=

metadata, citation and similar papers at core.ac.uk brought to you by »{ C(

provided by Elsevier - Publisher Conn

=" www.ComputerScienceWeb.com Computational
5 POWERED BY SCIENCE DIRECT® Geometry
;g Theory and Applications
ELSEVIER Computational Geometry 25 (2003) 67-95

www.elsevier.com/locate/comgeo

Sets of lines and cutting out polyhedral objects

Jerzy W. Jaromczyk, Mirostaw Kowaluk®!

@ Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
b |Institute of Informatics, Warsaw University, Warsaw, Poland
Received 12 July 2001; received in revised form 14 March 2002; accepted 20 June 2002

Communicated by H. Alt

Abstract

We study algorithmic questions related to cutting polyhedral shapes with a hot wire cutter. Such cutters are popu-
lar manufacturing tools for cutting expanded polystyrene (styrofoam) with a thin, moving heated wire. In particular,
we study the question of polyhedral-wise continu@®gn a given object be cut out without disconnecting and then
reattaching the wir@ In an abstract setting this question translates to properties of sets of lines and segments and
therefore becomes suitable for computational geometry techniques. On the combinatorial and algorithmic levels
the results and methods are related to two problems: (1) givenra=sdtfi, ..., fi} of polygons and a polygof,
decide if there is a subset of lines in the set of lines not stabbBirtlgat coverf; (2) construct the connectivity
graph for free movements of lines that maintain contact with the polyhedral shape. Problem (1) is solved with the
dual projection and arrangements of convex and congavenotone curves. Problem (2) can be solved with a
combination of the skewed projections [6] and hyperbola arrangements proposed by McKenna and O’Rourke [11].
We provide an @:°) algorithm for constructing a cutting path, if it exists. The complexity of the algorithm is
determined by the @%) size of the connectivity graph and the cost of solving (2).

0 2002 Elsevier Science B.V. All rights reserved.

Keywords:Polyhedral objects; Dual projection; Skewed projection; Manufacturing; Hot-wire cutting

1. Introduction

With the tools of computational geometry we study algorithmic problems related to manufacturing
applications of hot wire cutters. Such a cutter is a thin, electrically heated wire (geometrically, a line) that
slices through a block of styrofoam while cutting out a desired object (in this study, a polyhedral shape).

* Corresponding author.
E-mail addressjurek@cs.engr.uky.edu (J.W. Jaromczyk).
1 Partially supported by grant KBN 8T11C03915. This research was partially supported by the Center for Computational
Sciences of the University of Kentucky.

0925-7721/02/%$ — see front matter 2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0925-7721(02)00131-1

https://core.ac.uk/display/82469139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

68 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

Fig. 1. A schematic view of a cutter. A cutter can be either operated manually or be computer-controlled. The picture shows the
wire in park after cutting out a prism with a triangular base from a block of styrofoam.

The wire is mounted on a mobile frame (gantry) that moves above the stationary block of foam during
the cutting process. The block sits on a table. A schematic view of such a cutter is shown in Fig. 1.

More advanced models are equipped with a turntable so the block of styrofoam can be rotated, which
allows for cutting shapes with rotational symmetry. The two ends of the wire are attached to the opposite
sides of the frame and they can move vertically on the frame. Foam hot wire cutters are used for a
variety of applications ranging from serious manufacturing jobs to crafts and hobbies. Products that
can be manufactured with hot wire cutters include reverse molds for the concrete industry, packaging
projects, signs and retail graphics, props and exhibit stands, pre-production prototypes, packaging molds,
architectural and building components, foam props for retail designs, movie sets and stage props, pipe
insulation, hobby items (such as railroad models), and craft projects. These products can be either cut-out
from a block of styrofoam or assembled from a number of separately cut-out elements.

In spite of a long list of capabilities of the hot-wire cutters, it is clear that there are shapes that cannot
be manufactured with this method, at least not without assembling them from separately cut modules.
Examples include shapes with cavities. The objective of this paper is to study both the shapes that can be
produced with foam cutters and the algorithmic problems related to wire cutting. Specifically, we look at
the following questions:

e 1-1 cutting—can the object be cut out in such a way that each point of its faces is touched exactly
once (e.g., consider a square with a small cube attached to its center)?

e face-wise continuity—can each face be cut out without moving the wire away from the plane
containing this face and then returning to this plane (e.g., consider a triangle with two small cubes
attached to it)?

e polyhedron-wise continuity—can the polyhedral set be cut out without disconnecting and reattaching
the wire (e.g., consider a cube with a hole through the middle)?

e feasibility—what shapes can be cut out?

e cutting-path description—can the ends of the wire move along any curve, or piece-wise linear curves
only?

The technological rationale behind 1-1 cutting is to avoid overheating of the cut surface, behind
face-wise continuous cutting to avoid inaccuracies in cutting the surface, and behind polyhedron-wise
continuity to allow the wire to cut out the shape without changing the tool.

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 69

Fig. 2. These upside-down tables appear similar but only the one on the right can be cut out with a wire.

Preliminary results addressing the above questions were presented in two conference papers [7]
and [8].

Clearly, from a manufacturing point of view we need not only to answer the feasibility problem but
also to construct a description of the cutting path for the wire (via moving its endpoints) and develop a
framework for constructing and describing cutting paths. It is possible to see that there are two major
obstacles to this type of cutting. The first difficulty may be posed by the connectivity structure (for
example a cube with a hole). The second arises from the possibly complex relations between facets of
polyhedral sets. This issue is well-illustrated in Fig. 2. Although the shapes seem to be similar, only the
table on the right side can be cut out.

Let us formalize our problem to be able to study it with the tools of computational geometr. thest
an open polyhedral shape (later simply called a polyhedron) understood for the purpose of this paper as &
3-dimensional solid bounded by planar facets, and assume that its cl$ia®a total of: faces, edges
and vertices. For technical reasons it is convenient to consider open polyhedra rather than closed one:
(think that the wire is peeling off the boundary of the object). Edge® afe defined as the corresponding
edges ofP. It is convenient to define faces #fto be the interiors of the corresponding facesin

A path p of lines is a continuous mapping from an interjia) b] into the space of lines iR2. Such
a path can be described with a pair of functions representing the location (in some coordinate system) of
two selected points of the line (wire) as a function of time.

The concepts of paths, subpaths and continuity can be formalized further by introducing a natural
topology in the space of lines represented with Plicker coordinates following [1,15]. This formalization
led to a number of strong results for lines in three dimensional spaces, including some relevant to our
study of lines moving among obstacles. In particular, [15] mentions applications related to modeling
radiation or light beams.

Paths of lines that do not interseRt(P is open) and intersect the boundaryRofire callecadmissible.

The rationale behind this definition is that in this paper we are planning for paths that always stay in
contact with the closur@ of P (compliant motions). Note that admissible paths can contain lines that
are tangent to two skewed edgesfoind are not necessarily in contact with a face.

We say that a path of lines cuts oatif (1) it is admissible and (2) the union of the intersections of
the lines in the path wittP is equal to the boundary dt.

We further say that a line (in the pattitsa facetf, defined as the interior of the corresponding facet
in P, if it is admissible, lies in the plane supportingand has in this plane a non-empty intersection
with f. A path p cuts outf if it is admissible and the intersection of lines pnwith the closure ofP
containsf . Note thatp that cuts outf can cut or cut out facets df that are coplanar witlf. Also f can

70 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

be cut out with a number of subpatps, ..., p,, of p, each cutting out only a portion gf. This leads to
the next definition. We say that is cut out with the face-wise continuity if there is a continuous subpath
p’ of p that cuts outf and all lines inp’ cut f. A face-wise continuous cutting paghfor f such that
each point off belongs to exactly one line ¢f is called a 1-1 cutting path.

Finally, we say that subpaths, ..., p,, cutting out facets o can beblendedinto a cut-out path for
P if there exists a sequeneg, ..., g,,_1 of admissible paths foP such thatp = p1g1p2g2...q¢m_1Pm
is a continuous path that cuts obt

The problem of wire cutting with polyhedron-wise continuity can be now defined as: “Given an open
polyhedral setP find a (continuous) cut-out pathfor P, if it exists”.

2. Overview of results and methods

A solution to the problem of planning a cutting path requires a schedule for moving the wire between
the faces ofP to cut them out. Individual faces may require more than one visit of the wire to avoid
obstacles during cutting (consider as an example the task of cutting out the bottom of a table with four
legs).

Our solution has, therefore, two components: (a) build a graph of admissible movements for the cutting
wire and (b) verify if there is a path in this graph that visits all the faces in such a way that allows them
to be cut out, in portions if necessary.

