections at infinity and (2) all other butterflies.

The first group corresponds to butterflies that crossS(f ) and split it into two components,
each containing portions ofU(S(f )) andL(S(f )). The second group corresponds to butterflies
that do not splitS(f ) into two components in the above sense. Fig. 10 shows a butterfly of each
kind.

Step 2. For each butterflyS(fi) in group (2) find its intersection with the boundary ofS(f ). Such an
intersection forms an interval(Ui.b,Ui.e) on the upper boundary and an interval(Li.b,Li.e) on
the lower boundary. These intervals are not separated from each other byS(fi). For butterflies of
group (2) there is at most one such interval on each boundary. The endpoints of the intervals can
be−∞ or +∞ if there are no intersections or there are no proper intersections (they correspond
to vertical tangents off andfi .) If there are no non-empty intervals on the boundaries ofS(f ),
then the butterflies of the obstacles completely separateL(S(f )) from U(S(f )). In this case the
algorithm returns with no 1–1 cutting-out path in this coordinate system and moves to Step 7.

Intervals (Ui.b,Ui.e) and (Li.b,Li.e) are computed based on the number of intersections
and their types. Below we describe an interval computation procedure for a few representative
cases. After finding the intersections betweenS(f ) andS(fi), we select the boundary ofS(f )
with fewer intersections and compute intervals as follows: If there are 0 intersections (say, with



82 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

U(S(f ))), then the corresponding interval(Ui.b,Ui.e) is set to(−∞,+∞). Then we check the
other boundary.
1. If there are 0 intersections then(Li.b,Li.e) is set to empty (boundaries are separated).
2. L(S(f )) is intersected once in a pointp and the intersection is withU(S(fi)). Then this

is a double intersection point (the total number of intersections must be four, including
intersections at the infinity) meaning thatU(S(fi)) is tangent toL(S(f )) atp. The interval is
set to[p,p]. In the prime space this is exemplified by two equal squares, one stacked on the
other. The pointp corresponds to the common edge of the squares, and this edge is contained
in a common tangent.

3. If there is one intersectionp of L(S(f )) with L(S(fi)), then (Li.b,Li.e) is set to empty
(boundaries are separated).

4. If there are two intersections,p1 andp2, of L(S(f )) with U(S(fi)), then(Li.b,Li.e) is set
to (p1,p2).

5. If there are two intersections,p1 andp2, of L(S(f )) with L(S(fi)), then(Li.b,Li.e) is set
to empty.
Other cases of different types of the intersections are classified similarly.
After finding the intervals, find the intersection(L.b,L.e) (in the sense of set intersection)

of all of the (Li.b,Li.e), and find the intersection(U.b,U.e) of all of the (Ui.b,Ui.e). These
intervals can be empty, in which case there is no 1–1 cutting path in the given coordinate
system. If there are no butterflies in group (2), then these intervals can span the entireU(S(f ))

or L(S(f )).
If at least one of(L.b,L.e) and(U.b,U.e) is empty, then the algorithm returns that there is

no 1–1 cutting-out path in this coordinate system and moves to Step 7.
Step 3. For eachS(fi) in group (1), find the four intersections of its boundary with the lower and upper

boundaries ofS(f ). Denote the intersection point on the upper boundary with the smallerx-
coordinate asf U

i .b and the other one asf U
i .e. Definef L

i .b andf L
i .e similarly.

Step 4. On each ofU(S(f )) andL(S(f )), sort the intersection points in the above sets.
Step 5. SweepU(S(f )) from −∞ to U.b. For each encounteredf U

i .b, inserti into TU and intoTL (if
not already in). For each encounteredf U

i .e, deletei from TU .
Similarly, sweepL(S(f )) from −∞ to L.b. For each encounteredf L

i .b, inserti into TL and
into TU (if not already in). For each encounteredf L

i .e, deletei from TL.
If upon stopping atU.b andL.b the structuresTU andTL are empty, then return that there is a

1–1 cutting out; a line segment connecting the sweeping points represents such a path (if any of
U.b, L.b is −∞, use a point to the left of any proper intersections with butterflies of group (1)
as the endpoint of this segment).

Otherwise continue with the next step.
Step 6. This step involves only intersections with butterflies of group (1).

While TU is non-empty and we are not atU.e, continue sweepingU(S(f )) from U.b and
performing the following two actions: for each encounteredf U

i .b inserti into TU and intoTL (if
not already in); for each encounteredf U

i .e deletei from TU .
While TL is non-empty and we are not atL.e continue sweepingL(S(f )) from L.b and

performing the following two actions: for each encounteredf L
i .b inserti into TU and intoTL (if

not already in); for each encounteredf L
i .e deletei from TL.



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 83

Fig. 11. The sweeping process. The two leftmost pictures of the sequence illustrate Step 5, and the rest of the pictures illustrate
Step 6. The last picture in the sequence corresponds to empty structuresTU andTL.

