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Abstract

In this paper we discuss the distributions and independency properties of several generalizations of
the Wishart distribution. First, an analog to Muirhead [R.J. Muirhead, Aspects of Multivariate Statistical
Theory, Wiley, New York, 1982] Theorem 3.2.10 for the partitioned matrix A = (Ai j )i, j=1,2 is established
in the case of arbitrary partitioning for singular and inverse Wishart distributions. Second, the density of
A21A−1

11 is derived in the case of singular, non-central singular, inverse and generalized inverse Wishart
distributions. The importance of the derived results is illustrated with an example from portfolio theory.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of Wishart distribution has been applied in numerous fields of applied and
theoretical statistics. The most common applications are the inference procedures based on the
sample covariance matrix of Gaussian observations. Let X = (X1, . . . ,Xn) be a sample of
size n from k-variate normal distribution, i.e. Xi ∼ Nk(0,6) for i = 1, . . . , n. Throughout
the paper, we assume that 6 is positive definite. First consider the case when the number of
observations is larger than the dimension, i.e. k < n. Then A = XX′ follows the k-variate Wishart
distribution with n degrees of freedom, denoted by Wk(n,6). Numerous important properties
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of Wishart matrices were established in Khatri [2], Olkin and Roy [3], Olkin and Rubin [4] with
Muirhead [1] providing a detailed review.

In an application, it may by necessary to work with the inverse sample covariance matrix
or to set the number of observations n less than the dimension k. This implies two important
generalizations. The first leads to the inverse Wishart distribution, which we denote by
W−1

n (k,6−1). The properties of the inverse sample covariance matrix are important for
improved estimation of the precision matrices (see Tsukuma and Konno [5]). It plays a special
role in Bayesian analysis, where the posterior distribution of the covariance matrix with a non-
informative prior follows the inverse Wishart (see Zellner [6], Muirhead [1], Gelman et al. [7]).
Also, in the portfolio theory of Markowitz [8], the inverse covariance matrix is the key component
of the optimal portfolio weights (see Okhrin and Schmid [9], Bodnar and Schmid [10]). Von
Rosen [11] provides many technical results related to higher order moments of the components
of Wishart matrices. The second generalization leads to singular Wishart distributions introduced
by Khatri [12] and Srivastava and Khatri [13]. The practical relevance of the case k > n is
discussed in Uhlig [14] and Ledoit and Wolf [15].

Let us now consider the partitioning of the Wishart matrix

A =
[

Ā11 Ā12

Ā21 Ā22

]
and 6 =

[
611 612
621 622

]
with dim(Ā11) = dim(611) = m × m, m < k < n. (1)

To distinguish between the singular and nonsingular Wishart distributions, we use bars to denote
the partition of A in the nonsingular case (n > k) and use plain notation in the singular case
(n ≤ k, see (4)). Theorem 3.2.10 of Muirhead [1] provides the key properties of the components
Āi j in terms of 6i j , which appear to be extremely useful in dealing with Wishart matrices.
Moreover, as shown by Massam and Wesołowski [16], the independency properties from this
theorem can be used for characterization of the Wishart distribution.

Consider now the quantities

Q1 = L′2AL1(L′1AL1)
−1 or Q2 = L′2A−1L1(L′1A−1L1)

−1,

where L1 and L2 are deterministic matrices with dimensions `1 × k and `2 × k respectively.
The distribution of Q1 and Q2 is important in numerous applications. The first application is
its clear relation to the multivariate linear regression model estimated via a generalized least
squares approach. We can rewrite Q1 as V21V−1

11 , where V = (L1 L2)
′A(L1 L2), V11 = L′1AL1

and V21 = L′2AL1. Thus the distribution of the quantities of the type Ā21Ā
−1
11 is of interest. It

is also possible to rewrite Q2 in a similar manner. The second application and motivation for
this paper is to the distributional properties of optimal portfolio weights discussed in Okhrin and
Schmid [9], Bodnar and Schmid [10]. It can be shown that the global minimum variance portfolio

weights also possess the structure Ā21Ā
−1
11 .

The first contribution of this paper lies in the extension of properties of partitioned matrices
to different generalizations of the Wishart distribution. Some important results for singular
Wishart matrices and techniques also partially used in this paper can be found in Dı́az-Garcı́a
and Gutiérrez-Jáimez [17], Dı́az-Garcı́a et al. [17] and Srivastava [18]. However, in these papers
it is assumed that m = n < k. We generalize these results to partitioning with an arbitrary
m. Moreover, we also provide results for the inverse Wishart and generalized inverse Wishart

distributions. The second contribution of this paper is the derivation of the distribution of Ā21Ā
−1
11
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in the case of singular, non-central singular, inverse and generalized inverse Wishart distributions.
In all cases we obtain explicit expressions for the density function. The importance of the results
is illustrated in Section 5 with the example of mean-variance portfolio selection procedures.

2. Singular Wishart distribution

Let X = (X1, . . . ,Xn) and Xi be independent identical normally distributed, with Xi ∼

N (0,6). It is assumed that 6 is positive definite. Let k > n. In this case, the distribution of the
k × k matrix A = XX′ is called a k-dimensional pseudo-Wishart distribution by Dı́az-Garcı́a
et al. [18] and a singular Wishart by Srivastava [19]. Let us first consider the partition

A =
[

Ã11 Ã12

Ã21 Ã22

]
and 6 = 6̃ =

[
6̃11 6̃12

6̃21 6̃22

]
with dim(Ã11) = dim(6̃11) = n × n, n < k. (2)

Since n < k, the component Ã22 is functionally dependent on the components Ã11 and Ã21.