The first component is based on analyzing the structure of the space of free lines (admissible
movements for the cutting wire). We build the connectivity graph (the lattice structure) of this space, from
whose connected components and edges we can derive answers to our questions. This general approach
constructing free-spaces, introduced by Lozano-Pérez [9], is commonly used in robotics for robot motion
planning, see [17]. The connectivity-graph technique was introduced and used in a series of papers by
Schwartz and Sharir, see [16]. Questions related to collision-free translations in three dimensions for
lines and polyhedra have been studied in the computational geometry literature. In particulét,) an O
algorithm for translating convex polyhedra withvertices is given in [12]. Simple polyhedra with
edges each can be translated imflogn), as presented in [13]. Pellegrini [14] solves the problem of
separating a set of blue lines from a set af: red lines in Qn®*m®4+¢ 4+ m1*t 4 n'*+¢) wheree is an
arbitrary small positive number and the asymptotic constant may depesidQur problem is different
and pertains to the feasibility of moving a line (wire) along faces of a given polyhedron—a compliant
motion.

Before presenting the connectivity-graph for the wire motion, we will discuss cutting out individual
faces, consecutively focusing on 1-1 cutting, face-wise continuous cutting and the feasibility of cutting.
As we will see, the problems involve lines that avoid certain polygons (obstacles), and the dual
transformation is used as the major technique. Specifically, we will analyze lingdarig /), the plane
supporting facef, that intersectf without intersecting (the interiors offy, ..., fi. It is convenient
to look at such lines using the dual projection that maps points into lines and vice versa using the
following transformation:(a, b) — y = ax — b, see [3,4]. The dual projection depends on the choice
of the coordinate system and is not defined for lines parallel t@tHeaxis.

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 71

3. Cutting out single faces

This section addresses the problem of cutting out single faces: face-wise continuous cutting, 1-1
cutting, and arbitrary cutting.

P is bounded by planar facets. L¢t be a facet and leplang(f) be the supporting plane fof.
Consider the intersectiguiang f) N P. This intersection is a set of polygons that inclytland perhaps
some other facets d? as well as cross-sections, ..., f; of P with plang f). Polygonsf, ..., f; are
potential obstacles for the wire cutter. Since a line intersgctEand only if it intersectsconu f;), in
the further discussion we can assume that alfof .., f; are convex polygons. Additionally, we will
allow the cutting line to cut the boundaries £, ..., f; so when neededs, ..., f; will be considered
without their boundaries. For each fagdts obstacles can be found in(®logn) time assuming that a
set of sequences of edges of the faces of the polyhedral shape is available. The process can be organize
as follows: for each facg), we find the intersections of the edges of this face \pltme(f). If there are
intersection points, we connect them, based on the list of edgés t form segments that correspond
to the intersection off and f,,. The cost of finding such segments for all faces {&)OKnowing that
these segments form disjoint cross-sectiong’ame can sweep the plane to identify segments with joint
endpoints. The cost of this step igfdogn). Based on the list of edges in the faces, we can group such
connected segments into polygons itn@gn) total time.

Since most of the results of this section are based on the dual projection, let us start with a number of
its properties.

3.1. Dual projections for cutting lines, faces and obstacles

It is well known that the dual of a line segments a double wedge, see [3,4]. The double wedge is
that part ofR? that is bounded by the two dual lines of the endpoints ahd does not contain a vertical
line parallel toOY.

The dual S(f) of a convex polygonf with edgesey, ..., e,, which for the sake of this section
is considered as a closed polygon A3, is the union of the double wedges of the edgesfoi.e.,
S(f)=UL,; S(e).

S(f) does not contain any line parallel @Y, and each vertical line is intersected once by each
boundary. Therefore it makes sense to talk about the upper boundary and the lower bourfigi); of
they will be denoted by/ (S(f)) andL(S(f)). The image of a convex polygon in the dual projection is
illustrated in Fig. 3.

There are a number of elementary properties of), some of them well-known, that will be useful
in the sequel.

Lemma 3.1. The boundary of(f) consists of two polyline& (S(f)) and L(S(f)) whose angles are
reflex.

Proof. S(f) is the union of double wedges whose boundaries are piecewise linear. Each vertex of the
boundary is either the vertex of a double wedge, and thus reflex, or it is the intersection of halflines from
the boundaries of some double wedges and their union forms a reflex angle at this intersection.

Due to their shape dual projections of convex polygons will be céligterflies

72 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

L I\ D D(a)

Fig. 3. A convex polygon and its dual image with edges on the upper and lower boundaries corresponding to the vertices of the
polygon in primal space.

Lemma 3.2. (1) Each line supporting a segment on the boundar§ @f) is contained inS(f). (2) Each
line tangent to the boundary &f(f) at vertexv is contained inS(f). (3) Each segment connecting a
point in U (S(f)) with a point inL(S(f)) is contained inS(f).

Proof. (1) The line supporting a segment of the boundary belongs to the double wedge of sonee edge
of f and as such is contained in the union of the double wedges; this proves the first statement.

(2) v is the dual image of the supporting line for some edgeg.dtach line tangent to the boundary
of S(f) atv is in the double wedge defined by lines meeting aind as such it is the dual image of a
point ine. Since lines intersecting the interior @fntersectf, the dual lines of points in the interior ef
are inS(f).

(3) Statement (2) of this lemma implies that a line can intersect the boundaityf pfat most twice.
Assume, for example, thdtintersectsU (S(f)) in two points (it cannot intersect in more because all
the vertices on the boundary are reflex). Ldbe parallel td and tangent to a vertex i (S(f)). !’ is
contained inS(f) and as such it separate$rom L(S(f)). Consequently cannot intersecL(S(f)).
Therefore the segment connecting a pair of pointd/i(s(f)) and L(S(f)) does not intersect the
boundary in any other point and thus is entirely included (). O

Let f1,..., fx be convex polygons with a total of (@) vertices. Denote b¥§(f1, ..., fi) the union
Uf.‘zl S(f:). Whenf, ..., fi are obstacles then, as mentioned earlier, we take the duals of their interiors.
The following holds:

Lemma 3.3. (1) R?\ S(f1,..., fr) is a union of convex polygonossibly unbounded (2) The
combinatorial complexity oR?\ S(fi, ..., f) is O(n?), and the number of polygons in this difference
is O(n?).

Proof. (1) By virtue of Lemma 3.1 the boundary of each component of the difference is piecewise linear
with the angle at each vertex being the complement of a reflex angle, and thus convex.

(2) The combinatorial complexity is not larger than that of an arrangemengofl@es. In the primal
space each polygon in the difference corresponds to a set of lines not cfitting, f;. Note that if

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 73

Fig. 4. A set of polygons and their corresponding butterflies. Gray polygons and butterflies correspond to obstacles.

obstaclesfi, ..., fi are arranged on a circle then each set of all of the lines passing through two gaps
between the obstacles corresponds to a polygon in the difference. Clearly, for such an arrangement of the
obstacles the number of polygons is proportionat?o O

Because of our interest in cutting ofitthe setD(f, fi, ..., fi) =S(f)\ S(f1, ..., fr) is particularly
important for our considerations. Fig. 4 illustrates the above concepts. The difference of the butterflies
for the white and shaded triangles consists of four connected components (the white areas between the
upper and lower solid lines).

As mentioned earlier, vertical lines do not have dual projections. To include them, we can use
the projective plane (see [2]) and consider its subset consisting of all the lines that are contained in
D(f, f1,..., fr). One of the ways to look at such a space is to identify the antipodal ends of the lines
with the points at—oco and +oo. This point at infinity corresponds to a vertical line. This affects the
notion of continuity of curves contained (£, f1, ..., fi). In particular, continuous are those curves
that consist of two pieces with one piece having endpointscat and a point on the boundary and the
other piece having endpoints on the boundary andaat (the unbounded endpoints meet at infinity).

For our purposes, it is important to know that with a suitable choice of the coordinate system we
can transform curves passing through infinity into curves joining the opposite boundafiég)of-or
example, assume that in a coordinate sys¥fy both the endpoints of a curve passing through infinity
are inU(S(f)) and their extremak-coordinates are; andx,. Select a new coordinate system with
OY’ having slopex,, = 3*2. In this new coordinate system lines with slopebecome vertical and are
mapped into a point at infinity. Also, the unbounded portions of the boundarig&&fofswap positions
after such a change of the system so that curves passing through infinity that connect points both either in
U(S(f)) orin L(S(f)) change to curves joining a pair of points from the opposite bound&r&sf))
and L(S(f)). This observation will be useful in selecting convenient coordinate systems and will allow
us not to have to worry about vertical positions for the cutting line.

Fig. 5 illustrates the dependence B{ f, f1, ..., fi) on the choice of the coordinate system. It also
shows a schematic view of the fragment of the projective space for the butterflies and the cuts (the value

74 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

Fig. 5. A face (white), an obstacle (gray) and their dual images in three different coordinate systems. The upper picture is a
schematic view of the dual space as a projective space with lines at infinity identified. Segments represent places where the
space can be cut to represent standard coordinate systems as depicted in the second row of images.

of x) that allow the flattening of the fragment in order to present it in a stanBarmcbordinate system.
Sincex coordinates in the dual space correspond to slopes in the primal space, the chailetermines
the direction forOY. Note that Lemma 3.2 implies that the opposite unbounded segmebt&sSof))
andL(S(f)) are pairwise colinear.

