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ABSTRACT 

It is shown that two triply connected graphs are isomorphic if their associated 
geometric lattices are isomorphic. The notion of vertex in a graph is described 
in terms of irreducible hyperplanes. Finally, necessary and sufficient conditions 
are given that a lattice be isomorphic to the geometric lattice associated with 
a graph. 

Hassler Whitney [6] has shown that two triply connected graphs are 
isomorphic if their circuit structures are isomorphic. We shall show the 
same result by looking at the geometric lattices associated with the graphs, 
and we will also characterize these lattices. 

In this paper a graph G shall always be a finite, non-oriented graph 
with no isolated vertices, loops, or multiple edges unless the contrary is 
stated. Associated with this graph G is a geometric lattice L, which has 
been called a bond-lattice by Rota [2], and a circuit structure M called 
a polygon-matroid by Tutte [4]. The geometric lattice L can be described 
perhaps most easily in terms of the incidence matrix of the edges and 
vertices, columns corresponding to edges. The columns can be thought 
of  as 1-dimensional subspaces of the column space mod 2 which 
correspond to points of the associated projective space. The set of  all 
joins of these points forms a geometric lattice ordered by inclusion. (See 
[1] for the theory of geometric lattices and Lemma 3, p. 84, for the 
construction of the lattice of joins.) A minimal dependent set of atoms in 
the lattice determines a circuit in the graph and conversely. Another way 
of  describing the lattice L is in terms of  a closure operator, a set S of edges 
being closed if the adjunction of any single edge will not create any new 
circuits. The lattice L is the lattice of  closed sets. As was shown by Whitney 
[7], matroids and therefore geometric lattices can be characterized in 
terms of circuits as well as independent sets of atoms. In this paper a 
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hyperplane shall be an element in the lattice covered by the maximum 
element L 

DEFINITION l. (7 is said to be "non-separable" if, for any two com- 
plementary non-empty subsets S and T of  the edges of  G (E(G)), there exists 
a circuit o f  G whose edge set meets both S and T. This is equivalent to the 
statement that the matroid associated with G is connected (see [4]) and 
that the geometric lattice is irreducible. 

DEFINITION 2. G is said to be a "triply connected" graph i f  G is non- 
separable, and i f  the subgraph obtained by deleting any vertex v and all o f  
the edges through v (the "star" through v) is also non-separable. 

DEFINITION 3. In a geometric lattice L, a hyperplane h is said to be 
"'irreducible" i f  and only i f  [0, h] is an irreducible lattice. 

THEOREM 1. Let G be a triply connected graph with L its associated 
geometric lattice. I f  v is any vertex of  G, then the set of  edges complementary 
to the star through v (the "star-complement" o f  v)join to make an irreducible 
hyperplane in L. Conversely, every irreducible hyperplane is associated 
with a vertex v in this manner. 

Proof I t  is obvious that the star-complement of v is a closed set. I f  we 
adjoin an edge e through v, then any other edge through v lies in some 
circuit containing e since L is irreducible 1 (merely because G is non- 
separable), and this circuit must be composed solely of  e and edges of the 
star-complement of  v in addition to the other edge. Hence the star- 
complement of  v joins to a hyperplane in L. This hyperplane is irreducible 
since G is assumed to be triply connected. 

Let us consider the converse. Let h be an irreducible hyperplane in L. 
There must therefore exist an edge e with vertices vl and v 2 which does not 
lie within h. Suppose that there exists an edge f within h which contains 
v2 and an edge k within h which contains v l .  Let the other vertices of  
f and k be va and v4, respectively. I t  is impossible that va = v4 since that 
would imply that e was within h. Since h is irreducible, there exists a 
circuit C in G which contains k and f Now either C is of  the form 
(vl,  v4),..., (vi, va), (va, v~), (v2, vj),..., (vm, va) or of the form (vl ,  v4) ..... 
(vi,  v2), (v~, v~), (va, vj),..., (vm, vl) where all of  the edges lie within h. 