If both TU and TL are empty at this point, return that there is an 1–1 cutting out (a line
connecting the sweeping points represents such a path). IfTU is non-empty and atU.e or TL is
non-empty and atL.e, return that there is no 1–1 cutting-out path forf and move to Step 7. If
TU is non-empty but not atU.e (note that the sweeping ofL(S(f )) might have added objects
to TU ), then repeat this step.

Step 7. If a 1–1 cutting path not found in this coordinate system, repeat the process for an additional
coordinate system. The system is selected as follows. If there is not a path joining the opposite
boundaries in a connected component ofD(f,f1, . . . , fk) in the first coordinate system, select
a new system whoseOY axis is aligned with the slopeα in the first coordinate system,
whereα = xmin − ε, wherexmin is selected as the minimumx coordinate of the points in the
right unbounded component ofD(f,f1, . . . , fk) andε is a small constant. Alternatively, select
α = xmax + ε, wherexmax is selected as the maximumx coordinate of the points in the left
unbounded component ofD(f,f1, . . . , fk); for explanation see the proof.

Fig. 11 illustrates the sweeping process described in Step 5 and Step 6 of the algorithm.
Before proceeding with the proof, let us visualize the algorithm for a simple boundary case of cutting-

out a line segment with no obstacles. Formally, we consider cutting for open sets (such as interiors of
polygons). Although a segment is not open inR2, the algorithm will work and, moreover, makes a good
illustration of the general idea. The butterfly for a line segment is a double wedge. If there are no obstacles
at all, then bothU.b andL.b are at−∞, and any segment connecting the opposite boundaries of the
double wedge (including a degenerate segment consisting of the vertex of the double wedge) provides a
1–1 cutting path.

Theorem 3.2. Algorithm1–1 cutting decides inO(n logn) time if there is a1–1 cutting out of a convex
facef in the presence of convex obstaclesf1, . . . , fk that are disjoint withf . If such a cutting exists the
algorithm returns a1–1 cutting-out path.



84 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Proof. By Lemma 3.10f can be 1–1 cut out if and only if there is a component inD(f,f1, . . . , fk) that
shares its boundary with bothU(S(f )) andL(S(f )). Let us demonstrate that the algorithm correctly
detects such a component.

Firstly, note that only points in(U.b,U.e) and(L.b,L.e) of U(S(f )) andL(S(f )), respectively, can
be in such a component; otherwise the boundaries are separated by a butterfly of group (2) (Step 2). In
particular, if one of them is empty, there is no desired component in the given coordinate system.

Let a pointpU sweepU(S(f )) and a pointpL sweepL(S(f )). Assume thatTU or TL is non-empty
at some point during the sweeping process. Assume further thati is in TU and was inserted while
sweepingU(S(f )) with pU . That means thatpU is inside butterflyS(fi), and, as such, it cannot belong to
D(f,f1, . . . , fk). If i was inserted while sweepingL(S(f )), that means thatpU has not yet encountered
f U
i .e andpL passedf L

i .b (and possiblyf U
i .e). This means that the segment connectingpU with pL

intersectsS(fi), andpU andpL do not belong to a component ofD(f,f1, . . . , fk) that has non-empty
intersections withU(S(f )) andL(S(f )). The same holds for all segments connecting a point ofU(S(f ))

that is to the left ofpU with a point ofL(S(f )) to the right ofpL.
On the other hand, if bothTU andTL are empty at given positions of the sweeping pointspU andpL,

then both of them passed the same butterflies and have not entered any new ones. This means that the
segment connectingpU with pL does not intersect any butterflies of group (1), and sincepU with pL are
in (U.b,U.e) and(L.b,L.e), respectively, this segment does not intersect any butterflies of group (2).
Hence this segment connectsU(S(f )) andL(S(f )) in a connected component ofD(f,f1, . . . , fk). By
Lemma 3.10, the segment connectingpU andpL determines a 1–1 cutting-out path.

We analyze two coordinate systems to map into a bounded component potential continuous curves
connecting points on theL(S(f )) andU(S(f )) boundaries and passing through infinity. The choice
of the coordinate systems ensures that the selected unbounded component becomes a connected one in
the new system. Therefore any potential paths crossing infinity will also be considered and detected in
some bounded component in this system. See also the discussion in the context of Fig. 5. Let us note
here that an alternative, easier, but not always possible choice for a new coordinate system is to take in
Step 7α corresponding to anx coordinate of a position in the arrangement of butterflies whereS(f ) is
contained in a butterfly of some obstacle.

The entire process can be carried out in O(n logn) time. Finding O(n) intersections betweenS(f ) and
S(fi) of O(n) line segments can be accomplished in an O(n logn) time; see, for example, [10] (we do
not need intersection points betweenS(fi), i = 1, . . . , k). Once the intersections are known, classifying
them to determine type of the intersection (Step 1) and to determine intervals (Step 2) requires an O(n)

time. Sorting the intersection points (Step 3), and maintainingTU,TL implemented as balanced binary
search trees (Step 5 and Step 6) for O(n) points and O(n) insert/delete operations requires O(n logn)
time. ✷
3.5. Deciding if there is a cutting path

As we have seen, not all faces can be cut out in face-wise continuous fashion. However, they can
still have a cutting out path, one that may require a discontinuous repositioning of the cutting line. The
problem of finding if such a path exists will be addressed in the next section. In this section we ask how
to decide if each point in a given face belongs to some cutting line.