3.2. Face-wise continuous cutting out

Consider a convex polygoyi and convex obstacleg,, ..., fi. In this section we are interested in
a face-wise continuous cut-out fgt. Considering convexf seems to be a restriction. However, we
can work with a Boolean model where a facet is represented as the difference of a convex polygon and
obstacles or “holes”. To explain the idea let us use color codiiute for what we cut outplack for
obstacles, andray for portions that are not irf but are not obstacles. If we start withadnite convex
polygon f and placeblack obstacles andray regions, then only the remaininghite portion of f must
be cut out. We cannot penetrate tilackregions, and we can but do not need to cutgtey regions. In
this model a convex supports the facet af that is viewed as the difference between a convex polygon
and polygons corresponding to partsithat protrude fromf. Such obstacles play a different role than
obstacles disjoint witly'.

Although all the following results can be stated fwhite, blackand gray regions, for the sake of
simplicity we just consider convex faceslt{ite) and obstacles{ack).

We have the following straightforward result:

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 75

Lemma 3.4. The dual image of a line that cut§ (without penetrating the obstachess a point in
D(f, f1, ..., fi). Each pointinD(f, f1,..., fx) is the dual image of some line that cyts

Proof. Follows directly from the definitions of cutting lines amd(f, f1,..., fi). Points at infinity
correspond to vertical lines.O

Lemma3.5. If there exists alinéin S(f) thatis not contained inan§(f;),i =1, ..., k, butis contained
in S(f1,..., fx), thenf cannot be cut out.

Proof. [corresponds to a pointin f but not in any obstacle. Each pointircorresponds to a linE
passing through and vice versa. Since each point iis in someS(f;), the correspondingf intersectsf;.
Consequently poing cannot be cut out. O

Now the face-wise continuous cutting can be characterized as follows:

Theorem 3.1. f can be face-wise continuously cut out if and only if there is a continuous guine
D(f, f1, ..., fi) that intersects all lines that are contained 31i /) and are not contained in any(f;),
i=1,...,k. The curvep is contained in one connected componendDdf, f1, ..., fi).

Proof. Note that by Lemma 3.5 ip intersects all lines ir§(f) but not inS(f;) fori =1,...,k, then
there are no lines i§(f) that are contained iS(f1, ..., fi)-

Points inD(f, f1, ..., fi) correspond to lines that cyt (Lemma 3.4). Any curve itD(f, f1,..., fi)
induces in the primal space a continuous path of lines that cut (but do not necessarily guibodtdo
not intersect any of, ..., fi. Sincep intersects each line ifi(f) that is not inS(f;),i =1, ...,k, the
corresponding path of lines in the primal space cuts each point in the facet representedruythe
facet is cut out.

On the other hand, if such a path does not exist then every continuous path misses some fjoint in
consequentlyf cannot be cut out in a face-wise continuous fashion.

Sincep is continuous it must be contained in one connected componddt Aff1, ..., fi). O

A special type of cutting can be obtained wheis limited to piecewise-linear curves.
We have a simple lemma that stems directly from the properties of the dual projection:

Lemma 3.6. (1) A vertical segment irD(f, f1, ..., fi) corresponds to a family of parallel lines that
cut f. (2) A nonvertical segment iB(f, f1,..., f,) corresponds to a pencila double wedgeof lines
cutting f. The center of this wedge is ifi if and only if the line supporting this segment is contained
in S(f).

Proof. Let us show part (1). Points, y) corresponding to a vertical (parallel @Y) segment can be
parametrized withk = a, y = —b + g(¢), whereg(¢) describes the position of the point on the segment.
In real space it corresponds to a family of parallel lines ax + b — g(¢) that cut f without intersecting

fi, ..., fr. Part (2) can be showed similarly.c

The lemma is illustrated in Fig. 5. Different segmentdqf, f1,..., fi), which is equal taS(f) as
there are no obstacles in this case, correspond to different cytdiiat are either translations or rotations

76 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

............... 4 2
‘.‘_\ P e - i 2;/, 3

Fig. 6. An examplep and the corresponding cutting paths. Depending on the shapéset the lastimage in the sequence), the
cuts are (1) translations, (2) rotations or (3) more complicated motiopsigifiot a line segment). Note that the line forming
path (4) crosses infinity (unbounded components in the butterfly) and intef$€£(s)) twice. The corresponding cut is a
rotation that also includes a vertical position of the cutting line; see also Fig. 5.

of the cutting line. Since the segments join the boundarieX 6§ and thus are intersected by all the lines
in S(f), the paths cut ouy by virtue of Theorem 3.1. The segment labeled 4 consists of two halflines
and exemplifies a continuous curve in the projective space as discussed above. The corresponding cutting
path is a rotation of the cutting line that passes through a direction paratiel'to

We will see in the next subsection that not all faces can be cut out in a face-wise continuous fashion.
Then we will discuss 1-1 cutting out, which is a special type of face-wise continuous cutting. Finally, we
will present an algorithm to decide if a face can be cut out with a face-wise continuous cut.

3.3. Faces and obstacles
In this section we analyze cuts for specific arrangements and shapes of faces and obstacles.

Lemma 3.7. Let f be a polygon and let an obstaclg be placed in such a way that it overlaps or is
contained inf. Thenf cannot bel-1 cut out.

Proof. Consider consecutive verticds B, C of f; such that the verteR of the angle/ ABC isinsidef.
We can assume thatd BC is smaller thant (otherwisef clearly cannot be cut out and in particular
cannot be 1-1 cut out). Assume now thyatan be 1-1 cut out. Consider a sufficiently smaBk B’'C’
with B’ on the linel supportingAB (B betweenA and B’), andC’ in BC. Line [is one of the cutting
lines; otherwise points iry close toAB could not be cut. Now every ling that cuts points inside

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 77

ABB'C’ must intersect the interiors of two edges of this triangle. To aygidne of them must b&B’,
but points in this segment are cut by béthind!’, a contradiction. 0O

If there is one convex obstaclg and it is in the interior off, then f can be face-wise continuously
cut out (from Lemma 3.7 we know that it cannot be 1-1 cut out). A cutting line that rotates #pout
maintaining contact withf; and touching the consecutive edgesfofprovides a face-wise continuous
cutting out for f.

In contrast, we have the following.

Lemma 3.8. If there are two convex obstaclgs, f»> that are in the interior off, then f cannot be cut
out in a face-wise continuous fashion.

Proof. This can be seen by analyzing the structur®o¢f, f1, f>) which has two connected components.
There are lines ir§(f) and not inS(f1) or S(f2) that intersect one but not the other component. By
Theorem 3.1 there is no continuous cutting pattn

We can consider other combinationsvdfite andblack polygons and use similar methods to decide
about their properties regarding cutting out. We can alsogrdg polygons to mark regions that do not
belong to f and thus do not need to be but can be cut. Such regions allow us to analyze non-gonvex
with the techniques developed in the previous section. Fig. 7 illustrates a face, an obstacle, a portion that
does not belong tg but is not an obstacle and their corresponding dual projections. Note thaf fzaoe
be cut out by rotating the wire around the obstacle.

Another interesting case that can also be analyzed with the techniques developed in the previous
sections is cutting out coplanar faces. Fig. 8 illustrates the problem. In a 1-1 cut we cut out all the faces
at once, or each of them individually, if possible. The dual projection for this case is more complicated
than for a single face.

Fig. 7. A non-convex face and its butterfly. The light gray represents the cavity, the dark grey represents an obstacle inside the
(white) face.

78 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

Fig. 8. Cutting two coplanar faces with one common cut (1) and with separate cuts (2) and (3).

3.4. 1-1 cutting out

We know from the previous section that there are configurations of faces and obstacles such that a face
can be face-wise continuously cut out but not 1-1 cut out. This section presents an algorithm to decide if
a 1-1 cutting-out path exists.

An observation, which we state without proof, is that the angle swept by a 1-1 cutting-out line is
smaller thanr . This implies that there is a coordinate system in which this 1-1 cutting path does not
pass through the vertical line direction. Although we do not know such a coordinate system, because
of the limit = on the swept angle we will be able to find two coordinate systems such that one of
them has the desired property. In the sequel we always look at two such systems and focus on curves
in D(f, f1,..., fi) that join opposite boundaries i} f). In each individual system we will look at
connected components BX(f, f1, ..., fi) in R?, and not in the projective space discussed earlier.

Lemma 3.9. A connected componeit of D(f, f1,..., fi) that has a non-empty intersection with at
most one boundary @f(/) cannot contain d-1 cutting path.

Proof. Note that 1-1 cut-outs fof start and end at positions tangentftoviewed as a polygon iR?.
This means that the corresponding cutting paths start and en@ity)) U U (S(f)).