It can be explicitly determined by Ã22 = Ã21Ã
−1
11 Ã12. The density of A, i.e. the joint density of

the n × n dimensional matrix Ã11 and the n × (k − n) dimensional matrix Ã21, is given by (see
Srivastava [19], p. 1550)

πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2 |Ã11|
n−k−1

2 exp
(
−

1
2

tr(6−1A)
)
. (3)

0k(·) denotes the multivariate gamma function given by

0k

(n

2

)
= πk(k−1)/4

k∏
i=1

0

(
n − i + 1

2

)
.

In Corollary 3.4 of Srivastava [19], the author derives the conditional distribution of Ã21|Ã11
and the unconditional distribution of Ã11. We now consider an arbitrary partition of the matrix A

A =
[

A11 A12
A21 A22

]
and 6 =

[
611 612
621 622

]
with dim(A11) = dim(611) = m × m, m < n < k. (4)

For notational convenience, let

Ã11 =

[
A11 A∗12
A∗21 A∗22

]
and 6̃11 =

[
611 6∗12
6∗21 6∗22

]
(5)

with Ã
∗

21 defined through the relation A21 = (A∗′21Ã
∗′

21)
′. In Lemma 1, we extend the results of

Srivastava [19] to the arbitrary partitioning in (4).

Lemma 1. Let k > n and A ∼ Wk(n,6), where A and 6 are partitioned as in (4). Then it holds
that

(a) A11 ∼ Wm(n,611).
(b) A21|A11 ∼ N (6216

−1
11 A11,622·1 ⊗ A11), with 622·1 = 622 −6216

−1
11 612.

Proof. (a) This part is the straightforward consequence of Corollary 3.4a of Srivastava [19] and
Theorem 3.2.10 of Muirhead [1].
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(b) Let En×m = (Im 0m×(n−m))
′. From Corollary 3.4 of Srivastava [19], we obtain that

Ã21|Ã11 ∼ N (6̃216̃
−1
11 Ã11, 6̃22·1 ⊗ Ã11),

where 6̃22·1 = 6̃22 − 6̃216̃
−1
11 6̃12. This implies that

Ã21En×m |Ã11 ∼ N (6̃216̃
−1
11 Ã11En×m, 6̃22·1 ⊗ E′n×mÃ11En×m).

From the illustration of the partitioning in (5), it follows that

Ã21En×m = Ã
∗

21, E′n×mÃ11En×m = A11, Ã11En×m =

(
A11
A∗21

)
.

Thus the above statement about the distribution of Ã21En×m |Ã11 implies that

Ã
∗

21|Ã11 ∼ N
(
6̃216̃

−1
11

(
A11
A∗21

)
, 6̃22·1 ⊗ A11

)
.

Because the right hand side of the last identity does not depend on A∗22, we get that Ã
∗

21

and A∗22 are independently distributed. Thus, Ã
∗

21|Ã11 = Ã
∗

21|A11,A∗21. Furthermore, it holds
that A∗21|A11 ∼ N (6216

−1
11 A11,622·1 ⊗ A11). Putting the results together, the joint conditional

density of A∗21 and Ã
∗

21 given A11, i.e. the conditional density of A21 given A11, is

fA21|A11=C11(X|C11)

= fÃ
∗

21|A11=C11,A∗21=X1
(X2|C11,X1) fA11=C11(X1|C11)

=

etr
(
−

1
2 6̃
−1
22·1

(
X2 − 6̃216̃

−1
11

(
C11
X1

))
C−1

11

(
X2 − 6̃216̃

−1
11

(
C11
X1

))′)
(2π)

(k−n)m
2 |6̃22·1|

m
2 |C11|

k−n
2

×

exp
(
−

1
2 tr(6∗−1

22·1 (X1 −6
∗

216
−1
11 C11)C−1

11 (X1 −6
∗

216
−1
11 C11)

′)
)

(2π)
(n−m)m

2 |6∗22·1|
m
2 |C11|

n−m
2

.

Using the properties of the determinant, we obtain that

|6̃22·1|
m
2 |6∗22·1|

m
2 =

|6|
m
2

|6̃11|
m
2

|6̃11|
m
2

|611|
m
2
=
|6|

m
2

|611|
m
2
= |622·1|

m
2

and

fA21|A11=C11(X|C11) =
exp

(
−

1
2 tr(C−1

11 (Q1(X1,X2)+Q2(X1)))
)

(2π)
(k−m)m

2 |622·1|
m
2 |C11|

k−m
2

.

Let B = 6−1 with the partitions (B̃)i, j=1,2 and (B)i, j=1,2, which correspond to partitions in

(2) and (4) respectively. The equalities 6̃216̃
−1
11 = −B̃

−1
22 B̃21 and 6̃

−1
22·1 = B̃22 yield

Q1(X1,X2) =

(
X2 − 6̃216̃

−1
11

(
C11
X1

))′
6̃
−1
22·1

(
X2 − 6̃216̃

−1
11

(
C11
X1

))
=

(
X2 + B̃

−1
22 B̃21

(
C11
X1

))′
B̃22

(
X2 + B̃

−1
22 B̃21

(
C11
X1

))
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= X′2B̃22X2 +

(
C11
X1

)′
B̃
′

21B̃
−1
22 B̃21

(
C11
X1

)
+

(
C11
X1

)′
B̃
′

21X2 + X′2B̃21

(
C11
X1

)
,

where B̃
′

21B̃
−1
22 B̃21 = B̃11 − 6̃

−1
11 . Similarly as for A let

B̃11 =

[
B11 B∗12
B∗21 B∗22

]
and B̆ = 6̃

−1
11 =

[
B̆11 B̆12

B̆21 B̆22

]
. (6)

Then it holds

Q1(X1,X2) = X′2B̃22X2 + 2X′2B̃21

(
C11
X1

)
+ C11(B11 − B̆11)C11

+X′1(B
∗

21 − B̆21)C11 + C11(B∗21 − B̆21)
′X1 + X′1(B

∗

22 − B̆22)X1.