1 This follows readily from the McLaughlin-Sasaki-Fujiwara theorem, which states 
that any two atoms in an irreducible geometric lattice have a common complement. 
Note that the comment in [l, p. 94] about pseudo-perspectivity and perspectivity is 
not correct. 
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In the first case we can form the circuit (Vl, v4),..., (vi, va), (vz, v2), 
(v~, Vl), and in the second case we can form the circuit (Vl, v4),..., (vi, vz), 
(vz, vx). In both cases this implies that (v2, vt) ~ e is within h which 
is a contradiction. Thus one of the vertices, say v~, must have the property 
that none of  the edges through it lies within h. Since h is a hyperplane, 
the set of  edges it contains cannot be a proper subset of  the closed set 
determined by the star-complement of  vl �9 Thus h is determined by the 
star-complement of  va. 

REMARK. The proof  of the converse did not require that G be triply 
connected. Thus an irreducible hyperplane always determines a vertex, 
and a vertex in a non-separable graph always determines a hyperplane. 

COROLLARY 1. In a triply connected graph G, an edge e contains a 
vertex v i f  and only i f  the atom associated with e in L is not within the 
irreducible hyperplane associated with the star-complement of  v. 

COROLLARY 2. In the geometric lattice L associated with a triply 
connected graph G, an atom lies in all but exactly two irreducible hyper- 
planes. The set of  irreducible hyperplanes within which it lies is non-empty. 

COROLLARY 3. In a lattice L associated with a triply connected graph 
G, there is at most one atom which is a common complement to two 
irreducible hyperplanes. 

THEOREM 2. Let G 1 and G~ be two triply connected graphs associated 
with geometric lattices L1 and L2 which are isomorphic. Then G 1 and G2 are 
isomorphic. More strongly, i f  ~ is the isomorphism between Lx and L~, 
then an isomorphism fl exists between G 1 and G2 which agrees with c~ when 
applied to the edges (atoms). 

Proof. Define fl so that /3  agrees with c~ when applied to the edges. 
I f  v 1 is a vertex in G1, its star-complement determines an irreducible 
hyperplane hi in L1 which is mapped by ~ onto h 2 in L2 �9 But then he is 
associated with the star-complement of  a vertex vz in G2. Define 
fl(Va) = v2. The mapping/3 is obviously a 1-1 mapping f rom the vertices 
o f G  1 onto the vertices of  Ge. I f e  1 in G1 joins v 1 and vl', then e 1 is a common 
complement of  the irreducible hyperplanes associated with Vl and vt' 
and therefore/3(el) connects/3(Vl) and/3(Vl'). I f  vl and v 1' are not connected 
by an edge, then their associated irreducible hyperplanes do not have a 
common complement which is an atom, and therefore fl(va) and fl(vl' ) are 
not connected. Thus/3 is an isomorphism between G1 and G2. 
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THEOREM 3. I f  G1 and G2 are graphs with G 1 triply connected, and if 
there is an isomorphism between their associated geometric lattices L1 and 
L2, then G~ is also triply connected and hence isomorphic to G1 �9 

Proof. Since L2 is irreducible, G 2 mus t  certainly be non-separable. 
Suppose that  v~ is a vertex in G2. Let e2 be any edge through v2, say 
e2 = (v2, v2'). N o w  e2 corresponds to el in L1, and ex is a complement  o f  
exactly two irreducible hyperplanes h I and h~' in L~. Therefore e 2 is a 
complement  o f  exactly two irreducible hyperplanes h2 and h2' in L~. 
By the remark after Theorem 1, h2 and h2' determine two vertices in G~ 
each of  which must  be incident with ez because e~ is a complement  o f  h~ 
and h2'. Thus these vertices are v 2 and v2'. Hence the graph obtained by 
deleting v2 and the edges th rough  it is non-separable since the hyperplane 
h2 or h2' corresponding to v2 is irreducible. Since this is true for  any v~ 
in G2, G2 is triply connected. 

We shall now be interested in lattices satisfying the following two 
axioms: 

AXIOM 1. (L, q-, ") is a finite geometric lattice with a set dr ~ o fhype r -  
planes such that  every a tom in L has exactly two complements  in 3(r 
and no two atoms have the same two complements,  z 

AXIOM 2. I f  ~ is a proper  subset o f  W ,  then 

D(/-/~-) ~ [Yf  - -  ~ l  - -  1. 

Note  that D(x) is the dimension of  x in L, where we assume that 
O(0) ---- 0. 