Assume thatD shares a piece of boundary witi{S(f)) but not withU (S(f)). That is, cutting paths
contained inD have both endpoints iA(S(f)). Assume thap is a 1-1 cutting path. Take a lidghat
supports a piece df(S(f)) that is also inD. By Lemma 3.2/ is in S(f), and a small rotation of it about
a vertex of L(S(f)) on! yields a linel(¢) that is also inS(f) and intersects the interior d@. Let!’(¢)
and!” () be lines parallel té(¢), in S(f), and intersectingd (assume that(¢) is the line that separates
I”(e) from L(S(f)). As a 1-1 cutting pathy must intersect botk (¢) and!”(¢). Since both end-points
of p areinL(S(f)) andl’(¢) separates’(¢) from L(S(f)), p intersectd’(¢) twice. This contradicts the
assumption thap is a 1-1 cutting path. O

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 79

On the other hand we have the following:

Lemma 3.10. A connected componemt of D(f, f1, ..., fi) that has a non-empty intersection with both
U(S(f)) andL(S(f)), boundaries ofS(1), contains al-1 cutting path.

Proof. By Lemma 3.2 and Lemma 3.3 a segment connecting poinsan the boundarie& (S(f)) and

L(S(f)) is contained inD. This segment crosseX /) and therefore is intersected by all linesSiaf).

Thus, by Theorem 3.1, it induces a face-wise continuous cutting-out path. Since the segment intersects
each line inS(f) exactly once, the cutting path is 1-10

Lemma 3.10 implies a simple @?logn) algorithm to verify if a convexf can be cut out in a 1-1
fashion. ConstrucD(f, f1, ..., fi). Then for each of the connected component®{tf, f1, ..., fu), find
if it has a nonempty intersection with both(S(f)) andL(S(f)). Since the total number of components
and the combinatorial complexity @(f, f1, ..., fi) is O(n?), the cost of this approach is(@ logn).
However, there is a better algorithm that is suggested by the following observation.

Lemma 3.11. There are onlyO(n) components iD(f, f1, ..., fi) that can share boundaries with both
U(S(f)) andL(S(f))-

Proof. Butterflies corresponding to the obstacles intersect each of the boundasigd) ah O(n) points.
Two pieces of the boundary & (S(f)) that belong to two disjoint components I f, f1, ..., fi) are
disjoint and have ends in these intersections (or at infinity). Thus there are émjyc@mponents that
can share the boundary with(S(f)), which implies the lemma. O

By Lemma 3.10 deciding if there is 1-1 cut is equivalent to finding a connected component in the
arrangemenD(f, f1, ..., fx) that shares boundaries with bati(S(f)) andL(S(f)).

A simplified but helpful view of this situation is to visualize a white horizontal stSf)) shaped
like =< with gray strips (corresponding 8 f;)) lying across it, which can be thought of as fences. The
goal is to find a piece of the upper boundary and a piece of the lower boundaiy pfthat are not
fenced off from one another. To find if these exist, we will sweep the lower and upper boundafig9 of
with two points moving along them in a synchronized way. We want to find a location for the sweeping
points such that they can see each other. Such positions must satisfy two basic conditions: (1) each of the
sweeping points is located on a non-covered piece of the boundary, and (2) each of the sweeping points
has crossed the same fences. The second condition simply means that the sweeping points are not o
opposite sides of some obstacle. Technical complications to this general process may result from fences
that do not completely cross the white strip.

The pattern of intersections between the butterfly @nd the butterfly of an obstaclé depends on
the mutual position off and f; in the given coordinate system. Specifically, the intersections depend on
the location of the external and internal tangentg tand f;. To see this, recall that the dual projection
maps parallel lines into points with the sameoordinates. Letlab(«, f) be a family of all parallel lines
between a pair of tangents 0 with slopec«. Similarly, letslab(«, f;) be a family of all parallel lines
between a pair of tangents i with slope«. Each such slab maps into a vertical line segment in the
dual space, and this segment connects the upper and lower boundaii{g9.oA similar situation holds
for f; andS(f;).

80 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

) L;, U;:u4 U]':u] '

Fig. 9. f (white) andf; (gray), their tangents, and the corresponding intersections between their boundaries in the dual space.
Upper tangents, denoted withand!, correspond to the lower boundaries.

Lemma 3.12. Boundaries ofS(f) and S(f;) intersect at a point with coordinate = « if there is a
common tangent tg and f; with slopew. If « is co, then this intersection is at infinity.

Proof. ButterfliesS(f) andS(f;) contain a common vertical segment with= « if slab(«, f) intersects

slab(a, f;); the intersection corresponds to the dual image of the common parallel lines in the intersecting
slabs. If a line with the slope is tangent to bothf and f;, thenslab(«, f) andslab(a, f;) share the
boundary that maps into a common point in the dual space; this point is the intersection of the boundaries
of the butterflies. If the slope of the common tangentdsn the given coordinate system, then the dual
image of such a line does not exist; this corresponds to an intersection of the boundaries at irtfinity.

Depending on the position of the common tangents, the corresponding intersection point in the dual
space is between upper or lower boundaries @f) and S(f;). The total number of intersection points
is four (including intersections at infinity), the same as the number of common tangent lines.

Fig. 9 illustrates a few cases of possible intersections. For example, the leftmost image in Fig. 10
shows four intersections of the upper boundarsy: U (S(f;)) with the boundaries of(f). Note that
I = L(S(f;)) does not intersec(f) at all. This is because the common tangentg aind f; occur only
among the tangents tf that are mapped into the upper boundans ¢f;). Such an intersection causes
portions of one boundary of(f) to be separated from the other boundary, and in our algorithm we
need to exclude those separated portions. Additional cases may be constructed similarly. For example,
consider the leftmost image in Fig. 9 with the gray butterfly shifted upwards to totally cai¢&iF));
the gray butterfly separatds S(f)) from U(S(f)).

The algorithm to find a component B (f, f1, ..., fr) that contains a path connectifg(S(f)) and
L(S(f)) can be organized as follows:

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 81

Fig. 10. ButterflyS(f) (white) is intersected by a butterfly of group (1) (dark gray) and of group (2) (light gray).

Algorithm1-1 Cutting out

Input: ButterfliesS(f), S(f;), i=1,...,k.

Question: Doeg have a 1-1 cut-out?

Method: Finds a component db(f, fi,..., fi) that shares a piece of boundary wit{S(f)) and
U(S(f)). Uses two data structure¥; and Ty, to store the sweeping point status. The sweeping is
conducted with two points moving in a synchronized way alagg§(f)) andU (S(f)).

Step 1.

Step 2.

Select a coordinate system. Computef) and S(f;) for i = 1,..., k. Find the intersections
of the boundaries of butterflieS(f;), i = 1,...,k, with U(S(f)) and L(S(f)). Divide the
butterfliesS(f;), i =1,...,k, into two groups: (1) those properly intersectingS(f)) and
U(S(f)) at four points in such a way that each boundanys of;) intersects each boundary of
S(f) twice and there are no intersections at infinity and (2) all other butterflies.

The first group corresponds to butterflies that cr86g) and split it into two components,
each containing portions @&f (S(f)) andL(S(f)). The second group corresponds to butterflies
that do not splitS(/) into two components in the above sense. Fig. 10 shows a butterfly of each
kind.

For each butterfh§(f;) in group (2) find its intersection with the boundary $ff). Such an
intersection forms an interval/;.b, U;.e) on the upper boundary and an inter¢al.b, L;.e) on

the lower boundary. These intervals are not separated from each otkief;pyror butterflies of

group (2) there is at most one such interval on each boundary. The endpoints of the intervals can
be —oo or 4+ if there are no intersections or there are no proper intersections (they correspond
to vertical tangents of and f;.) If there are no non-empty intervals on the boundarie$S(g?,

then the butterflies of the obstacles completely sepdrat¢f)) from U(S(f)). In this case the
algorithm returns with no 1-1 cutting-out path in this coordinate system and moves to Step 7.

Intervals (U;.b, U;.e) and (L;.b, L;.e) are computed based on the number of intersections
and their types. Below we describe an interval computation procedure for a few representative
cases. After finding the intersections betweif) and S(f;), we select the boundary &% f)
with fewer intersections and compute intervals as follows: If there are 0 intersections (say, with

82

Step 3.

Step 4.
Step 5.

Step 6.

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

U(S(f))), then the corresponding intervdl;.b, U;.e) is set to(—oo, +00). Then we check the
other boundary.

1. If there are O intersections théh;.b, L;.e) is set to empty (boundaries are separated).

2. L(S(f)) is intersected once in a poipt and the intersection is with/ (S(f;)). Then this

is a double intersection point (the total number of intersections must be four, including

intersections at the infinity) meaning tHa{S(f;)) is tangent ta_(S(f)) at p. The interval is

set to[p, pl. In the prime space this is exemplified by two equal squares, one stacked on the

other. The poinp corresponds to the common edge of the squares, and this edge is contained

in a common tangent.
3. If there is one intersectiop of L(S(f)) with L(S(f;)), then(L;.b, L;.e) is set to empty

(boundaries are separated).

4. If there are two intersectionp; and p,, of L(S(f)) with U(S(f;)), then(L;.b, L;.e) is set
to (p1, p2)-
5. If there are two intersectiong; and p,, of L(S(f)) with L(S(f;)), then(L;.b, L;.e) is set

to empty.

Other cases of different types of the intersections are classified similarly.