From 6∗216
−1
11 = −B̆

−1
22 B̆21 and 6∗−1

22·1 = B̆22, we obtain

Q2(X1) = (X1 −6
∗

216
−1
11 C11)

′6∗−1
22·1 (X1 −6

∗

216
−1
11 C11)

= (X1 + B̆
−1
22 B̆21C11)

′B̆22(X1 + B̆
−1
22 B̆21C11)

= X′1B̆22X1 + X′1B̆21C11 + C11B̆
′

21X1 + C11B̆
′

21B̆
−1
22 B̆21C11

with B̆
′

21B̆
−1
22 B̆21 = B̆11 −6

−1
11 . Hence,

Q1(X1,X2)+Q2(X1) = X′2B̃22X2 + 2X′2B̃21

(
C11
X1

)
+C11(B11 −6

−1
11 )C11 + X′1B∗21C11 + C11B∗′21X1 + X′1B∗22X1

=

(
X1
X2

)′
B22

(
X1
X2

)
+ 2

(
X1
X2

)′
B21C11 + C11B′21B−1

22 B21C11

=

((
X1
X2

)
+ B−1

22 B21C11

)′
B22

((
X1
X2

)
+ B−1

22 B21C11

)
,

where we used the fact that B11 − 6
−1
11 = B′21B−1

22 B21. The rest of the proof follows from the
fact that B−1

22 B21 = −6216
−1
11 and B22 = 6

−1
22·1. �

In the next theorem, we establish a useful result about the distribution of the product A21A−1
11 .

It appears that it is a generalization of matrix-elliptical t-distribution. It is rather surprising, as
Lemma 1 proves A21 to be conditionally normal and A11 to be Wishart distributed (and not its
square root).

Theorem 1. Let k > n and A ∼ Wk(n,6), where A and 6 are partitioned as in (4). Then the
density of A21A−1

11 is given by

fA21A−1
11
(X) =

|611|
k−m

2 0m(
n+k−m

2 )

|622·1|
m
2 π

(k−m)m
2 0m(

n
2 )

× |I+611(X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 )|

−
1
2 (n+k−m). (7)
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Proof. From Lemma 1, it follows that

A21A−1
11 |A11 ∼ N (6216

−1
11 ,622·1 ⊗ A−1

11 )

and A11 ∼ Wm(n,611). Hence,

fA21A−1
11
(X) =

∫
C11>0

fA21A−1
11 |A11=C11

(X|C11) fA11(C11)dC11

=

∫
C11>0

exp
(
−

1
2 tr(6−1

22·1(X−6216
−1
11 )C11(X−6216

−1
11 )
′)
)

(2π)
(k−m)m

2 |622·1|
m
2 |C−1

11 |
k−m

2

×

exp
(
−

1
2 tr(6−1

11 C11)
)
|C11|

1
2 (n−m−1)

2
nm
2 0m(

n
2 )|611|

n
2

dC11.

Rewriting the last integral, we obtain

fA21A−1
11
(X) =

|622·1|
−

m
2 |611|

−
n
2

(2π)
(k−m)m

2 2
nm
2 0m(

n
2 )

∫
C11>0

|C11|
1
2 (n+k−2m−1)

× exp
(
−

1
2

tr((6−1
11 + (X−6216

−1
11 )
′6−1

22·1(X−6216
−1
11 ))C11)

)
dC11

=
|622·1|

−
m
2 |611|

−
n
20m(

n+k−m
2 )

π
(k−m)m

2 0m(
n
2 )

× |6−1
11 + (X−6216

−1
11 )
′6−1

22·1(X−6216
−1
11 )|

−
1
2 (n+k−m),

where the computation of the matrix integral is based on the fact that under the integral we have
the density function of an m-dimensional inverse Wishart distribution with n+ k −m degrees of
freedom and parameter matrix (6−1

11 + (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 ))

−1. �

Using this theorem, we may establish further properties of the normalized product A21A−1
11 .

Note that in the regular case when n > k, or in the case of an arbitrary partitioning (4), we have
an additional independency compared to the case m = n < k.

Corollary 1. Let A ∼ Wk(n,6).

(a) If k > n, then

6
−1/2
22·1 (A21A−1

11 −6216
−1
11 )A

1/2
11 ∼ Nk−m×m(0k−m×m, I(k−m)m)

and is independent of A11 and A∗22·1 = A∗22 − A∗21A−1
11 A∗12.

(b) If m = n then

6
−1/2
22·1 (A21A−1

11 −6216
−1
11 )A

1/2
11 ∼ Nk−n×n(0k−n×n, I(k−n)n)

and is independent of A11.
(c) If n > k, then

6
−1/2
22·1 (A21A−1

11 −6216
−1
11 )A

1/2
11 ∼ Nk−m×m(0k−m×m, I(k−m)m)

and is independent of A11 and A22·1.
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From Lemma 1(b), it follows that A21A−1
11 |A11 ∼ N (6216

−1
11 ,622·1 ⊗ A−1

11 ). The next
corollary provides an inverse statement, i.e. the distribution of A11 conditional upon the product
A21A−1

11 .

Corollary 2. Let A ∼ Wk(n,6) and k > n. Then it holds that

A11|(A21A−1
11 = X)

∼ Wm(n + k − m, (6−1
11 + (X−6216

−1
11 )
′6−1

22·1(X−6216
−1
11 ))

−1).