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 85

Fig. 12. White face, black obstacles and gray butterflies corresponding to cuts. The face can be cut out only if it is completely
covered with the butterflies.

By Lemma 3.3 the connected components ofR2 \S(f1, . . . , fk) are convex polygons. Therefore in the
primal space each of these components is a butterfly, and there can be O(n2) of them. Lines in each of
the butterflies avoid the obstacles.

We have the following:

Lemma 3.13. f has a cutting out path if and only iff is contained in the union of the butterflies
corresponding to the connected components ofR2 \ S(f1, . . . , fk) that have a nonempty intersection
with S(f ).

Proof. Clearly, the components that do not intersectS(f ) can be ignored as their primal space image
is not connected withf . Each butterfly corresponds to lines that avoid obstacles. If the union of the
butterflies coversf , then each point off is cut by at least one line. To prove the other direction, take all
the lines that cutf , and note that they coverf and belong to the butterflies.✷

Lemma 3.13 is illustrated in Fig. 12, where the black polygons representf1, . . . , fk. In this case there
are cells in the arrangement of the butterflies (gray areas) and the polygon that do not belong to any
butterfly. Points in these cells cannot be cut and consequently the polygon cannot be cut out.

Lemma 3.13 implies an algorithm for checking if a face can be cut out.

Algorithm: Feasibility of Cutting
Input: f andD(f,f1, . . . , fk).
Output: Whetherf can be cut out.

Step 1. Find D(f,f1, . . . , fk): with a line arrangement algorithm the cost of this step is an O(n2)

time and space. Note that unlike in the case of Theorem 3.2, we need to construct the entire
D(f,f1, . . . , fk).



86 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Step 2. Find the pre-image for each of the connected components ofR2 \ S(f1, . . . , fk) that have
nonempty intersection withS(f ); D(f,f1, . . . , fk) is useful here. There are O(n2) butterflies
with the total of O(n2) vertices. The cost of this step is O(n2), and it uses O(n2) space.

Step 3. Incrementally construct the arrangement for all the butterflies. Since we have O(n2) butterflies,
the cost of this step is O(n4), and it uses O(n4) space.

Step 4. Add the boundary off to the above arrangement. Labelout regions adjacent to the boundary of
f and outside off , and labelin regions adjacent to the boundary off and insidef . The cost of
this step is O(n4), and it uses O(n4) space.

Step 5. Traverse the arrangement, marking cells that belong to at least one butterfly. This can be done
by maintaining for each cell a count of butterflies covering the cell; this count is decreased or
increased each time a boundary of the cell is crossed. The attributesin and out are used to
determine if the current region is insidef . If there is a cell markedin that does not belong to any
butterfly, report that the face cannot be cut out. The cost of this step is O(n4), and it uses O(n4)

space.

The correctness and complexity of the algorithm is stated below:

Lemma 3.14. The algorithmFeasibility of Cutting decides inO(n4) time and space if a
collection of butterflies coversf . If f is not covered, thenf cannot be cut out, and there is no path
cutting outf .

Proof. The complexity of the algorithm depends on the combinatorial complexity of the union of the
butterflies. Since there are O(n2) lines, the complexity of the arrangement is O(n4), and all the steps,
as indicated in the algorithm, can be carried out in O(n4) time. The algorithm reports thatf cannot be
cut out only if there is a point inf not covered by at least one butterfly. Since butterflies contain all the
cutting lines forf , this point cannot be cut out.✷

Note that the above algorithm can be modified to find out if a given subset of butterflies coversf . For
a single butterfly this corresponds to deciding face-wise continuous cutting out forf . An optimization
version of the problem is to find the smallest cover.

4. Connectivity graph

A cutting path that stays in contact with the closure ofP consists of two types of moves: (1) cutting
moves that cut a face, or (2) sliding moves that reposition the cutting line from one facef to another face
or, if f does not have a face-wise continuous cut, to another part off (or, in dual space terminology, to
another component ofD(f,f1, . . . , fk)).

To cut out all the faces ofP and, in particular, to cut out piece-by-piece those faces ofP that cannot be
cut out with face-wise continuity, we need to construct a cutting-out path that blends together cutting-out
and sliding moves. A natural idea is to build a graph that describes all possible sliding moves. We will
be able to identify paths between faces or between different portions of faces ofP using standard graph
traversal algorithms. We will call this graph a connectivity graph forP and denote it byG(P ).



