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Abstract 

Environmental acoustic recordings can be used to perform avian species richness surveys, 
whereby a trained ornithologist can observe the species present by listening to the recording. This 
could be made more efficient by using computational methods for iteratively selecting the richest parts 
of a long recording for the human observer to listen to, a process known as “smart sampling”. This 
allows scaling up to much larger ecological datasets. 

In this paper we explore computational approaches based on information and diversity of selected 
samples. We propose to use an event detection algorithm to estimate the amount of information 
present in each sample. We further propose to cluster the detected events for a better estimate of this 
amount of information. Additionally, we present a time dispersal approach to estimating diversity 
between iteratively selected samples.  

Combinations of approaches were evaluated on seven 24-hour recordings that have been manually 
labeled by bird watchers. The results show that on average all the methods we have explored would 
allow annotators to observe more new species in fewer minutes compared to a baseline of random 
sampling at dawn. 
 
Keywords: Ecoacoustics, environmental monitoring, species richness, cluster analysis, acoustic events 

1 Introduction 
Monitoring of bird species in the natural environment is important because changes in bird 

populations can act as an indicator of changes in the health of the ecosystem. Avian richness surveys 
record which species are present at a site. These surveys traditionally rely on trained ornithologists 
making observations on-site at the location of the survey, an undertaking that is very time consuming 
and subject to availability of ornithologists with local knowledge. 

These problems can be solved by having the ornithologists listen to audio recordings instead of 
having to travel to the location of the survey. Not only is just as effective as an on-site survey 
(Haselmayer & Quinn, 2000; Wimmer, Towsey, Roe, & Williamson, 2013), but also affords a number 
of advantages: it provides a permanent objective record of the health of the environment, allows future 
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verification of the species observed, and alleviates constraints created by limited availability of 
ornithologists.  

The greatest advantage however is the potential for increased scalability through computer-assisted 
analysis of the audio. By deploying numerous acoustic sensors for weeks or months, potentially much 
more valuable information about the health of the environment could be learned compared to what 
standard survey techniques allow. Collecting large amounts of such environmental data is feasible, but 
this brings computational challenges to ensure greater outcomes with the same amount of human 
annotation effort.  

More specifically, the annotators need to be presented with the most informative minutes of the 
survey in order to minimize their effort. The goal of a richness survey is to record the presence of a 
species only once, and therefore including samples containing vocalizations of previously observed 
species is of no value, even if the samples are rich. In this context, the most informative samples are 
those likely to contain vocalizations of species not observed until a given point in the annotation 
process. In other words, both informativeness and diversity must be considered when ranking all 
available minutes of samples to present them to the annotators in the order that would maximize their 
chances to detect all species present while minimizing the time they spend annotating. Such 
approaches are also referred to as smart sampling.  

In this paper, we propose to characterize informativeness with acoustic event detection. We 
propose two techniques to rank the minutes in this way. The first is a ranking based on the number of 
acoustic events present in the minutes. This is based on the intuition that the number of acoustic events 
is correlated with the number of bird vocalizations, which in turn should have some relationship to the 
number of species present. This method does not use any information about the content or nature of 
the events. The second technique proposes to use clustering to take into account the informative 
content (features) of the events, while maintaining scalability.  

 In addition, we introduce diversity in terms of time difference. This is to account for the fact that 
birds often vocalize over multiple minutes, and therefore consecutive minutes are more likely to be 
similar in content.  

Acoustic events are detected using an algorithm that finds the time and frequency bounds of any 
sound which rises more than a given level above background noise. In normal remote environmental 
recordings taken for this purpose, birds produce the vast majority of such acoustic events. 

Our evaluation is based on 7 daylong recordings from 3 different sites, and we observe the 
cumulative number of species present at each of the 120 best-ranked one-minute samples in each 
recording.   

2 Related Research 
There is increasing interest in using audio recordings for species richness surveys of birds as an 

alternative to the traditional point-count, which require an ornithologist to visit the site of the survey 
numerous times (Gregory, Gibbons, & Donald, 2004). Previous research has compared traditional 
point-counts with surveys conducted from audio recordings, and has demonstrated that the audio 
recording method generally performs better (Haselmayer & Quinn, 2000). Although a point count is 
conducted using both sight and sound, the vast majority of species vocalize to some degree, and 
additionally the recorded audio can be replayed at leisure to ensure accuracy. 