After finding the intervals, find the intersectidiL.b, L.e) (in the sense of set intersection)
of all of the (L;.b, L;.e), and find the intersectiofU.b, U.e) of all of the (U;.b, U;.e). These
intervals can be empty, in which case there is no 1-1 cutting path in the given coordinate
system. If there are no butterflies in group (2), then these intervals can span thd/&siiy®)
or L(S(f)).

If at least one of L.b, L.e) and (U.b, U.e) is empty, then the algorithm returns that there is
no 1-1 cutting-out path in this coordinate system and moves to Step 7.

For eachS(f;) in group (1), find the four intersections of its boundary with the lower and upper
boundaries ofS(f). Denote the intersection point on the upper boundary with the smaller
coordinate ag;” .b and the other one a§".e. Define f-.b and f-.e similarly.

On each ofU (S(f)) andL(S(f)), sort the intersection points in the above sets.

SweepU (S(f)) from —oo to U.b. For each encounteref” .b, inserti into Ty and intoT, (if

not already in). For each encountergt.e, deletei from 7y

Similarly, sweepL(S(f)) from —oo to L.b. For each encountereff-.b, inserti into 7;, and
into Ty (if not already in). For each encountergd.e, deletei from 7;..

If upon stopping al/.b and L .b the structuredy and7; are empty, then return that there is a
1-1 cutting out; a line segment connecting the sweeping points represents such a path (if any of
U.b, L.bis —oo, use a point to the left of any proper intersections with butterflies of group (1)
as the endpoint of this segment).

Otherwise continue with the next step.

This step involves only intersections with butterflies of group (1).

While Ty is non-empty and we are not &te, continue sweepind/ (S(f)) from U.b and
performing the following two actions: for each encounteyéds inserti into 7, and into7, (if
not already in); for each encountergd .e deletei from 7.

While T, is non-empty and we are not &te continue sweepind.(S(f)) from L.b and
performing the following two actions: for each encounteydb inserti into 7, and into7, (if
not already in); for each encountergd.e deletei from 7;.

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 83

1“; Whn

mmzm "umh -
i —
‘*V]m .&%Ellhlll!l[llﬂ;gql

’!!![l iy zl!!lflt

[
L (-
;ym 7y l‘hmmumn

IrImﬂ ‘;ﬂlﬂ

)

,,,,,,,,,,,

i
il

o

i

"!ll!m 0 (llllﬁ!tmll i IIHlM

**Vlm-‘ 1

N

/ ‘ "’
gl muu

0
i

L

Fig. 11. The sweeping process. The two leftmost pictures of the sequence illustrate Step 5, and the rest of the pictures illustrate
Step 6. The last picture in the sequence corresponds to empty struiueesl 7 .

If both T, and T, are empty at this point, return that there is an 1-1 cutting out (a line
connecting the sweeping points represents such a path). i non-empty and a/.e or T is
non-empty and ak .e, return that there is no 1-1 cutting-out path foand move to Step 7. If
Ty is non-empty but not al/.e (note that the sweeping df(S(f)) might have added objects
to Ty), then repeat this step.

Step 7.1f a 1-1 cutting path not found in this coordinate system, repeat the process for an additional
coordinate system. The system is selected as follows. If there is not a path joining the opposite
boundaries in a connected componentlaff, f1, ..., fi) in the first coordinate system, select
a new system whos®Y axis is aligned with the slope in the first coordinate system,
wherea = xmin — €, Wherexnmin is selected as the minimum coordinate of the points in the
right unbounded component @f(f, f1, ..., fi) ande is a small constant. Alternatively, select
o = xmax + &, Wherexmay is selected as the maximum coordinate of the points in the left
unbounded component @& (f, f1, ..., f); for explanation see the proof.

Fig. 11 illustrates the sweeping process described in Step 5 and Step 6 of the algorithm.

Before proceeding with the proof, let us visualize the algorithm for a simple boundary case of cutting-
out a line segment with no obstacles. Formally, we consider cutting for open sets (such as interiors of
polygons). Although a segment is not openRify the algorithm will work and, moreover, makes a good
illustration of the general idea. The butterfly for a line segment is a double wedge. If there are no obstacles
at all, then bothU.» and L.b are at—oo, and any segment connecting the opposite boundaries of the
double wedge (including a degenerate segment consisting of the vertex of the double wedge) provides a
1-1 cutting path.

Theorem 3.2. Algorithm 1-1 cutting decides ifO(n logn) time if there is al—1 cutting out of a convex
face f in the presence of convex obstaclgs. .., f; that are disjoint withf. If such a cutting exists the
algorithm returns al—1 cutting-out path.

84 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

Proof. By Lemma 3.10f can be 1-1 cut out if and only if there is a componenDitY, fi, ..., fi) that
shares its boundary with boti(S(f)) and L(S(f)). Let us demonstrate that the algorithm correctly
detects such a component.

Firstly, note that only points iGU.b, U.e) and(L.b, L.e) of U(S(f)) andL(S(f)), respectively, can
be in such a component; otherwise the boundaries are separated by a butterfly of group (2) (Step 2). In
particular, if one of them is empty, there is no desired component in the given coordinate system.

Let a pointpy sweepU (S(f)) and a pointp; sweepL(S(f)). Assume thafly or T, is non-empty
at some point during the sweeping process. Assume furtheri tigain 7, and was inserted while
sweepinglU (S(f)) with py. That means that; is inside butterflyS(f;), and, as such, it cannot belong to
D(f, f1,---, fr). If i was inserted while sweeping(S(f)), that means that, has not yet encountered
fY.e and p, passedf.b (and possiblyf" .e). This means that the segment connectingwith p;,
intersectsS(f;), and py and p; do not belong to a component &f(f, f1, ..., fi) that has non-empty
intersections witty (S(f)) andL(S(f)). The same holds for all segments connecting a poibt(@f(1))
that is to the left ofpy, with a point of L(S(f)) to the right ofp; .

On the other hand, if botli; andT; are empty at given positions of the sweeping popysand p; ,
then both of them passed the same butterflies and have not entered any new ones. This means that th
segment connectingy with p, does not intersect any butterflies of group (1), and speevith p, are
in (U.b,U.e) and (L.b, L.e), respectively, this segment does not intersect any butterflies of group (2).
Hence this segment connedgS(f)) andL(S(f)) in a connected component &f(f, f1, ..., fi). By
Lemma 3.10, the segment connectimng and p; determines a 1-1 cutting-out path.

We analyze two coordinate systems to map into a bounded component potential continuous curves
connecting points on thé&(S(f)) and U (S(f)) boundaries and passing through infinity. The choice
of the coordinate systems ensures that the selected unbounded component becomes a connected one
the new system. Therefore any potential paths crossing infinity will also be considered and detected in
some bounded component in this system. See also the discussion in the context of Fig. 5. Let us note
here that an alternative, easier, but not always possible choice for a new coordinate system is to take in
Step 7« corresponding to am coordinate of a position in the arrangement of butterflies wiséyd is
contained in a butterfly of some obstacle.

The entire process can be carried out ik @gn) time. Finding Qnr) intersections betwees\ /) and
S(f;) of O(n) line segments can be accomplished in an Ogn) time; see, for example, [10] (we do
not need intersection points betwegyf;), i =1, ..., k). Once the intersections are known, classifying
them to determine type of the intersection (Step 1) and to determine intervals (Step 2) requik@3 an O
time. Sorting the intersection points (Step 3), and maintaiffing?;, implemented as balanced binary
search trees (Step 5 and Step 6) fqnDpoints and @n) insert/delete operations requiregndogn)
time. O

3.5. Deciding if there is a cutting path

As we have seen, not all faces can be cut out in face-wise continuous fashion. However, they can
still have a cutting out path, one that may require a discontinuous repositioning of the cutting line. The
problem of finding if such a path exists will be addressed in the next section. In this section we ask how
to decide if each point in a given face belongs to some cutting line.

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 85

Fig. 12. White face, black obstacles and gray butterflies corresponding to cuts. The face can be cut out only if it is completely
covered with the butterflies.

By Lemma 3.3 the connected component®Réf, S(fi, ..., f) are convex polygons. Therefore in the
primal space each of these components is a butterfly, and there cafnbeobthem. Lines in each of
the butterflies avoid the obstacles.

We have the following:

Lemma 3.13. f has a cutting out path if and only if is contained in the union of the butterflies
corresponding to the connected componentR®f S(fi, ..., f;) that have a nonempty intersection
with S(f).

Proof. Clearly, the components that do not inters&¢f) can be ignored as their primal space image
is not connected withy'. Each butterfly corresponds to lines that avoid obstacles. If the union of the
butterflies covers, then each point of is cut by at least one line. To prove the other direction, take all
the lines that cuif, and note that they covet and belong to the butterflies.c

Lemma 3.13 is illustrated in Fig. 12, where the black polygons reprefsent., f;. In this case there
are cells in the arrangement of the butterflies (gray areas) and the polygon that do not belong to any
butterfly. Points in these cells cannot be cut and consequently the polygon cannot be cut out.

Lemma 3.13 implies an algorithm for checking if a face can be cut out.