3. Non-central singular Wishart distribution

In this section, we assume that X = (X1, . . . ,Xn) with k > n and Xi being independently
and identically normally distributed with non-zero mean vector µ and covariance matrix6. Then
the distribution of the random matrix A = XX′, i.e. the joint distribution of Ã11 and Ã21, is
called the non-central singular Wishart distribution and denoted by Wk(n,6,�). Matrix � is a
noncentrality matrix and is defined as � = 6−11nµ

′µ1′n , where 1n denotes the vector of length
n with all elements equal to one. The density function of A is given by (cf. Srivastava [19],
Corrollary 3.2):

πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2 |Ã11|
n−k−1

2 exp
(
−

1
2

tr(6−1A)
)

0 F1

(
n

2
;

1
4
�6−1A

)
, (8)

where Ã22 = Ã21Ã
−1
11 Ã12. 0 F1(.; .) denotes the hypergeometric function of the matrix argument

(see Muirhead [1], p. 258 for the definition and properties). Unfortunately it is impossible to
provide an equivalent to Muirheads [1] Theorem 3.2.10 due to the presence of the hypergeometric
function outlined above. However, if µ = 0 then the distribution clearly reduces to the central
case. The next theorem provides an explicit expression for the distribution of A21A−1

11 in the
non-central case—however, only when m = n.

Theorem 2. Let A ∼ Wk(n,6,�) and k > n. A is assumed to be partitioned as in (2). Then

the density of Ã21Ã
−1
11 is given by

f
Ã21Ã

−1
11
(X)

=
|622·1|

−
n
2 |611|

k−n
2 0n(

k
2 )

π
(k−n)n

2 0n(
n
2 )

|I+611(X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 )|

−
k
2

× 1 F1

(
k

2
,

n

2
;

1
2
[InX]�6−1

[InX]′(6−1
11 + (X−6216

−1
11 )
′6−1

22·1(X−6216
−1
11 ))

−1
)
.

Proof. It holds that

tr(6−1A) = tr((6−1
11 + (Ã21Ã

−1
11 −6216

−1
11 )
′6−1

22·1(Ã21Ã
−1
11 −6216

−1
11 ))Ã11).

Since A consists only of two functionally independent components Ã11 and Ã21, we can write
that

A =
[
In(Ã21Ã

−1
11 )
′

]′
Ã11

[
In(Ã21Ã

−1
11 )
′

]
.
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Then the joint density of Ã11 and Ã21 is given by

fÃ11,Ã21
(C11,C21) =

πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2 |C11|
n−k−1

2

× 0 F1

(
n

2
;

1
4
�6−1

[
In(C21C−1

11 )
′

]′
C11

[
In(C21C−1

11 )
′

])
× etr

(
−

1
2
(6−1

11 + (C21C−1
11 −6216

−1
11 )
′6−1

22·1(C21C−1
11 −6216

−1
11 ))C11

)
.

Making the transformation

X = C21C−1
11 and Y = C11

with the Jacobian |C11|
k−n yields

f
Ã11,Ã21Ã

−1
11
(Y,X) =

πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2 |Y|
k−n−1

2
0 F1

(
n

2
;

1
4
�6−1

[InX′]′Y[InX′]
)

× etr
(
−

1
2
(6−1

11 + (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 ))Y

)
.

Integrating out Y leads to

f
Ã21Ã

−1
11
(X) =

πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2

∫
Y>0
|Y|

k−n−1
2

0 F1

(
n

2
;

1
4
�6−1

[InX′]′Y[InX′]
)

× etr
(
−

1
2
(6−1

11 + (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 ))Y

)
.

Using the definition of the hypergeometric function and the fact that the non-negative
eigenvalues of the matrices

�6−1
[InX′]′Y[InX′] and [InX′]�6−1

[InX′]′Y

coincide, we get

f
Ã21Ã

−1
11
(X) =

πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2

∫
Y>0
|Y|

k−n−1
2

0 F1

(
n

2
;

1
4
[InX′]�6−1

[InX′]′Y
)

× etr
(
−

1
2
(6−1

11 + (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 ))Y

)
.

The last integral is evaluated using Theorem 7.3.4 of Muirhead [1], and leads to

f
Ã21Ã

−1
11
(X)

=
πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2 2nk/20n

(
k

2

)
|6−1

11 + (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 )|

−
k
2

× 1 F1

(
k

2
,

n

2
;

1
2
[InX′]�6−1

[InX′]′(6−1
11

+ (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 ))

−1
)
. �
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4. Inverse Wishart distribution

In this section, we consider the inverse Wishart distribution W−1
k (n,6). The next theorem is

analogous to Muirhead [1] Theorem 3.2.10 and to this paper’s Theorem 1 for an inverse Wishart
distributed random matrix.

Theorem 3. Suppose A ∼ W−1
k (n,6), where A and 6 are partitioned as in (1). Then

(a) Ā11·2 ∼ W−1
m (n − k + m,611·2) and is independent of Ā22;

(b) Ā12|Ā22, Ā11·2 ∼ N (6126
−1
22 Ā22, Ā11·2 ⊗ Ā226

−1
22 Ā22);

(c) Ā22 is W−1
k−m(n − 2m,622);

(d) Ā12Ā
−1
22 is independent of Ā22, with the density given by

f
Ā12Ā

−1
22
(X) =

|611·2|
−

1
2 (k−m)

|622|
1
2 m

π
(k−m)m

2

0m(
n−m−1

2 )

0m(
n−k−1

2 )

× |I+6−1
11·2(X−6126

−1
22 )622(X−6126

−1
22 )
′
|
−

1
2 (n−m−1)

;

(e) Ā22 is independent of Ā12Ā
−1
22 and Ā11·2;

(f) Ā11·2|(Ā12Ā
−1
22 = X) ∼ W−1

m (n,611·2 + (X−6126
−1
22 )622(X−6126

−1
22 )
′).