“Smart sampling” aims to improve upon this by selecting the best samples from a long recording). 
Wimmer, et al. (2013) compared traditional point-counts with different methods of selecting the best 
samples from 480 hours of recording based only on the time of day. They found that randomly 
selecting 120 minutes during the “dawn chorus” - the three hours immediately after civil dawn – found 
the most species, finding 62% of total species compared to the 34% found using traditional point 
counts with the same human effort. 
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Towsey, Wimmer, Williamson, and Roe (2014)) used acoustic indices as a measure of 
informativeness for smart sampling. The indices, such as Acoustic Complexity Index (Pieretti, Farina, 
& Morri, 2011) and spectral entropy index (Sueur, Pavoine, Hamerlynck, & Duvail, 2008), are 
calculated over audio of arbitrary length, resulting in either a single index or index per frequency bin. 
The acoustic indices show some relationship to the number of species vocalizing in the audio over 
which they are calculated. The results using this relationship for smart sampling were promising: 67% 
of the total number of species present could be found in the 60 top ranked one-minute samples 
However a limitation of using indices calculated over entire minutes of audio is that they offer no 
information about individual events.  

There has also been much research into fully automated species identification, however applying 
classifiers trained on specific species to richness survey is not yet feasible, due to the need to train and 
tune parameters on the large variety of potential species, and this is further confounded by the variety 
of local dialects within species. Our focus on representing the acoustic variety in a more generalized 
way avoids these problems.  

3 Acoustic Event Detection 
Our proposed techniques make use of acoustic event detection. An acoustic event is a short 

duration rise in amplitude above the background noise level, and is delimited by the start time, top and 
bottom frequency bounds and duration. Segmenting these events is quite challenging due to the 
diverse nature bird vocalizations, the presence of noise such as wind and insects, and the difficulty in 
distinguishing and, even defining, when one event stops and another begins. The algorithm employed 
for this task follows these steps (Towsey & Planitz, 2011): 
1. A spectrogram is generated through a Short Time Fourier Transform (STFT) using hamming 

window with a frame width of 512 samples and overlap of 50%, and converted to a decibel scale.  
2. Noise removal is performed using a wiener filter with a 5x5 neighborhood.  
3. The spectrogram is converted to binary, whereby all values less than 4 decibels above the 

background noise level take the value 0 and all values above this threshold take the value 1.  
4. Each connected area is treated as an event, and its frequency and time bounds recorded  
5. Very large events (greater than 3000 pixels in area) are split into smaller events  
6. Very small events are discarded (less than 150 pixels in area), as they are assumed to be noise.  

The thresholds set for steps 3, 5 and 6 were determined empirically by applying various 
combinations of thresholds to a small number of randomly selected minutes. These were manually 
checked to determine which had the subjectively best delimitation of events, specifically:  
• minimal number of missed vocalizations,  
• minimal merging of vocalizations from different  sources into single events, and  
• minimal merging of repeated vocalizations from a single source into one event.   

The number of acoustic events detected was close to 700 000 in all 168 hours analyzed.  
 

 
Figure 1. Acoustic event detection results on a spectrogram (frequency range is 11KHz, time range is 12s).  
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4 General Framework 
In our proposed framework, the one-minute samples are selected incrementally in order to be able 

to account for diversity in the ranking process.  
Given the set M of all minutes available in the survey, and a set S of the n minutes selected so far 

in the ranking, the selection of a new minute sn+1 is as follows:  
 

 

 
where Info(x) is a function providing the informativeness of a minute x and Dist(x, y) is a function of 
the difference between two minutes x and y.  

In this paper, the term one-minute sample is often abbreviated to either minute or sample.  

4.1 Temporal dispersal of samples 
Species often tend to vocalize for more than one minute at a time, and as such it follows that 

avoiding selecting samples in close proximity in time to those already ranked will increase diversity 
and thus the chance of observing new species.  

In this context, the Dist function is a transformation from the time-difference in minutes between 
two samples. The function we propose here is a quadratic function of the distance between the 
minutes, which takes two parameters, the threshold and the amount. The threshold can be interpreted 
as the maximum difference in time between two samples to be considered as having potential 
similarity of content, while the amount a scales the function. The Dist function is then formalized as 
follows. 

 

 

 
where  and  are two samples where  is the difference in time between the two samples, 

 is the threshold and  is the amount in the range [0,1] 
We empirically determined and appropriate threshold  at 30 minutes and the amount  at 1. The 

resulting shape of the Dist function is as shown in Figure 2. 
 