Given now a lattice L satisfying Axioms 1 and 2, we associate with L 
a graph G in the following manner :  

(a) The vertices o f  G are the hyperplanes in W.  

(b) The edges o f  G are the atoms in L. 

(c) A n  edge passes through a vertex if  and only if the corresponding 
a tom and hyperplane are complementary.  

In [5] Tutte uses the concept of a planar mesh, whose definition resembles that of 
the system #f in Axiom 1, in order to describe the faces of a planar graph and thus get 
to the vertices of the dual graph. His peripheral polygons play a role similar to that of 
irreducible hyperplanes in the Corollaries and Remark after Theorem 5 (see [5, Theorems 
2.6-2.8]). However, planar meshes are defined only for graphs and exist only when the 
graph is planar. I would like to thank the Referee for pointing out the connection 
between planar meshes and Axiom 1. 
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Observe that ,  because  o f  A x i o m  1, each edge passes th rough  exactly 
two vertices, and  no  two edges pass  t h rough  the same pai r  o f  vertices. 
A l so  each vertex is conta ined  in some edge because every hyperp lane  has  
an a tom for a complement .  Thus G is a finite g raph  wi th  no loops,  mul t ip le  
edges,  or  i sola ted vertices. Let  L '  be  the  lat t ice o f  edges associa ted wi th  G. 
W e  shall  show tha t  L and L'  are  i somorphic ,  bu t  first we need to prove  
several lemmas.  

LEMMA 1. Any set o f  edges in G which forms a forest determines in a 
1-1 manner an independent set o f  atoms in L. 

Proof. Obvious ly  a one edge set determines  an independent  set in L. 
N o w  a forest  F in G has  the p rope r ty  tha t  th rough  one o f  its vertices there 
passes only one edge. I f  we delete this vertex and  edge, we obta in  a new 
forest  af ter  we delete any  possible i sola ted  vertices. I f  our  forest  F conta ins  
n + 1 edges Pi and  several vertices hi ,  we can thus select n + 1 edges 
and  n vertices and  name them in such a manner  tha t  p~ does no t  touch  
h~ i f  k ~ m and does touch it if  k ---- m. This s imply means  that  Pk ~ hm 
if  k > m and tha t  Pk and hk are complements .  By induct ion  we can 
assume tha t  p~ ..... p~ is an independen t  set o f  a toms  in L. N o w  if  

P~+i ~ Pi + "'" -~ P~ ,  then 

Pn+l ~ (P~ + "'" ~- P2 q- Pi) hih2 "" h,~ 

[(P,~ + "'" -? P2) + p~hx] h2 "'" h,~ 

(P~ + "'" + P2) h2 "'" h~ 

~<0. 

This is impossible .  Hence  p l  ,..., Pn+l is an independen t  set of  a toms  in L. 

LEMMA 2. Any set of  edges in G which forms a circuit determines in L 
a circuit (minimal dependent set) o f  atoms. 

Proof. Let  the circuit  consist  of  the edges P l  ..... p~ with vertices 
hi ,..., h~.  We shall  show that  the a t o m  Pl  lies in the span of  Pz ..... P~ �9 
Let  o~- ~ ~ - -  whi .  Therefore  by  A x i o m  2, D ( H 5  r) ~ n - -  1. But since 
H ~  >~ p~ for  every j ,  D(p~ + P2 + "'" + P ~ )  ~ n - -  1. By L e m m a  1, 
P2 .... ,p~ is an independen t  set o f  a toms.  Therefore  D(pz  + "'" + p.~) = 
n - -  1. This implies  tha t  Pi  ~ Pz - /  "'" + P~ �9 Hence  p~ lies in the span o f  
p~ ,..., p~ .  Thus  Pl  ,--., P,~ is a dependen t  set o f  a toms,  and  by L e m m a  1 
i t  is clear  tha t  any subset  of  it  is independent .  Hence PI ..... p,~ is a m in ima l  
dependen t  set of  a toms  (a circuit  o f  atoms).  
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REMARK. By applying Axiom 2 when ~" is a one element set, we see 
that n + 1 ~ t where n is the dimension of I and t is the number of  
elements in ~ .  

THEOREM 4. Any lattice L satisfying Axioms 1 and 2 is isomorphic to 
a geometric lattice associated with a graph G. 