Proof. Let

C = A−1
=

[
C11 C12
C21 C22

]
,

where C11 is m × m. Then Ā11·2 = Ā11 − Ā12Ā
−1
22 Ā21 = C−1

11 and Ā22 = C−1
22·1 =

(C22 − C12C−1
11 C21)

−1. The independence statement follows from Muirhead [1] Theorem
3.2.10 applied to the matrix A−1. From the same theorem and the relationship between the
Wishart and inverse Wishart distributions, it follows that Ā11·2 ∼ W−1

m (n − k + m,611·2) and
Ā22 ∼ W−1

k−m(n − 2m,622). This proves parts (a) and (c).
To prove part (b) of the theorem, we recall the density of A given by (Muirhead [1], p. 113)

f (A) =
2−

k(n−k−1)
2

0k(
n−k−1

2 )
|A|−

n
2 |6|

(n−k−1)
2 etr

(
−

1
2

A−16

)
. (9)

We make the transformation Ā11·2 = Ā11 − Ā12Ā
−1
22 Ā21, B12 = Ā12, B22 = Ā22 with

dA = dĀ11 ∧ dĀ12 ∧ dĀ22 = dĀ11·2 ∧ dB12 ∧ dB22,

detA = detĀ22det(Ā11 − Ā12Ā
−1
22 Ā21) = detB22detĀ11·2,

and det6 = det622det611·2, where ∧ denotes the exterior product of two matrices (see
Muirhead [1], Chapter 2).

From the proof of Muirhead [1] Theorem 3.2.10, it holds that

tr(A−16) = tr
[

C11 C12
C21 C22

] [
611·2 +6126

−1
22 621 612

621 622

]
= tr[Ā

−1
11·2(612 − B12B−1

22 622)6
−1
22 (612 − B12B−1

22 622)
′
]

+ tr(B−1
22 622)+ tr(611·2Ā

−1
11·2)



2398 T. Bodnar, Y. Okhrin / Journal of Multivariate Analysis 99 (2008) 2389–2405

= tr[Ā
−1
11·2(B12 −6126

−1
22 B22)B−1

22 622B−1
22 (B12 −6126

−1
22 B22)

′
]

+ tr(B−1
22 622)+ tr(611·2Ā

−1
11·2),

where we used the equalities C11 = Ā
−1
11·2, Ā

−1
22 = C22−C12C−1

11 C21 and C−1
11 C12 = −Ā12Ā

−1
22 .

Hence, the joint density of A11·2, B12, B22 is given by

exp
(
−

1
2 tr(Ā

−1
11·2611·2)

)
|611·2|

1
2 (n−k+m−m−1)

2
m(n−k−1)

2 0m(
n−k−1

2 )|Ā11·2|
1
2 (n−k+m)

×

exp
(
−

1
2 tr(B−1

22 622)
)
|622|

1
2 (n−2m−k+m−1)

2
(k−m)(n−m−k−1)

2 0k−m(
n−m−k−1

2 )|B22|
1
2 (n−2m)

×

exp
(
−

1
2 Ā
−1
11·2(B12 −6126

−1
22 B22)B−1

22 622B−1
22 (B12 −6126

−1
22 B22)

′

)
(2π)

(k−m)m
2 |Ā11·2|

1
2 (k−m)

|B226
−1
22 B22|

1
2 m

.

This completes the proof of part (b).

To prove (d), we show first that Ā12Ā
−1
22 and Ā22 are independently distributed. From

Theorem 3(b) we obtain

Ā12Ā
−1
22 |Ā22, Ā11·2 ∼ N (6126

−1
22 , Ā11·2 ⊗6

−1
22 ).

Because the conditional distribution Ā12Ā
−1
22 , given Ā22 and Ā11·2, does not depend on Ā22,

it follows that Ā12Ā
−1
22 is independent from Ā22 and Ā12Ā

−1
22 |Ā22, Ā11·2 = Ā12Ā

−1
22 |Ā11·2.

In order to obtain the density of Ā12Ā
−1
22 , we use the fact that Ā12Ā

−1
22 = C−1

11 C12. Moreover,
it holds that C ∼ Wk(n − k − 1,B) where B = 6−1 with the partition (Bi j )i, j=1,2 as in (1).
From Theorem 1, we get

fC−1
11 C12

(X) =
|B11|

k−m
2 0m(

n−m−1
2 )

|B22·1|
m
2 π

(k−m)m
2 0m(

n−k−1
2 )

× |I+ B11(X− B−1
11 B12)B−1

22·1(X− B−1
11 B12)

′
|
−

1
2 (n−m−1).

The rest of the proof follows from the fact that B−1
11 B12 = 6126

−1
22 , B22·1 = 622, and

B11 = 6
−1
11·2.