Algorithm Feasibility of Cutting

Input: f andD(f, f1,..., fi).
Output: Whetherf can be cut out.

Step 1.Find D(f, f1,..., fi): with a line arrangement algorithm the cost of this step is &n?D
time and space. Note that unlike in the case of Theorem 3.2, we need to construct the entire

D(f, fr. -\ fi)

86 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

Step 2.Find the pre-image for each of the connected component®20f S(fi,..., f¢) that have
nonempty intersection witlS(f); D(f, fi...., fx) is useful here. There are(@) butterflies
with the total of Qn?) vertices. The cost of this step iS¥), and it uses @:?) space.

Step 3. Incrementally construct the arrangement for all the butterflies. Since we haée Iitterflies,
the cost of this step is @%), and it uses @:*) space.

Step 4. Add the boundary off to the above arrangement. Laloeit regions adjacent to the boundary of
f and outside off, and labein regions adjacent to the boundary pfind insidef. The cost of
this step is M%), and it uses @*) space.

Step 5. Traverse the arrangement, marking cells that belong to at least one butterfly. This can be done
by maintaining for each cell a count of butterflies covering the cell; this count is decreased or
increased each time a boundary of the cell is crossed. The attrilbutasd out are used to
determine if the current region is insige If there is a cell marketh that does not belong to any
butterfly, report that the face cannot be cut out. The cost of this stemf§,@nd it uses %)
space.

The correctness and complexity of the algorithm is stated below:

Lemma 3.14. The algorithmFeasi bi | i ty of Cutti ng decides inO(n* time and space if a
collection of butterflies coverg. If f is not covered, therf cannot be cut out, and there is no path
cutting outf.

Proof. The complexity of the algorithm depends on the combinatorial complexity of the union of the
butterflies. Since there are(@¥) lines, the complexity of the arrangement i), and all the steps,

as indicated in the algorithm, can be carried out i@® time. The algorithm reports thgt cannot be

cut out only if there is a point irf not covered by at least one butterfly. Since butterflies contain all the
cutting lines for f, this point cannot be cut out.C

Note that the above algorithm can be modified to find out if a given subset of butterflies goveos
a single butterfly this corresponds to deciding face-wise continuous cutting oit #an optimization
version of the problem is to find the smallest cover.

4. Connectivity graph

A cutting path that stays in contact with the closurePo€onsists of two types of moves: (1) cutting
moves that cut a face, or (2) sliding moves that reposition the cutting line from on¢ facanother face
or, if f does not have a face-wise continuous cut, to another pgit(of, in dual space terminology, to
another component db(f, f1,..., fi)).

To cut out all the faces aP and, in particular, to cut out piece-by-piece those face® thfat cannot be
cut out with face-wise continuity, we need to construct a cutting-out path that blends together cutting-out
and sliding moves. A natural idea is to build a graph that describes all possible sliding moves. We will
be able to identify paths between faces or between different portions of fagessing standard graph
traversal algorithms. We will call this graph a connectivity graphHcand denote it byG (P).

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 87

To understand this more intuitively, it helps to visualize a wire-frame modeP adnd a long,
magnetized, straight wire that is put on this frame. We can slide the wire along the edBesyoig
to explore all possible paths. In this process the magnetic wire stays in contact with some edges and
slides from one edge d? to another when it encounters a vertex or a fac® ofVe can further constrain
this process by insisting that the wire always stays is touch with at least three edges of the frame. Indeed,
if the wire initially touches only two edges we can “attach” the wire to one of the edges and move it until
a third edge is encountered. Then we can continue sliding the wire on these three edges until a vertex or
another edge is met, always keeping the wire in contact with at least three edge®btourse, it is
possible to cut with a wire that moves freely in the space without necessarily touching three edges all the
time. However, the compliant motion (sliding along three edges) allows us to discretize the motion of the
wire and base it on the connectivity graph.

McKenna and O’Rourke [11], as well as the authors of this paper [6], showed that a free motion of
aline in a setL of n lines in R3 can be described by a sequence of combinations of four or fewer lines
from L. In particular, McKenna and O’Rourke defined a graphhat describes classes of abstractions
(connected components in the space of lines) for the moving lines. Each veitexadmresponds to a
line intersecting four lines il or a line intersecting two lines and parallel to a third one (as we will see,
we will not be concerned with this case). Each edge connecting verticgssitabeled with three lines;
sliding along these lines allows the sliding line to move between positions encoded by the veréices of

The connectivity graplt (P) for cutting out P is a subgraph o€, whereG is generated by the set
L of lines supporting the edges &f. G(P) does not include edges 6f that are not feasible transitions
for the cutting lines. Infeasible transitions are arcssithat correspond to lines that move parallel to the
planes containing the ends of the cutting wire and arcs corresponding to positions that would cause the
moving line to penetrate the interior &. Moreover, since each sliding move can maintain contact with
three edges, we will only be interested in those arosS difiat are labeled with three lines bt

Therefore, vertices of; (P) correspond to some quadruples of edge® @ind arcs between vertices
of G(P) correspond to some triples of edgeshif Intuitively, the arcs ofG(P) correspond to sliding
the cutting line along three skewed edges to reposition the wire, and the vertiGé® ptorrespond to
the positions where the wire touches four edges. In such a case the sliding must change its direction anc
continue on to another triple of edges (and their supporting lines), or the cutting line is positioned on a
face. Arcs ofG (P) are computed based on pairs of edge® ofor edges that belong to the same face
f of P, the connectivity is determined by looking at the structure oftHaes and two edges from the
obstacles.

For edges that lie on pairwise skewed lines, the construction is based on a generalization of the skewed
projection introduced in [6]. Recall that two edgesRifare called skewed if they are not coplanar.

Lemma 4.1. The number of edges @(P) is O(n*).
Proof. G(P) has Qn*) vertices, and the degree of each vertex is at most foar.
4.1. Constructings (P)
Arcs of G(P) will be constructed using generalized skewed projections [5,6]. (In [6] the skewed

projection was defined for a pair of skewed (i.e., non-coplanar) ling&’iand screens parallel to the
axes.)

88 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

The generalized skewed projection is defigtand as follows:

Definition 4.1. Let [; andl, be two lines in the spac&® or in the real projective spackP? and’ be
a hyperplane in this space that does not contaand/,. The skewed projectioBp: R\ (h1 U hy) —
h(sp: RP3— h, respectively of a point P on i with respect td, and/, is the intersection of the linke
intersecting, > and P with the hyperplané (called the screen of the skewed projecjion

Theorem 4.1. Lines intersecting the axds and I, of the skewed projections and a given lihare
contained in a plane, a one-sheeted hyperboloid or a parabolic hyperboloid.

Proof. The proof is by straightforward calculations [5]O
As an immediate corollary we have:

Corollary 4.1. The skewed projection of a line iRP3 is a line, an ellipse or a hyperbola. IR® the
skewed projection of a line is contained in one of the above curves.

Proof. Lines, ellipses and hyperbolas are the only possible intersections of a plane, one-sheeted
hyperboloid or parabolic hyperboloid with a plane (the screen of the projectiamn).

To illustrate the above properties (RP3) consider the lines (axes of the projection$)0, 0, z) and
(1,1, y, 0) and a line with the parametric equati@h 2, 0, 2) +¢(0, 1, 1, 1). The surface generated by the
lines intersecting all of the above three lines is a one-sheeted hyperboloid giveh-bR2u —xz — yz =
0 (see Fig. 13).
One interpretation of the skewed projection for a set of lineRins as follows: the arrangements of
the curves on the projection screen correspond to the lines that limit the sliding of the sliding line. The

Fig. 13. Axes of a skewed projection and a line forming a one-sheeted hyperboloid.

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 89

ABDE

CDE

CDF

ADEF ACDI

Fig. 14. The skewed projection 6fH I with respect to edges and D. The middle picture illustrates the result of the projection.
Marked points correspond to projections of four lines. The rectangle is the projection of lines sliding along segyarehis.
Projections of edge® and C are outside of the rectangle and will not be a part of the graph. Similarly, intersections of the
projections of edge& and F with the boundary of the rectangle correspond to triples of li&E and AD F and therefore

will not be vertices of the graph. The rightmost picture represents the connectivity graph for the skewed projection with respect
to A andD.

curves correspond to triples of lines, and the intersections of curves correspond to at least quadruples of
lines. The curves resulting from the skewed projection of edge, @fs well as their intersections, are
used to construaf (P).

As a remark let us note that the difference between projecting on the Secyeearallel versus the
screen,, non-parallel to the axes is not significant. The conveyed information about the limitations on
sliding is the same in either case. In fact, there is a simple relation between the two projections. The
hyperbolic paraboloid of lines intersecting the axes and paralle} tantersects:, along a line. When
we cuth, along this line and glue together the edges at infinity, the obtained arrangement of curves is
identical with the one on,,, up to a suitable transformation.