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 87

To understand this more intuitively, it helps to visualize a wire-frame model ofP and a long,
magnetized, straight wire that is put on this frame. We can slide the wire along the edges ofP trying
to explore all possible paths. In this process the magnetic wire stays in contact with some edges and
slides from one edge ofP to another when it encounters a vertex or a face ofP . We can further constrain
this process by insisting that the wire always stays is touch with at least three edges of the frame. Indeed,
if the wire initially touches only two edges we can “attach” the wire to one of the edges and move it until
a third edge is encountered. Then we can continue sliding the wire on these three edges until a vertex or
another edge is met, always keeping the wire in contact with at least three edges ofP . Of course, it is
possible to cut with a wire that moves freely in the space without necessarily touching three edges all the
time. However, the compliant motion (sliding along three edges) allows us to discretize the motion of the
wire and base it on the connectivity graph.

McKenna and O’Rourke [11], as well as the authors of this paper [6], showed that a free motion of
a line in a setL of n lines inR3 can be described by a sequence of combinations of four or fewer lines
from L. In particular, McKenna and O’Rourke defined a graphG that describes classes of abstractions
(connected components in the space of lines) for the moving lines. Each vertex inG corresponds to a
line intersecting four lines inL or a line intersecting two lines and parallel to a third one (as we will see,
we will not be concerned with this case). Each edge connecting vertices inG is labeled with three lines;
sliding along these lines allows the sliding line to move between positions encoded by the vertices ofG.

The connectivity graphG(P ) for cutting outP is a subgraph ofG, whereG is generated by the set
L of lines supporting the edges ofP . G(P ) does not include edges ofG that are not feasible transitions
for the cutting lines. Infeasible transitions are arcs inG that correspond to lines that move parallel to the
planes containing the ends of the cutting wire and arcs corresponding to positions that would cause the
moving line to penetrate the interior ofP . Moreover, since each sliding move can maintain contact with
three edges, we will only be interested in those arcs ofG that are labeled with three lines ofL.

Therefore, vertices ofG(P ) correspond to some quadruples of edges ofP and arcs between vertices
of G(P ) correspond to some triples of edges ofP . Intuitively, the arcs ofG(P ) correspond to sliding
the cutting line along three skewed edges to reposition the wire, and the vertices ofG(P ) correspond to
the positions where the wire touches four edges. In such a case the sliding must change its direction and
continue on to another triple of edges (and their supporting lines), or the cutting line is positioned on a
face. Arcs ofG(P ) are computed based on pairs of edges ofP . For edges that belong to the same face
f of P , the connectivity is determined by looking at the structure of thef -lines and two edges from the
obstacles.

For edges that lie on pairwise skewed lines, the construction is based on a generalization of the skewed
projection introduced in [6]. Recall that two edges inR3 are called skewed if they are not coplanar.

Lemma 4.1. The number of edges inG(P ) is O(n4).

Proof. G(P ) has O(n4) vertices, and the degree of each vertex is at most four.✷
4.1. ConstructingG(P )

Arcs of G(P ) will be constructed using generalized skewed projections [5,6]. (In [6] the skewed
projection was defined for a pair of skewed (i.e., non-coplanar) lines inR3 and screens parallel to the
axes.)



88 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

The generalized skewed projection is definedR3 and as follows:

Definition 4.1. Let l1 and l2 be two lines in the spaceR3 or in the real projective spaceRP 3 andh be
a hyperplane in this space that does not containl1 and l2. The skewed projectionsp:R3 \ (h1 ∪ h2) �→
h(sp:RP 3 �→ h, respectively) of a pointP onh with respect tol1 andl2 is the intersection of the linek
intersectingl1, l2 andP with the hyperplaneh (called the screen of the skewed projection).

Theorem 4.1. Lines intersecting the axesl1 and l2 of the skewed projections and a given linel are
contained in a plane, a one-sheeted hyperboloid or a parabolic hyperboloid.

Proof. The proof is by straightforward calculations [5].✷
As an immediate corollary we have:

Corollary 4.1. The skewed projection of a line inRP 3 is a line, an ellipse or a hyperbola. InR3 the
skewed projection of a line is contained in one of the above curves.

Proof. Lines, ellipses and hyperbolas are the only possible intersections of a plane, one-sheeted
hyperboloid or parabolic hyperboloid with a plane (the screen of the projection).✷

To illustrate the above properties (inRP 3) consider the lines (axes of the projections)(1,0,0, z) and
(1,1, y,0) and a line with the parametric equation(1,2,0,2)+ t (0,1,1,1). The surface generated by the
lines intersecting all of the above three lines is a one-sheeted hyperboloid given by 2x2−2xu−xz−yz =
0 (see Fig. 13).

One interpretation of the skewed projection for a set of lines inR3 is as follows: the arrangements of
the curves on the projection screen correspond to the lines that limit the sliding of the sliding line. The

Fig. 13. Axes of a skewed projection and a line forming a one-sheeted hyperboloid.