For the proof of part (e), note that the proof of part (b) showed the joint density of Ā22, Ā11·2,
and Ā12 is given by

fĀ22,Ā11·2,Ā12
(Y22,Y11·2,Y12) =

etr
(
−

1
2 Y−1

11·2611·2

)
|611·2|

1
2 (n−k−1)

2
m(n−k−1)

2 0m(
n−k−1

2 )|Y11·2|
1
2 (n−k+m)

×

etr
(
−

1
2 Y−1

22 622

)
|622|

1
2 (n−m−k−1)

2
(k−m)(n−m−k−1)

2 0k−m(
n−m−k−1

2 )|Y22|
1
2 (n−2m)

×

etr
(
−

1
2 Y−1

11·2(Y12 −6126
−1
22 Y22)Y−1

22 622Y−1
22 (Y12 −6126

−1
22 Y22)

′

)
(2π)

(k−m)m
2 |Y11·2|

1
2 (k−m)

|Y226
−1
22 Y22|

1
2 m

.
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From the transformation X22 = Y22, X11·2 = Y11·2, and X = Y12Y−1
22 with the Jacobian

equal to |Y22|
m , we obtain

f
Ā22,Ā11·2,Ā12Ā

−1
22
(X22,X11·2,X) = fĀ22

(X22)
exp

(
−

1
2 tr(X−1

11·2611·2)
)
|611·2|

1
2 (n−k−1)

2
m(n−k−1)

2 0m(
n−k−1

2 )|X11·2|
1
2 (n−k+m)

×

exp
(
−

1
2 X−1

11·2(X−6126
−1
22 )622(X−6126

−1
22 )
′

)
(2π)

(k−m)m
2 |X11·2|

1
2 (k−m)

|6−1
22 |

1
2 m

,

Thus proving part (e). The proof of part (f) follows directly from (d). �

Corollary 3. Suppose A ∼W−1
k (n,6). Then

Ā
−1/2
11·2 (Ā12Ā

−1
22 −6126

−1
22 )6

1/2
22 ∼ Nm×(k−m)(0m×(k−m), Im(k−m))

and is independent of Ā22 and Ā11·2.

5. Generalized inverse Wishart distribution

In this section, we extend the aforementioned inverse Wishart distribution to the case when
n < k. It is usually referred to as a generalized inverse Wishart distribution. Let A ∼ Wk(n,6)
with n < k. Due to the singularity of A, we cannot apply the same methods as in the case
of the usual inverse Wishart distribution. Similar to Srivastava [19], we use the singular value
decomposition of the matrix A. Let

A =
[

A11 A12
A21 A22

]
=

[
H′11DH11 H′11DH12
H′12DH11 H′12DH12

]
= H′1DH1, (10)

where D = diag(d1, . . . , dn) is a diagonal matrix of the positive eigenvalues of A. The matrix H1
is partitioned into two submatrices H1 = (H11H12), where the n × n matrix H11 is nonsingular
with probability one. Then H1 belongs to the Stiefel manifold Hn,k(n), i.e. to the set of n × k
matrices such that H1H′1 = In . This class of matrices is also called the class of semiorthogonal
matrices. Following Srivastava ([19], p. 1549) the density of the matrix A in terms of the matrices
D and H1 is given by

fA(D,H1) = K (n, k)|6|−n/2
|D|(k−n−1)/2

× exp
(
−

1
2

tr(6−1H′1DH1)

)∏
i< j

(di − d j )gn,k(H1)

with

K (n, k) =
2−n

2n(2π)kn/2 2nπn2/20n

(n

2

)
,

gn,k(H1) = J (H(dH′1)→ dH′1),

where H′ = (H′1H′2) is an orthogonal matrix and the symbol J (X→ Y) denotes the Jacobian of
the transformation from X to Y.

The generalized inverse of the matrix A we denote by A(−), and we define it by

A(−) = H′1D−1H1 =

[
H′11D−1H11 H′11D−1H12

H′12D−1H11 H′12D−1H12

]
. (11)
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The density of C = A(−) is obtained in terms of D̃ and H1 by making the nonsingular
transformation D̃ = D−1 with the Jacobian J (D → D̃) = (−1)n|D̃|−2. Ignoring the sign,
the density of C in terms of D̃ and H1 is given by

fC(D̃,H1) = K (n, k)|6|−n/2
|D̃|−(k−n−1)/2

|D̃|−2

× exp
(
−

1
2

tr(6−1H′1D̃
−1

H1)

)∏
i< j

(
1

d̃i
−

1

d̃ j

)
gn,k(H1)

= K (n, k)|6|−n/2
|D̃|−(k−n−1)/2

|D̃|−2

× exp
(
−

1
2

tr(6−1H′1D̃
−1

H1)

)∏
i< j

(
1

d̃i d̃ j

)∏
i< j

(d̃i − d̃ j )gn,k(H1).

Because
∏

i< j (
1

d̃i d̃ j
) = |D̃|−(n−1), we get

fC(D̃,H1) = K (n, k)|6|−n/2
|D̃|−(k−n−1)/2

|D̃|−(n+1)

× exp
(
−

1
2

tr(6−1H′1D̃
−1

H1)

)∏
i< j

(d̃i − d̃ j )gn,k(H1).

Making the transformation D̃,H1 → C11,C21, we get the presentation of the density of C in
terms of its functionally independent elements C11 and C21, i.e.

fC(C11,C21) = 2n K (n, k)|6|−n/2
|C11|

(n−1)/2

×|F(C11,C21)|
−k/2 exp

(
−

1
2

tr(6−1C(−))
)
,

where

C(−) =

[
H′11D̃

−1
H11 H′11D̃

−1
H12

H′12D̃
−1

H11 H′12D̃
−1

H12.

]

=

[
C11F(C11,C21)

−1C11 C11F(C11,C21)
−1C12

C21F(C11,C21)
−1C11 C21F(C11,C21)

−1C12

]
= [C11C12]

′F(C11,C21)
−1
[C11C12].

Next, we calculate explicitly F(C11,C21). We give the definition of the generalized inverse,
i.e. C = CC(−)C. Because the rank of the matrix C is equal to n, we get from Lemma 9.2.2 of
Harville [20] that

C = [C11C12]
′C−1

11 [C11C12].