 
Figure 2. Temporal Dispersal score transformation function 
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4.2 Clustering Acoustic Events 
We propose that clustering acoustic events can provide information about the nature of the events 

thus better estimating the richness of information of a given minute beyond the amount of information 
it contains. 

 
Features for clustering 

The clustering algorithm uses the following features of acoustic events: 

• Duration 
• Frequency range, defined as the difference between the maximum and minimum 

frequency of the event 
• Mean peak frequency 

Mean peak frequency is described as follows. The spectrogram represents time on the horizontal 
axis, with a resolution of around 23 milliseconds per time- frame, and frequency on the vertical axis, 
with a resolution of approximately 43 Hz per frequency bin (with a total of 256 frequency bins). 
Considering the frequency bins that fall within the frequency bounds of the event, the bin with the 
highest value in each time-frame is the peak frequency for that time-frame. The mean peak frequency 
is the average frequency of these peaks across the time frames of the event, weighted by their decibel 
values. Mean peak frequency gives a truer representation of the main frequency of the event than the 
midpoint between the frequency bounds, although in practice there may not be one main frequency. 

In pilot experiments we found that additional features describing the contents of the event are not 
helpful (e.g. change in frequency over the course of the event, amplitude oscillation). We believe that 
this is due to the nature of the acoustic event detection: the delimitation of events is quite susceptible 
to errors caused by overlapping or nearby vocalizations being merged into single large events. 

 
Clustering algorithm 
Features are first scaled to their z-scores (i.e. the number standard deviations above the mean). K-
means clustering was performed using the stats package of the R language (R-Core-Team, 2013), with 
each day-long recording treated separately. 

We first experimented with various values for k (number of clusters) on a single day of audio and 
determined 240 clusters to be appropriate, although we found that the results are not significantly 
affected by this choice. We also experimented with hierarchical agglomerative clustering and found  
the result to be similar to k-means. K-means was chosen due to its lower complexity.  
 
Cluster-based information function 

We propose that the informativeness of a minute is determined by the sum of the weights of the 
clusters it contains, these weights being initially set to 1 and then decaying by a factor δ each time a 
minute containing the cluster is selected in the ranking. More formally, we can write the cluster-based 
information function as follows: 

 

 
Because the set of minutes already selected in the ranking  changes each time a minute is 
selected, the ranking process is done iteratively, calculating  for each unranked minute, 
selecting the minute with the highest value, then updating  and repeating. The algorithm allows 
clusters that appear in previously ranked minutes to be weighted less than clusters that do not yet 
appear in any previously ranked minutes.  
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Setting the decay value  to 1 means that there is no preference towards choosing minutes that 
contain as yet unseen clusters. This results in minutes being ranked solely on the total number of 
clusters they contain. Setting  less than 1 will cause the ranking process to prefer minutes with as yet 
unseen clusters, which will cause it to arrive more quickly at a point where all clusters are represented 
in the ranked minutes. The more often a cluster has appeared in higher ranked minutes, the lower 
contribution to . 

Setting the decay value  very low, for example 0.1, ensures that samples are ranked only on the 
number of as yet unseen clusters, with almost no weight given to clusters already contained in higher 
ranked minutes. This small weight will add very little to the total score for the minutes containing that 
cluster, compared to the influence of a cluster that has not been included in any ranked minute yet. 
However, it is still non-zero, ensuring that once all clusters have been included, samples can still be 
selected intelligently based on the number of clusters they contain and the number of times those 
clusters have already been included. 

5 Evaluation 

5.1 Explored methods 
In this paper we have presented 2 approaches to estimate the Info function as well as one temporal 

method to estimate the Dist function in addition to a uniform at 1. We then pair up these into four 
combinations detailed in Table 1, which follow the exploratory methodology presented in Figure 3: 

 

 
 

Figure 3. Experiment Design 

 Info Dist 
EC Number of events Always 1 
EC.TD Number of events Temporal dispersal 
CL Function of number of clusters seen and unseen Always 1 
CL.TD Function of number of clusters seen and unseen Temporal dispersal 

 
Table 1 Combinations of Dist and Info functions for minute ranking 

5.2 Data Sets 
Seven 24-hour recordings (1440 minutes each) are used for the evaluation, recorded in a non-urban 

area of open woodland in Australia. Each minute of this audio has been labeled with the all species 
appearing in that minute. The labels were provided by bird-watchers with local knowledge, and serve 
as the ground truth. The recordings are listed in Table 2. 
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Recording Site Date Number of species 

1 NE Oct 13 64 
2 NE Oct 14 57 

 NE Oct 17 60 
 NW Oct 13 60 
 NW Oct 14 54 
 SE Oct 13 61 
 SE Oct 17 61 

  98 
Table 2: List of Recordings.  

Using this labeled audio, a species richness survey can be simulated by sequentially checking the 
database for the species present in each ranked minute and adding new species to the running total.  
This can be plotted as a species accumulation curve. The species accumulation curve is the number of 
species found after x minutes, with x from 1 to 1440.  