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 89

Fig. 14. The skewed projection ofGHI with respect to edgesA andD. The middle picture illustrates the result of the projection.
Marked points correspond to projections of four lines. The rectangle is the projection of lines sliding along segmentsA andD.
Projections of edgesB andC are outside of the rectangle and will not be a part of the graph. Similarly, intersections of the
projections of edgesE andF with the boundary of the rectangle correspond to triples of linesADE andADF and therefore
will not be vertices of the graph. The rightmost picture represents the connectivity graph for the skewed projection with respect
to A andD.

curves correspond to triples of lines, and the intersections of curves correspond to at least quadruples of
lines. The curves resulting from the skewed projection of edges ofP , as well as their intersections, are
used to constructG(P ).

As a remark let us note that the difference between projecting on the screenhp parallel versus the
screenhnp non-parallel to the axes is not significant. The conveyed information about the limitations on
sliding is the same in either case. In fact, there is a simple relation between the two projections. The
hyperbolic paraboloid of lines intersecting the axes and parallel tohnp intersectshp along a line. When
we cuthp along this line and glue together the edges at infinity, the obtained arrangement of curves is
identical with the one onhnp, up to a suitable transformation.

As another remark let us note thatG can be built using the method from [11]; thenG(P ) is obtained
from G after removing unnecessary vertices and arcs. It is possible to show that this method reduces to
the skewed projection with the projection screen parallel to the axes of the projection. However, because
of restricting the screen to a particular position, constructingG(P ) from such an obtainedG may be
more complicated than with the above described process.

To move between faces ofP let the cutting linel slide on edgese1 and e2 of P . The algorithm
Constructing vertices and arcs of G(P ), presented below, identifies all edgese of P
that l can touch and perhaps slide on while sliding one1 ande2. The idea of the algorithm is to build
the connectivity graph based on the skewed projections (with respect to lines includinge1 ande2) of L,
all the lines supporting edges ofP . The obtained arrangement of the curves, the projections ofL, will
need to be pruned to remove fragments of curves that are beyond the edges ofP or would causel to
penetrateP . The main difficulty in the algorithm is to recognize the latter. Each time the projecting line
is coplanar with a facef of P , it intersects two edges ofP . At this point, further sliding on one of these
edges may causel to penetrateP as the edge becomes invisible tol. To register this we mark this point on



90 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

the curve with the information that the adjacent face changes its orientation with respect to the projection
line; later, the corresponding fragment of the curve will be removed from the arrangement.

Before providing pseudocode for the algorithm, let us take a look at the basic steps of computing the
skewed projection; we will illustrate it with Fig. 14.

On this figure we have three selected triangular faces (the rest ofP is not depicted), and we want
to analyze the moves of the cutting line that slides on edgesA andD and the edges of the faceGHI ;
hereG,H and I denote edges rather than vertices. We align the axes of the projection with the lines
containingA andD; after a suitable transformation we can assume that the axes are given by(x,1,0)
and(0,2, z) and that the screen of the projection isy = 3, with all the triangles in front of it. If we are
located at the point(0,0,0), the axes appear as a cross, and the skewed projection of�GHI is obtained
by tracing the intersection of a line that slides on the axes and the boundary of�GHI . Note that while
tracing the boundary of�GHI with a line sliding on the axes, it leavese1 ande2. Since our intention is
to stay in touch with edges ofP , we crop the skewed projection of�GHI to a rectangle whose corners
on the projection screen are determined by the projection line passing through the endpoints of edges
e1 ande2. Anything that is outside of this rectangle is not interesting to us; this includes portions of the
projections of edgesG,H andI as well as the projection ofC andB. The rightmost part of the figure
shows a portion of the connectivity graph; its vertices correspond to positions of the sliding line when it
touches four edges (A andD, which are the axes, and two other edges of the triangles). Arcs correspond
to triples of edges; they connect two vertices of the graph if the quadruples share this triple of edges. The
intersection of the projection of�GHI with the projections of edgesE andF (both are coplanar withD,
one of the axes, therefore their projections are colinear) exemplifies the situation where the projection
line may look at two different sides of a face (and only one of them is visible). Invisible fragments of
faces will be eliminated in Steps 5 and 6 of the algorithm presented below.

Algorithm: Constructing vertices and arcs of G(P )

Input: Polyhedral shapeP and a pair of skewed edgese1 ande2 of P .
Output: Skewed projection ofP with respect to the lines supportinge1 ande2.

Step 1. Find skewed projections (curves) for each line that supports an edge ofP : time O(n).
Step 2. As a side effect of projecting edges ofP , the faces ofP are also projected. For each edgee,

mark next to the respective fragments of its projection the position of the projection of each face
of P adjacent toe (whether the given face is to the left or to the right of the fragment in the
projection): time O(n), proportional to the number of faces and edges.

Step 3. Construct the arrangementA of the curves on the projection screen: time O(n2α(n)) based
on [11].

Step 4. Crop the arrangementA to the curve fragments that can be reached by the sliding line limited
to sliding one1 ande2. This can be done with “windowing” the arrangement with four planes:
two planes containinge1 and the endpoints ofe2 and two fore2 and e1, respectively (without
confusion we can call this arrangementA): time O(n2).