As another remark let us note th@tcan be built using the method from [11]; thér(P) is obtained
from G after removing unnecessary vertices and arcs. It is possible to show that this method reduces to
the skewed projection with the projection screen parallel to the axes of the projection. However, because
of restricting the screen to a particular position, constructing®) from such an obtained: may be
more complicated than with the above described process.

To move between faces df let the cutting linel slide on edgeg; ande, of P. The algorithm
Constructing vertices and arcs of G(P), presented below, identifies all edgef P
that! can touch and perhaps slide on while slidingegrande,. The idea of the algorithm is to build
the connectivity graph based on the skewed projections (with respect to lines incky@inde,) of L,
all the lines supporting edges &f. The obtained arrangement of the curves, the projectiors, ofill
need to be pruned to remove fragments of curves that are beyond the edgew e@fould causd to
penetrateP. The main difficulty in the algorithm is to recognize the latter. Each time the projecting line
is coplanar with a facg of P, it intersects two edges @. At this point, further sliding on one of these
edges may caugdo penetrate? as the edge becomes invisible tdo register this we mark this point on

20 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

the curve with the information that the adjacent face changes its orientation with respect to the projection
line; later, the corresponding fragment of the curve will be removed from the arrangement.

Before providing pseudocode for the algorithm, let us take a look at the basic steps of computing the
skewed projection; we will illustrate it with Fig. 14.

On this figure we have three selected triangular faces (the reBtisfnot depicted), and we want
to analyze the moves of the cutting line that slides on edgesd D and the edges of the faceH I;
here G, H and I denote edges rather than vertices. We align the axes of the projection with the lines
containingA and D; after a suitable transformation we can assume that the axes are givenlhQ)
and (0, 2, z) and that the screen of the projectionyis= 3, with all the triangles in front of it. If we are
located at the point0, O, 0), the axes appear as a cross, and the skewed projectivG &/ is obtained
by tracing the intersection of a line that slides on the axes and the boundary ff . Note that while
tracing the boundary of G H I with a line sliding on the axes, it leaveg ande,. Since our intention is
to stay in touch with edges dt, we crop the skewed projection &fG H I to a rectangle whose corners
on the projection screen are determined by the projection line passing through the endpoints of edges
e1 ande,. Anything that is outside of this rectangle is not interesting to us; this includes portions of the
projections of edge&/, H andI as well as the projection af and B. The rightmost part of the figure
shows a portion of the connectivity graph; its vertices correspond to positions of the sliding line when it
touches four edgesA(and D, which are the axes, and two other edges of the triangles). Arcs correspond
to triples of edges; they connect two vertices of the graph if the quadruples share this triple of edges. The
intersection of the projection &G H I with the projections of edges and F (both are coplanar witl,
one of the axes, therefore their projections are colinear) exemplifies the situation where the projection
line may look at two different sides of a face (and only one of them is visible). Invisible fragments of
faces will be eliminated in Steps 5 and 6 of the algorithm presented below.

Al gorithm Constructing vertices and arcs of G(P)
Input: Polyhedral shap® and a pair of skewed edgesande; of P.
Output: Skewed projection d? with respect to the lines supportirg ande-.

Step 1. Find skewed projections (curves) for each line that supports an edgetiohe O(n).

Step 2. As a side effect of projecting edges 81 the faces ofP are also projected. For each edge
mark next to the respective fragments of its projection the position of the projection of each face
of P adjacent tae (whether the given face is to the left or to the right of the fragment in the
projection): time Qn), proportional to the number of faces and edges.

Step 3. Construct the arrangement of the curves on the projection screen: timéné(n)) based
on [11].

Step 4. Crop the arrangememd to the curve fragments that can be reached by the sliding line limited
to sliding one; ande,. This can be done with “windowing” the arrangement with four planes:
two planes containing; and the endpoints of, and two fore, ande;, respectively (without
confusion we can call this arrangemet: time O(n?).

The two following steps eliminate those fragments of curved ihat are invisible to the sliding line;
[would pierce a face oP to slide on them:

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 91

Step 5. Select a position for the sliding lingfor example, lef pass through the endpointsafande;).
Count the number of faces @f that! intersects. This is the count associated with the region
in A that corresponds to the intersectior/ efith the projection screen.

Step 6. Starting fromC traverseA, marking for each region in the arrangement the count of faces that
are projected to this region using information collected in Steps 2 and 5. This count is changed
by one each time the boundary of the region is crossed. Eliminate #aal curves that do
not separate faces from regions with count equal to zero (that is, those regions which are not
projections of any faces). The remaining arrangement (still cadleepresents the silhouette of
P on which! can slide without penetrating.

The algorithm constructs an arrangements that is a porti@n(&) with vertices labeled witla;, e,
and two other edges dt, as well as arcs labeled with, ¢, and another edge df.

Theorem 4.2. The arrangement of skewed projections:dines can be constructed @(n%«(n)), and
its combinatorial complexity i©(n?).

Proof. The number of intersections afsecond-degree curves ig#3). The arrangement for the lines

and hyperbolas can be found in#3w« (n)) time with the algorithm from [11]. To insert ellipses into the
arrangement, we cut them into convex and concave pieces with respect to the direction of the intersection
of h1, hy with & and construct arrangements for each of these groups separately. Then we construct the
arrangement for the parabolas iri@u(n)). All of the five arrangements (two for hyperbolas, two for
ellipses, and one for parabolas) are merged together for the totahéf@)) time. O

Theorem 4.3. For a given paireq, e» Of skewed edges df (edges supported by skewed linese can
identify inO(n?) time, provided that the arrangement computed with the skewed projection is given, all
edgeses in P that form triples describing a subset of edge<G@fP) and all quadruples of edges iR

that describe a subset of vertices@{P). The triples describe possible slidings for the cutting line. The
guadruples describe points where the direction of the cutting line changes.

Proof. Each curve that is a skewed projection with respect to lines suppettiag determines the third
edge in the triple. Intersections of the curves correspond to two edges that form quadruples together with
e1, e2. The cost of the construction follows from the size of the arrangement as stated in Theorem 4.2.

The entire grapl& (P) can be constructed as follows:

Al gorithm Constructing G(P)
Input: Polyhedral shapg.

Output: Connectivity grapld/ (P).

For each pair of skewed edgesande, in P do

Step 1. Call algorithmConst ruct i ng edges and arcs of G(P) fore; ande,.
Step 2.Add to G(P) quadruples of edges as vertices and triples of edges as arcs based on the
arrangement constructed above.

Based on Theorem 4.8;(P) can be constructed in@*«(n)) time and Qn*) space.

92 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

Note that the skewed projection will also find arcs and vertice&;@P) for edges inP that are
coplanar.

Let us end this section with a comment related to the case whina convex polytope. One may
wonder which are the skewed edges on which the cutting limsliding when cutting ouP. To this end
consider a facg of P. Letlinel be in the plane of and pass through a vertexof f. Thenl is tangent
to the following edges: an edge not in the plangfaine of whose endpoints is an edge in the plane of
f with one of its endpoints im, another edge (across fram in the plane off. The first and third edges
are skewed.

4.2. Finding cut-out paths

With the graphG (P) we can decide if? can be polyhedron-wise cut out. We will associate a number
of attributes with each vertex in the graph. First, each vertex whose name includes two edges that belong
to the same facg of P will be labeled with this face (the vertex corresponds to the cutting/ Iplaced
in f). This can be done in constant time per vertexGg®) if each edge is labeled with its faces. Next,
for each vertex inG(P) that corresponds to a face that cannot be cut out in the face-wise continuous
fashion, we find the connected componenidff, f1, ..., fi) that is adjacent to the edges Pfmeeting
in this vertex.

With such an attributed; (P) the algorithmCut t i ng_Pat h(G(P)) is defined as follows:

Al gorithm Cutting_Path(G(P))
Input: G(P).
Output: a polyhedron-wise continuous path forif it exists

Step 1.Find connected components 6f(P): time proportional to the size aff(P) with Depth First
Search.

Step 2. For each connected component®(fP), find if all faces can be accessed, that is, if for each face
f of P there is a vertex in this component labeled withif not all faces can be reached, then
the component does not have the desired path.

Step 3. For each component returned from the previous step, for each ffaitet cannot be face-
wise continuously cut out, find the collection of the connected componens Aff1, ..., fi)
labelling the respective vertices 6f(P).

Step 4. Call the algorithm 1-1 Cutting Out from Section 3.4 to verify if the connected components of
D(f, f1, ..., fr) contain paths that can be blended into a cutting out patlf for

Step 5. If there is a connected componentGi P) that allows the accessing and cutting out of all of
the faces ofP, return the path in this connected component; otherwise, reporPticannot be
polyhedron-wise continuously cut out.

The cost of the algorithm is dominated by calls to the algorithm @it i ng Qut, whose cost is
O(n*) per face.

Theorem 4.4. It can be decided i©(n°) time andO(n*) space if a polyhedral shape withedges can
be cut out in a polyhedron-wise continuous fashion.