5.3 Baselines 
Random sampling throughout the day   
Random selection of minutes throughout the day is repeated 100 times to obtain a mean and 

standard deviation for each minute. In the plot, the standard deviation is shown as a shaded area 
surrounding the species accumulation curve. 

 
Random sampling at dawn   
By first selecting samples from three hours after sunrise, the performance of random sampling can 

be significantly improved, as the “dawn chorus” is the most active time for bird vocalizations. For the 
recordings in this study, this period was 5:15am to 8:15am. This comparison is useful because random 
sampling from dawn has proven to be an effective and simple method of sampling (Wimmer, et al., 
2013). Again, the species accumulation curve is shown as the mean of 100 runs.  

 
Optimal sampling  
 Using the labels in our test data, a greedy algorithm repeatedly searches the database of labeled 

minutes for the minute containing the most species that have not previously been found. This is 
repeated until all species known to be present have been found. Note that although this is not 
guaranteed to find the absolute optimal solution for including all the species present in the fewest 
minutes, it serves the purpose of a comparison to what is theoretically possible.  

6 Results 
The plots in Figure 4 show species accumulation curves for two out of the seven 24-hour 

recordings (due to space constraints, not all seven recordings could be included) using the approaches 
described in section 5.1, which are: event count only (EC), event count with temporal dispersal 
(EC.TD), clustering (CL) and clustering with temporal dispersal (CL.TD). 

Also plotted are species accumulation curves achieved using the three baselines for comparison 
presented in section 5.3. Only the first 120 minutes are shown, as this period is the most relevant in 
demonstrating increased efficiency of a species richness survey.  
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The species accumulation curves reported for CL and CL.TD are those with the decay factor 
yielding the best results, which was δ=1, although the other values tested also performed above 
random sampling at dawn.  

Species accumulation curves tend to rise steeply at first when there are many unobserved species 
remaining, then level off as is becomes harder to select a minute containing a new species. The 
difference between our methods and the baselines are of interest, not the absolute numbers. Therefore, 
the performance of each of these methods as a percent improvement over random sampling at dawn 
(R.D) was calculated by dividing the number of species in each ranked sample by the corresponding 

 
Figure 4 Species Accumulation Curves for two out of the seven days. On the left are results of using event count 

only (EC) and event count with temporal dispersal (EC.TD). On the right are results of using clustering (CL) and 
clustering with temporal dispersal (CL.TD). 
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value for R.D, then subtracting 1 and multiplying by 100. This was done for each of the seven 
recordings and averaged. Figure 5 shows that on average the performance of using event count for the 
Info function with temporal dispersal as the Dist function (EC.TD) starts to out-perform the baseline 
after 40 minutes. Further improvements were gained by sampling using cluster content as the Info 
function (Figure 6). The best performance was achieved by combining this with the temporal dispersal 
(CL.TD), achieving a 9% improvement over the random sampling at dawn by sample 60. This is also 
an improvement over the results reported by Towsey, et al. (2014)).   

 

  

Figure 5 Average % improvement over random sampling at dawn across the seven 24-hour recordings 
evaluated for event count only (EC) and event count with temporal dispersal (EC.TD). 

  

Figure 6 Average % improvement over random sampling at dawn across the seven 24-hour recordings 
evaluated for clustering (CL) and clustering with temporal dispersal (CL.TD). 
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7 Conclusion and future work 
The results indicate that the estimates of informativeness of samples by the proposed iterative 

computational approaches have been successful in improving sample selection over the current state of 
the art. Smart sampling by acoustic event count and by cluster analysis of acoustic events are both 
effective methods of smart sampling. Including temporal dispersal further improved the results.  

Ranking by clusters was able to perform as well as the state of the art, despite applying it with 
simple features and a simple decision algorithm. This is very promising because it can be improved in 
many ways, which will be the focus for future work. First of all, the acoustic event detection algorithm 
can be improved. A better detection of overlapping events would for example support the extraction of 
more discriminating features. Additional future work experimenting with different clustering 
algorithms may also provide better results.  
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