The two following steps eliminate those fragments of curves inA that are invisible to the sliding line;
l would pierce a face ofP to slide on them:



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 91

Step 5. Select a position for the sliding linel (for example, letl pass through the endpoints ofe1 ande2).
Count the number of faces ofP that l intersects. This is the count associated with the regionC

in A that corresponds to the intersection ofl with the projection screen.
Step 6. Starting fromC traverseA, marking for each region in the arrangement the count of faces that

are projected to this region using information collected in Steps 2 and 5. This count is changed
by one each time the boundary of the region is crossed. Eliminate fromA all curves that do
not separate faces from regions with count equal to zero (that is, those regions which are not
projections of any faces). The remaining arrangement (still calledA) represents the silhouette of
P on whichl can slide without penetratingP .

The algorithm constructs an arrangements that is a portion ofG(P ) with vertices labeled withe1, e2

and two other edges ofP , as well as arcs labeled withe1, e2 and another edge ofP .

Theorem 4.2. The arrangement of skewed projections ofn lines can be constructed inO(n2α(n)), and
its combinatorial complexity isO(n2).

Proof. The number of intersections ofn second-degree curves is O(n2). The arrangement for the lines
and hyperbolas can be found in O(n2α(n)) time with the algorithm from [11]. To insert ellipses into the
arrangement, we cut them into convex and concave pieces with respect to the direction of the intersection
of h1, h2 with h and construct arrangements for each of these groups separately. Then we construct the
arrangement for the parabolas in O(n2α(n)). All of the five arrangements (two for hyperbolas, two for
ellipses, and one for parabolas) are merged together for the total of O(n2α(n)) time. ✷
Theorem 4.3. For a given paire1, e2 of skewed edges ofP (edges supported by skewed lines), we can
identify inO(n2) time, provided that the arrangement computed with the skewed projection is given, all
edgese3 in P that form triples describing a subset of edges ofG(P ) and all quadruples of edges inP
that describe a subset of vertices ofG(P ). The triples describe possible slidings for the cutting line. The
quadruples describe points where the direction of the cutting line changes.

Proof. Each curve that is a skewed projection with respect to lines supportinge1, e2 determines the third
edge in the triple. Intersections of the curves correspond to two edges that form quadruples together with
e1, e2. The cost of the construction follows from the size of the arrangement as stated in Theorem 4.2.✷

The entire graphG(P ) can be constructed as follows:

Algorithm: Constructing G(P )

Input: Polyhedral shapeP .
Output: Connectivity graphG(P ).
For each pair of skewed edgese1 ande2 in P do

Step 1. Call algorithmConstructing edges and arcs of G(P ) for e1 ande2.
Step 2. Add to G(P ) quadruples of edges as vertices and triples of edges as arcs based on the

arrangement constructed above.

Based on Theorem 4.3,G(P ) can be constructed in O(n4α(n)) time and O(n4) space.



92 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

Note that the skewed projection will also find arcs and vertices ofG(P ) for edges inP that are
coplanar.

Let us end this section with a comment related to the case whenP is a convex polytope. One may
wonder which are the skewed edges on which the cutting linel is sliding when cutting outP . To this end
consider a facef of P . Let line l be in the plane ofP and pass through a vertexv of f . Thenl is tangent
to the following edges: an edge not in the plane off one of whose endpoints isv, an edge in the plane of
f with one of its endpoints inv, another edge (across fromv) in the plane off . The first and third edges
are skewed.

4.2. Finding cut-out paths

With the graphG(P ) we can decide ifP can be polyhedron-wise cut out. We will associate a number
of attributes with each vertex in the graph. First, each vertex whose name includes two edges that belong
to the same facef of P will be labeled with this face (the vertex corresponds to the cutting linel placed
in f ). This can be done in constant time per vertex ofG(P ) if each edge is labeled with its faces. Next,
for each vertex inG(P ) that corresponds to a face that cannot be cut out in the face-wise continuous
fashion, we find the connected component ofD(f,f1, . . . , fk) that is adjacent to the edges ofP meeting
in this vertex.

With such an attributedG(P ) the algorithmCutting_Path(G(P )) is defined as follows:

Algorithm: Cutting_Path(G(P ))
Input:G(P ).
Output: a polyhedron-wise continuous path forP , if it exists

Step 1. Find connected components ofG(P ): time proportional to the size ofG(P ) with Depth First
Search.

Step 2. For each connected component ofG(P ), find if all faces can be accessed, that is, if for each face
f of P there is a vertex in this component labeled withf . If not all faces can be reached, then
the component does not have the desired path.