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 93

E BD

y5C D
‘ DE
e
(D)

Fig. 15. Image (a) shows a polyhedrdB C D E with six faces and pictures (b—d) show three different connectivity graphs for
different types of cutting for this polyhedron. Graph (d) is a general graph discussed in this section. The nodes of the graph are
not labeled with quadruples of edges. Instead, they are labeled with pairs of vertices corresponding to £8geB &f The

cutting line is moving from one edge to another by rotating about a vertex and sliding along a another edge.

Proof. G(P) can be constructed and attributed iin@x(n)) time. The connected components can be
found in Qin*) time. Verification of whether all the faces #fcan be accessed requires time proportional
to O(n*). The cost of verifying if a face can be cut out require@®) time with theFeasi bi | i ty of

Cut t i ng algorithm, for a total of @:°) for O(n) faces. All of the steps of the algorithm require no
more than @»%) memory. O

If a polyhedral shap# has special properties (e.g., it is convex), or if we know that all of its faces can
be 1-1 cut out or face-wise continuously cut out, it is possible to build a simpler connectivity graph. For
example, for 1-1 or face-wise continuous cutting such a graph can be constructed ii@e.

For the general case of a polyhedral shape, we study a compliant motion that requires the wire to
stay in contact with three edges. For special cases of polyhedral shapes, such as convex polyhedra, o
for specific cutting requirements, such as cutting a face starting at an edge and completing the cutting
with the wire aligned with another edge of the face, we can construct different connectivity graphs that
correspond to more restricted ways of maintaining contact with three edges. Fig. 15 illustrates a simple
polyhedronA BC D E with six faces and three connectivity graphs that demonstrate that the @xa@ph
can be defined in a variety ways depending on the propertig® ahd on the mode of cutting. For
example, in the first graph nodes of the graph correspond to the edgd(i E, and arcs correspond
to a 1-1 cutting out of the faces where the cutting line moves from an edge to an edge. This requirement
reduces the number of feasible movements and thus results in a simpler graph.

Vertices of the second graph are labeled with descriptions of the positions of lines. For example,
means that the cutting line is defined by verticesnd B. After moving along the arcs, the line will
assume a different position. This graph describes a face-wise continuous cutting out with a line moving
from an edge or vertex irff to another edge or vertex g¢f.

94 J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95

The above graphs can be efficiently constructed. We do not present their constructions here; rather, we
include them to show that the general approach of connectivity graphs can be applied to the wire cutting
problem in a variety of ways.

The third graph is our general graph constructed with the skewed projection. However, it is presented
in a compact form that is smaller, yet provides enough information about the motion. Because of the
shape ofABCDEF, there is no situation that the cutting line slides on three edges. This allows us
simplification. Instead of presenting nodes for quadruples of edges and presenting arcs for triples of
edges, each node is labeled with a pair of vertieseS. describes all possible quadruples of edges that
allow to align the cutting line witlAC. For example, such an alignment can be achieved with the cutting
line rotating about4 and sliding alongBC or EC. Similarly, the line can be rotated abafitand sliding
alongBA or DA. An alternative way of thinking about this compact form is to see the noden the
graph as a representation of a set of quadruples of edges that the cutting line touches while it is aligned
with the edgeAC; this idea is presented in [11].

The graphs illustrate many possible approaches in representing specialized motions. Such motions
may lead to simpler graphs and to more efficient algorithms. One example is polyhedral shapes where no
two different faces are coplanar.

5. Conclusions

We have presented algorithms for a number of tasks related to the wire-cutting of polyhedral shapes,
including an algorithm for deciding and finding continuous cutting paths.

The paper uses two major groups of techniques. The first group of techniques, such as duality and
skewed projections, is related to lines in two and three dimensional spaces. The second group borrows
from robotics and robot motion planning methods.

The complexity of our algorithms depends on two subproblems: construction of the connectivity graph
for admissible lines and deciding if a single face has a cutting-out path. Because of the high complexity
of our algorithm, a natural task is to improve the running time and memory requirements of our solution
in the general case. Detailed studies of special cases related to the geometry of the object to cut-out, ¢
few of which were briefly mentioned in the paper, also provide a number of interesting questions. For
example, how can advantage be taken of the multiple coplanar faces that can be cut simultaneously in
planning the wire motion of a given object?

Other interesting, but possibly hard, open questions involve optimal planning, such as the minimal-
time trajectory planning with the objective of minimizing the time the hot wire stays in contact with the
material.

Among problems similar to cutting with a wire (line), one may consider cutting with a laser beam (a
half-line), with a rod (a line segment), or even with task-specific tools such as a meat-cutter (Joe Mitchell,
personal communication). Some of the methods presented in the paper are immediately relevant to the
above problems. For example, one of the technological advantages of the laser beam comes into play
when the connectivity graph is not connected. By simply switching the beam on and off it is possible
to move from one connected component to another. This becomes relevant in manufacturing objects of
genus higher than 0. For cutting with a thin rod (similar to a wire but attached to the moving arm only
at one of the ends, and the tip of the wire cannot cut) note that more objects can be cut-out with it than
with a wire. As an example we can consider a cube with one corner in the shape of a cube removed. To

J.W. Jaromczyk, M. Kowaluk / Computational Geometry 25 (2003) 67-95 95

detect if a particular face can be cut-out with a rod we can use an approach similar to Section 3.5. Instead
of covering the face with regions outside tangents to the obstacles, we can analyze the intersection of the
region between the tangents to a pair of obstacles. The face can be cut-out if the intersection with the
face is empty. However, although the main approach and techniques used and developed in the paper ar
helpful for these problems, technological and geometric differences most likely will require analysis of
many problem-specific details.

Acknowledgements

The authors would like to thank the referees for exceptionally helpful and detailed comments with
specific suggestions that were critical in correcting and improving this paper. Our thanks also go to Ryan
Gabbard for proofreading numerous iterations of the manuscript.

References

[1] B. Chazelle, H. Edelsbrunner, L.J. Guibas, M. Sharir, Algorithms for bichromatic line segment problems and polyhedral
terrains, Algorithmica 11 (1994) 116-132.

[2] H.S.M. Coxeter, Projective Geometry, Second Edition, University of Toronto, Toronto, 1974.

[3] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.

[4] H. Edelsbrunner, H.A. Maurer, F.P. Preparata, A.L. Rosenberg, E. Welzl, D. Wood, Stabbing line segments, BIT 22 (1982)
274-281.

[5] J.W. Jaromczyk, M. Kowaluk, Generalized skewed projectiongdnManuscript.

[6] J.W. Jaromczyk, M. Kowaluk, Skewed projections with an application to line stabbi@,irin: Proc. 4th Annu. ACM
Sympos. Comput. Geom., New York, ACM Press, 1988, pp. 362—370.

[7] 3.W. Jaromczyk, M. Kowaluk, The face-wise continuity in hot wire cutting of polyhedral objects, in: Proc. 16th European
Workshop on Computational Geometry, Eilat, 2000, pp. 93-97.

[8] J.W. Jaromczyk, M. Kowaluk, Set of lines and cutting out polyhedral objects, in: Proc. 17th European Workshop on
Computational Geometry, Berlin, 2001, pp. 183-186.

[9] T. Lozano-Pérez, Spatial planning: A configuration space approach, IEEE Trans. Comput. C-32 (1983) 108-120.

[10] M. Overmars, M. de Berg, M. van Kreveld, O. Schwarzkopf, Computational Geometry: Algorithms and Applications,
Springer-Verlag, Berlin, 1999.

[11] M. McKenna, J. O'Rourke, Arrangements of lines in 3-space: A data structure with applications, in: Proc. 4th Annu. ACM
Sympos. Comput. Geom., New York, ACM Press, 1988, pp. 371-380.

[12] O. Nurmi, J.-R. Sack, Separating a polyhedron by one translation from a set of obstacles, in: Proc. 14th Internat. Workshop
Graph-Theoret. Concepts Comput. Sci., in: Lecture Notes Comput. Sci., Vol. 344, Springer-Verlag, Berlin, 1989, pp. 202—
212.

[13] D. Nussbaum, J.-R. Sack, Translation separability of polyhedra, in: Abstracts 1st Canad. Conf. Comput. Geom., 1989,
p. 34.

[14] M. Pellegrini, Lower bounds on stabbing lines in 3-space, Computational Geometry 3 (1993) 53-58.

[15] M. Pellegrini, Ray shooting and lines in space, in: Jacob E. Goodman, Joseph O’Rourke (Eds.), Handbook of Discrete and
Computational Geometry, CRC Press LLC, Boca Raton, FL, 1997, pp. 599-614, Chapter 32.

[16] J.T. Schwartz, M. Sharir, On the piano mover’s problem: V. the case of a rod moving in three-dimensional space amidst
polyhedral obstacles, in: M. Sharir, J.T. Schwartz, J. Hopcroft (Eds.), Planning, Geometry, and Complexity of Robot
Motion, Ablex Publishing Corporation, Norwood, NJ, 1986, pp. 154—186.

[17] J.T. Schwartz, Micha Sharir, A survey of motion planning and related geometric algorithms, in: D. Kapur, J. Mundy (Eds.),
Geometric Reasoning, MIT Press, Cambridge, MA, 1989, pp. 157-169.