Proof We shall show that L and L '  are isomorphic by showing that 
circuits correspond to circuits. By Lemma 2 any circuit in G has as its 
correspondent a circuit of  atoms in L. Let C be a circuit of  atoms in L and 
let C' be its image in L'.  I f  C'  forms an independent set of  atoms in L' ,  
then, by Lemma l, C forms an independent set of  atoms in L, which is 
false. Therefore C'  is a dependent set which must therefore contain a 
circuit of  atoms C". By Lemma 2, the preimage C* of  C" must be a circuit 
o f  atoms in L, and it must also be a subset of  C. By the minimality of C, 
C* = C; whence C" = C'. Thus the matroids corresponding to L and L '  
are isomorphic. Hence so are L and L'. 

THEOREM 5. The lattice of  a non-separable graph G of  more than one 
edge satisfies Axioms 1 and 2. 

Proof We define ~ to be the set of  hyperplanes generated by the 
star-complements of  the vertices in G. Thus Axiom 1 is satisfied. Axiom 2 
is also satisfied because intersecting star-complements is the same as 
deleting all of  the edges through a given vertex. The number of  components 
(counting isolated vertices) increases by at least the number of  stars 
deleted. 

COROLLARY ]. A lattice L is isomorphic to the lattice associated with 
a non-separable graph G of  more than one edge i f  and only i f  L satisfies 
Axioms 1 and 2 and is irreducible. 

COROLLARY 2. A lattice L is isomorphic to the lattice associated with 
a triply connected graph G if  and only i f  L satisfies Axiom 1 and 2, is 
irreducible, and the set ~ consists o f  precisely the irreducible hyperplanes. 

REMARK. It  is to be noted that, since the elements in ~ correspond to 
the vertices of  the graph G, , ~  must always contain all of  the irreducible 
hyperplanes and consist of  nothing else if G is triply connected. 

I t  is readily seen that the direct union of two lattices which satisfy 
Axioms 1 and 2 also satisfies these axioms. Now every geometric lattice 
is the direct union of irreducible lattices, and in graphs irreducible lattices 
correspond to non-separable graphs. We thus have the following result. 
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THEOREM 6. A lattice L is isomorphic to the associated geometric 
lattice o f  a finite graph G i f  and only i f  it is a f inite Boolean algebra, a lattice 
which satisfies Ax ioms  1 and 2, or a direct union o f  a f inite Boolean algebra 
with a lattice which satisfies Ax ioms  1 and 2. 

REMARK. The reader should contrast this theorem with the theorem 
of Tutte [4], which states that a lattice L is isomorphic to the associated 
geometric lattice of a finite graph G (cographic in Tutte 's  terminology) if 
and only if it is a binary geometric lattice that excludes certain minors. 

The alert reader may have observed that only Axiom 1 was required 
to construct the graph G from the lattice L. We shall now give an example 
to show that Axiom 2 cannot, in fact, be deduced f rom Axiom I. Let G 
be the complete graph on four vertices. This graph determines the lattice 
of  partitions on a four element set. We can alter the lattice by requiring 
that every three edge circuit and every three edge circuit plus an extra 
edge be an independent set. We still obtain a geometric lattice of  closed 
sets (a set being closed if it contains all edges dependent on it) because 
every subset of  an independent set of  edges is independent and any 
maximal independent set of edges now contains four edges. Our system 
is still the set of three edge circuits. But now n + 1 ~ t where n is the 
dimension of I and t is the number of elements in 3r ~. Thus, by the remark 
following Lemma 2, Axiom 2 is violated. 

I t  is to be noted that, if we assume Axiom 3-- tha t  every pair of  hyper- 
planes in ~ has a common complement, then the graph G will be complete, 
and therefore L will be isomorphic to the lattice of  partitions on a finite 
set. I t  was implicitly shown in [3] that a lattice L satisfying certain other 
properties actually satisfied Axioms 1, 2, and 3. That  L was a partition 
lattice was deduced, however, in another way. 

Our results can be applied to infinite graphs by a slight modification 
of Axioms 1 and 2. L would now be a geometric lattice of possibly infinite 
length and ~ - -  ~ would be finite. We leave the details to the interested 
reader. 
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