Step 3. For each component returned from the previous step, for each facef that cannot be face-
wise continuously cut out, find the collection of the connected components ofD(f,f1, . . . , fk)

labelling the respective vertices ofG(P ).
Step 4. Call the algorithm 1–1 Cutting Out from Section 3.4 to verify if the connected components of

D(f,f1, . . . , fk) contain paths that can be blended into a cutting out path forf .
Step 5. If there is a connected component inG(P ) that allows the accessing and cutting out of all of

the faces ofP , return the path in this connected component; otherwise, report thatP cannot be
polyhedron-wise continuously cut out.

The cost of the algorithm is dominated by calls to the algorithm 1–1Cutting Out, whose cost is
O(n4) per face.

Theorem 4.4. It can be decided inO(n5) time andO(n4) space if a polyhedral shape withn edges can
be cut out in a polyhedron-wise continuous fashion.



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 93

Fig. 15. Image (a) shows a polyhedronABCDE with six faces and pictures (b–d) show three different connectivity graphs for
different types of cutting for this polyhedron. Graph (d) is a general graph discussed in this section. The nodes of the graph are
not labeled with quadruples of edges. Instead, they are labeled with pairs of vertices corresponding to edges ofABCDE. The
cutting line is moving from one edge to another by rotating about a vertex and sliding along a another edge.

Proof. G(P ) can be constructed and attributed in O(n4α(n)) time. The connected components can be
found in O(n4) time. Verification of whether all the faces ofP can be accessed requires time proportional
to O(n4). The cost of verifying if a face can be cut out requires O(n4) time with theFeasibility of
Cutting algorithm, for a total of O(n5) for O(n) faces. All of the steps of the algorithm require no
more than O(n4) memory. ✷

If a polyhedral shapeP has special properties (e.g., it is convex), or if we know that all of its faces can
be 1–1 cut out or face-wise continuously cut out, it is possible to build a simpler connectivity graph. For
example, for 1–1 or face-wise continuous cutting such a graph can be constructed in O(n2) time.

For the general case of a polyhedral shape, we study a compliant motion that requires the wire to
stay in contact with three edges. For special cases of polyhedral shapes, such as convex polyhedra, or
for specific cutting requirements, such as cutting a face starting at an edge and completing the cutting
with the wire aligned with another edge of the face, we can construct different connectivity graphs that
correspond to more restricted ways of maintaining contact with three edges. Fig. 15 illustrates a simple
polyhedronABCDE with six faces and three connectivity graphs that demonstrate that the graphG(P )

can be defined in a variety ways depending on the properties ofP and on the mode of cutting. For
example, in the first graph nodes of the graph correspond to the edges inABCDE, and arcs correspond
to a 1–1 cutting out of the faces where the cutting line moves from an edge to an edge. This requirement
reduces the number of feasible movements and thus results in a simpler graph.

Vertices of the second graph are labeled with descriptions of the positions of lines. For example,AB

means that the cutting line is defined by verticesA andB. After moving along the arcs, the line will
assume a different position. This graph describes a face-wise continuous cutting out with a line moving
from an edge or vertex inf to another edge or vertex off .



94 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95

The above graphs can be efficiently constructed. We do not present their constructions here; rather, we
include them to show that the general approach of connectivity graphs can be applied to the wire cutting
problem in a variety of ways.

The third graph is our general graph constructed with the skewed projection. However, it is presented
in a compact form that is smaller, yet provides enough information about the motion. Because of the
shape ofABCDEF , there is no situation that the cutting line slides on three edges. This allows us
simplification. Instead of presenting nodes for quadruples of edges and presenting arcs for triples of
edges, each node is labeled with a pair of vertices.AC describes all possible quadruples of edges that
allow to align the cutting line withAC. For example, such an alignment can be achieved with the cutting
line rotating aboutA and sliding alongBC orEC. Similarly, the line can be rotated aboutC and sliding
alongBA or DA. An alternative way of thinking about this compact form is to see the nodeAC in the
graph as a representation of a set of quadruples of edges that the cutting line touches while it is aligned
with the edgeAC; this idea is presented in [11].

The graphs illustrate many possible approaches in representing specialized motions. Such motions
may lead to simpler graphs and to more efficient algorithms. One example is polyhedral shapes where no
two different faces are coplanar.

5. Conclusions

We have presented algorithms for a number of tasks related to the wire-cutting of polyhedral shapes,
including an algorithm for deciding and finding continuous cutting paths.

The paper uses two major groups of techniques. The first group of techniques, such as duality and
skewed projections, is related to lines in two and three dimensional spaces. The second group borrows
from robotics and robot motion planning methods.

The complexity of our algorithms depends on two subproblems: construction of the connectivity graph
for admissible lines and deciding if a single face has a cutting-out path. Because of the high complexity
of our algorithm, a natural task is to improve the running time and memory requirements of our solution
in the general case. Detailed studies of special cases related to the geometry of the object to cut-out, a
few of which were briefly mentioned in the paper, also provide a number of interesting questions. For
example, how can advantage be taken of the multiple coplanar faces that can be cut simultaneously in
planning the wire motion of a given object?