Thus,

C−1
11 = C−1

11 [C11C12][C11C12]
′F(C11,C21)

−1
[C11C12][C11C12]

′C−1
11 .

Hence,

F(C11,C21) = (C2
11 + C12C21)C−1

11 (C
2
11 + C12C21).

Putting the above results together, we obtain the following theorem.
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Theorem 4. Let A ∼ Wk(n,6), k > n, where A and 6 are partitioned as in (2). Then the
density of the generalized inverse of the matrix A, i.e. C = A(−) is given by

fC(C11,C21) =
πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2 |C11|
(n−1)/2

×|F(C11,C21)|
−k/2 exp

(
−

1
2

tr(6−1C(−))
)
, (12)

where

F(C11,C21) = (C2
11 + C12C21)C−1

11 (C
2
11 + C12C21) (13)

and

C(−) = [C11C12]
′(C2

11 + C12C21)
−1C11(C2

11 + C12C21)
−1
[C11C12]. (14)

Similar to the other classes of Wishart distribution, here we also derive the density of the
product C21C−1

11 in Theorem 5 and provide further distributional properties in Theorem 6.

Theorem 5. Let k > n and A ∼ Wk(n,6), where A and 6 are partitioned as in (2). Then it
holds that

(a) the density of C21C−1
11 is given by

fC21C−1
11
(X) =

|622·1|
−

n
2 |611|

k−n
2 0n(

k
2 )

π
(k−n)n

2 0n(
n
2 )

× |I+611(X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 )|

−
k
2 ;

(b) The conditional distribution of C11, given C21C−1
11 = X, is the inverse Wishart distribution

with n + k + 1 degrees of freedom and parameter matrix (I + XX′)−1(6−1
11 + (X −

6216
−1
11 )
′6−1

22·1(X − 6216
−1
11 ))(I + XX′)−1, i.e. C11|[C21C−1

11 = X] ∼ W−1
n (n + k + 1,

(I+ XX′)−1(6−1
11 + (X−6216

−1
11 )
′6−1

22·1(X−6216
−1
11 ))(I+ XX′)−1).

Proof. (a) The statement follows from the fact that

C21C−1
11 = H′12D−1H11(H′11D−1H11)

−1

= H′12H−1
11 = H′12DH11(H′11DH11)

−1
= Ã21Ã

−1
11

and Theorem 1 with m = n.
(b) From

F(C11,C21) = C11(I+ C−1
11 C12C21C−1

11 )C11(I+ C−1
11 C12C21C−1

11 ),

C(−) = [IC−1
11 C12]

′(I+ C−1
11 C12C21C−1

11 )
−1C−1

11 (I+ C−1
11 C12C21C−1

11 )
−1
[IC−1

11 C12],

|F(C11,C21)| = |C11|
3
|I+ C−1

11 C12C21C−1
11 |

2

and making the transformation X = C21C−1
11 and C11 = C11 with the Jacobian |C11|

k−n , we
obtain
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fC11,C21C−1
11
(C11,X) =

πn(n−k)/22−kn/2

0n(
n
2 )|6|

n/2 |C11|
(n−1)/2

|C11|
k−n
|C11|

−3k/2

× |I+ XX′|−ketr
(
−

1
2
6−1C(−)

)
.

From the proof of Theorem 2, we get that

tr(6−1C(−)) = tr
(
(I+ XX′)−1(6−1

11 + (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 ))

× (I+ XX′)−1C−1
11

)
.

Application of Theorem 5(a) leads to

fC11,C21C−1
11
(C11,X) =

2−kn/2

0n(
k
2 )
|C11|

−(k+n+1)/2

× |(I+ XX′)−1(6−1
11 + (X−6216

−1
11 )
′6−1

22·1(X−6216
−1
11 ))(I+ XX′)−1

|
k/2

× etr
(
−

1
2
(I+ XX′)−1(6−1

11 + (X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 ))

× (I+ XX′)−1C−1
11

)
×
|622·1|

−
n
2 |611|

k−n
2 0n(

k
2 )

π
(k−n)n

2 0n(
n
2 )

|I+611(X−6216
−1
11 )
′6−1

22·1(X−6216
−1
11 )|

−
k
2

= fC11|C21C−1
11
(C11|X) fC21C−1

11
(X),

where fC11|C21C−1
11
(C11|X) is the density of the inverse Wishart distribution with n+k+1 degrees

of freedom and the parameter matrix (I+XX′)−1(6−1
11 +(X−6216

−1
11 )
′6−1

22·1(X−6216
−1
11 ))(I+

XX′)−1. This completes the proof. �

Theorem 6. Let k > n and A ∼ Wk(n,6), where A and 6 are partitioned as in (2). Then it
holds that

(a) (I+ C−1
11 C12C21C−1

11 )C11(I+ C−1
11 C12C21C−1

11 ) ∼W
−1
n (2n + 1,6−1

11 ).

(b) C21C−1
11 |[(I+C−1

11 C12C21C−1
11 )C11(I+C−1

11 C12C21C−1
11 ) = Y] ∼ N (6216

−1
11 ,622·1 ⊗Y).

(c) C−1/2
11 (I+ C−1

11 C12C21C−1
11 )
−1(C−1

11 C12 −6
−1
11 612)6

−1/2
22·1 ∼ Nn×k−n(0n×k−n, In(k−n)).