Other interesting, but possibly hard, open questions involve optimal planning, such as the minimal-
time trajectory planning with the objective of minimizing the time the hot wire stays in contact with the
material.

Among problems similar to cutting with a wire (line), one may consider cutting with a laser beam (a
half-line), with a rod (a line segment), or even with task-specific tools such as a meat-cutter (Joe Mitchell,
personal communication). Some of the methods presented in the paper are immediately relevant to the
above problems. For example, one of the technological advantages of the laser beam comes into play
when the connectivity graph is not connected. By simply switching the beam on and off it is possible
to move from one connected component to another. This becomes relevant in manufacturing objects of
genus higher than 0. For cutting with a thin rod (similar to a wire but attached to the moving arm only
at one of the ends, and the tip of the wire cannot cut) note that more objects can be cut-out with it than
with a wire. As an example we can consider a cube with one corner in the shape of a cube removed. To



J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67–95 95

detect if a particular face can be cut-out with a rod we can use an approach similar to Section 3.5. Instead
of covering the face with regions outside tangents to the obstacles, we can analyze the intersection of the
region between the tangents to a pair of obstacles. The face can be cut-out if the intersection with the
face is empty. However, although the main approach and techniques used and developed in the paper are
helpful for these problems, technological and geometric differences most likely will require analysis of
many problem-specific details.

Acknowledgements

The authors would like to thank the referees for exceptionally helpful and detailed comments with
specific suggestions that were critical in correcting and improving this paper. Our thanks also go to Ryan
Gabbard for proofreading numerous iterations of the manuscript.

References

[1] B. Chazelle, H. Edelsbrunner, L.J. Guibas, M. Sharir, Algorithms for bichromatic line segment problems and polyhedral
terrains, Algorithmica 11 (1994) 116–132.

[2] H.S.M. Coxeter, Projective Geometry, Second Edition, University of Toronto, Toronto, 1974.
[3] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.
[4] H. Edelsbrunner, H.A. Maurer, F.P. Preparata, A.L. Rosenberg, E. Welzl, D. Wood, Stabbing line segments, BIT 22 (1982)

274–281.
[5] J.W. Jaromczyk, M. Kowaluk, Generalized skewed projections inR3, Manuscript.
[6] J.W. Jaromczyk, M. Kowaluk, Skewed projections with an application to line stabbing inR3, in: Proc. 4th Annu. ACM

Sympos. Comput. Geom., New York, ACM Press, 1988, pp. 362–370.
[7] J.W. Jaromczyk, M. Kowaluk, The face-wise continuity in hot wire cutting of polyhedral objects, in: Proc. 16th European

Workshop on Computational Geometry, Eilat, 2000, pp. 93–97.
[8] J.W. Jaromczyk, M. Kowaluk, Set of lines and cutting out polyhedral objects, in: Proc. 17th European Workshop on

Computational Geometry, Berlin, 2001, pp. 183–186.
[9] T. Lozano-Pérez, Spatial planning: A configuration space approach, IEEE Trans. Comput. C-32 (1983) 108–120.

[10] M. Overmars, M. de Berg, M. van Kreveld, O. Schwarzkopf, Computational Geometry: Algorithms and Applications,
Springer-Verlag, Berlin, 1999.

[11] M. McKenna, J. O’Rourke, Arrangements of lines in 3-space: A data structure with applications, in: Proc. 4th Annu. ACM
Sympos. Comput. Geom., New York, ACM Press, 1988, pp. 371–380.

[12] O. Nurmi, J.-R. Sack, Separating a polyhedron by one translation from a set of obstacles, in: Proc. 14th Internat. Workshop
Graph-Theoret. Concepts Comput. Sci., in: Lecture Notes Comput. Sci., Vol. 344, Springer-Verlag, Berlin, 1989, pp. 202–
212.

[13] D. Nussbaum, J.-R. Sack, Translation separability of polyhedra, in: Abstracts 1st Canad. Conf. Comput. Geom., 1989,
p. 34.

[14] M. Pellegrini, Lower bounds on stabbing lines in 3-space, Computational Geometry 3 (1993) 53–58.
[15] M. Pellegrini, Ray shooting and lines in space, in: Jacob E. Goodman, Joseph O’Rourke (Eds.), Handbook of Discrete and

Computational Geometry, CRC Press LLC, Boca Raton, FL, 1997, pp. 599–614, Chapter 32.
[16] J.T. Schwartz, M. Sharir, On the piano mover’s problem: V. the case of a rod moving in three-dimensional space amidst

polyhedral obstacles, in: M. Sharir, J.T. Schwartz, J. Hopcroft (Eds.), Planning, Geometry, and Complexity of Robot
Motion, Ablex Publishing Corporation, Norwood, NJ, 1986, pp. 154–186.

[17] J.T. Schwartz, Micha Sharir, A survey of motion planning and related geometric algorithms, in: D. Kapur, J. Mundy (Eds.),
Geometric Reasoning, MIT Press, Cambridge, MA, 1989, pp. 157–169.