Proof. (a) From the singular value decomposition, we get that

C−1
11 C12 = H−1

11 DH′−1
11 H′11D−1H12 = H−1

11 H12

and H12H′12 = I−H11H′11. Hence

(I+ C−1
11 C12C21C−1

11 )C11(I+ C−1
11 C12C21C−1

11 )

= (I+H−1
11 H12H′12H′−1

11 )H
′

11D−1H11(I+H−1
11 H12H′12H′−1

11 )

= H−1
11 H′−1

11 H′11D−1H11H−1
11 H′−1

11 = H−1
11 D−1H′−1

11 = A−1
11 .

The rest of the proof follows from the fact that A11 ∼Wn(n,611) (see Srivastava [19], Corollary
3.4, and Muirhead [1], p. 113).
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(b) As a partial case of Theorem 1, we get that

A21A−1
11 |A11 ∼ N (6216

−1
11 ,622·1 ⊗ A11).

The statement of Theorem 6(b) follows then from the fact that A21A−1
11 = C21C−1

11 and the proof
of part (a).

(c) This part is a straightforward consequence of part (b). �

6. Application to portfolio theory

The mean-variance portfolio selection developed by Markowitz [8] is a classical theory in
finance. Given that the asset returns are Gaussian, it shows the investor how to choose the optimal
fractions of assets in the portfolio (portfolio weights) in terms of the distribution parameters.
The estimated portfolio weights are obtained by replacing these parameters with their sample
estimators. The properties of the estimated weights were intensively studied recently in Okhrin
and Schmid [9], Kan and Smith [21], and Kan and Zhou [22]. Here we apply the results of
Section 4 to obtain some further properties of the estimated weights. Note that derivation relies on
the distribution of M ′AM and M ′A−1 M . This is a straightforward result for the inverse Wishart
distribution; however, the extension to the generalized singular Wishart distribution is difficult.

If the investor is extremely risk averse, (s)he invests in the global minimum variance portfolio
with the portfolio weights given by

wG MV =
6−11k

1′k6
−11k

, (15)

where 6 is the covariance matrix of the asset returns. This portfolio plays an important role in
current portfolio decision theory (see, e.g. Jagannathan and Ma [23]).

In practice 6 is unknown, and should be estimated using historical values of asset returns. Let
X1, . . . ,Xn be a sample from a k-dimensional Gaussian vector. We estimate 6 by

6̂ =
1

n − 1

n∑
t=1

(Xt − X̄)(Xt − X̄)′ with X̄ =
1
n

n∑
t=1

Xt . (16)

Following Muirhead ([1], Corollary 3.2.2), the random matrix (n − 1)6̂ follows a k-
dimensional Wishart distribution with n − 1 degrees of freedom and the parameter matrix 6.
The estimators of the global minimum variance portfolio weights are obtained by plugging the
estimator (16) in (15) instead of the unknown matrix 6, i.e.

wG MV =
6̂
−1

1k

1′k6̂
−1

1k

. (17)

Okhrin and Schmid [9] showed that the estimator (17) is an unbiased estimator for the global
minimum variance portfolio weights and derived its distribution. We are interested in linear
combinations of the weights (15). Let L be an m×k dimensional matrix of constants with m < k
such that the matrix L̃ = (L′1k) is of full rank m + 1. The vector of the linear combinations of
the global minimum variance portfolio weights and its estimator are given by

wL =
L6−11k

1′k6
−11k

and ŵL =
L6̂
−1

1k

1′k6̂
−1

1k

. (18)
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For the derivation of the distribution of ŵL , we use the results of Section 4. Let

G = L̃6−1 L̃
′
=

[
L6−1L′ L6−11k

1′k6
−1L′ 1′k6

−11k

]
= {Gi j }i, j=1,2

with G22 = 1′k6
−11k , and

Ĝ = L̃ 6̂
−1

L̃
′
=

[
L6̂
−1

L′ L6̂
−1

1k

1′k6̂
−1

L′ 1′k6̂
−1

1k

]
= {Ĝi j }i, j=1,2.

Then it holds that wL = G12/G22 and ŵL = Ĝ12/Ĝ22. From Muirhead [1] Theorem 3.2.11, we

obtain that (n−1)Ĝ
−1
∼Wm+1(n−k+m,G−1). Thus, (n−1)−1Ĝ ∼Wm+1(n−k+2m+2,G).

Applying Theorem 3, we get the density of the linear combination of weights in terms of the
components of G.

fŵL (x) =
|G11·2|

−
1
2 |G22|

1
2 m

π
m
2

0m(
n−k+1+m

2 )

0m(
n−k+m

2 )

× |I+G−1
11·2(x−G12G−1

22 )G22(x−G12G−1
22 )
′
|
−

1
2 (n−k+1+m). (19)

Let R = 6−1
−6−11k1′k6

−1/1′k6
−11k . Using the facts that G11·2 = LRL′,

0m(
n−k+1+m

2 )

0m(
n−k+m

2 )
=
0( n−k+1+m

2 )

0( n−k
2 )

,

and

|I+G−1
11·2(x−G12G−1

22 )G22(x−G12G−1
22 )
′
|

= 1+G22(x−G12G−1
22 )
′G−1

11·2(x−G12G−1
22 )

it follows that

fŵL (x) =
|LRL′|−

1
2 |1′k6

−11k |
1
2 m

π
m
2

0( n−k+1+m
2 )

0( n−k
2 )

× (1+ 1′k6
−11k(x− wL)(LRL′)−1(x− wL)

′)−
1
2 (n−k+1+m). (20)

The last expression is the density of the m-dimensional t-distribution with n − k + 1 degrees
of freedom, the mean vector wL and the covariance matrix (n − k − 1)−1LRL′/1′k6

−11k . This
result was previously established by other means in Bodnar and Schmid [10].
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