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A classical linear �-calculus
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Abstract

This paper proposes and studies a particular typed �-calculus for classical linear logic. I shall
give an explanation of a natural deduction formulation of classical logic due to Parigot and
compare it to more traditional treatments by Prawitz and others. I shall use Parigot’s method
to devise a natural deduction formulation of classical linear logic. This formulation is com-
pared in detail to the sequent calculus formulation. c© 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In the past classical logic (CL) has often been dismissed as having no interesting
proof theory. However, following a rather pleasing interplay between theoretical com-
puter science and practical computer science, there has been a renewed interest in CL
and, in particular, the constructive content of classical proofs. This content appears to
have links with, at the theoretical level, game theory [20] and at the practical level,
certain control operators for functional programming languages [24]. To some extent
Girard’s linear logic [22] has also renewed interest in game theory and functional pro-
gramming languages. The re�ned connectives of linear logic have helped shed new
light on work on games [17]. The games models have proved useful for programming
language semantics: the recent fully abstract models of PCF [2, 26] are good examples
of this. In addition, intuitionistic linear logic (ILL) has been proposed as a resource-
sensitive foundation of functional programming languages [7, 14]. Thus it would seem
useful to reconsider the work on CL in a linear setting, i.e. to reconsider classical
linear logic (CLL).
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Gentzen’s natural deduction is a very suitable deduction system for intuitionistic
logic (IL) but seems less so for classical logic.1 One could say that classical logic is
a logic of symmetry whereas natural deduction is, by its very nature, an asymmetric
system. To that extent Gentzen’s alternative system, the sequent calculus, seems better
suited as the system for CL.
The Curry–Howard correspondence [25] allows us to annotate natural deductions

with terms. For IL this yields the typed �-calculus. For the sequent calculus it is
not entirely clear what the appropriate annotations are. In fact, there are a number of
choices and there is no real consensus on the best. It might seem prudent to revisit
natural deduction, where the question of syntax is settled, and see if we might be able
to produce a more symmetric system. Various people have proposed multiple- and
sequence-conclusion formulations, including Shoesmith and Smiley [35], Bori�ci�c [18]
and Celluci [19]. More recently Parigot [30] has introduced a variant of sequence-
conclusion natural deduction which seems particularly well suited for handling CL.
In this paper I shall consider in detail Parigot’s technique and, in particular, study its

application to CLL. This paper is organised as follows. In Section 2 I recall Parigot’s
formulation of CL, which I call CL�. Via the Curry–Howard correspondence one de-
rives a term calculus for CL�, which is called the (typed) ��-calculus. Also in Section 2
I study the particularly tricky area of reduction. In Section 3 I follow a similar method
to derive a natural deduction formulation of CLL, called CLL�. There are some sur-
prises here concerning the exponential modality (!). Applying the Curry–Howard cor-
respondence to CLL� yields the (typed) linear ��-calculus. In Section 3.2 I consider
the process of reduction for the linear ��-calculus, proving strong normalisation in
Section 4. In Section 5 I show how to map sequent proofs in CLL to deductions in
CLL� and then use this to compare the process of cut-elimination with the term re-
duction process. In Section 6 I consider briey the Q- and T-translations of Schellinx,
at the level of terms, between CL� and CLL�. In Section 7 I briey give another pre-
sentation of the linear ��-calculus based on Benton’s mixed presentation of the linear
�-calculus [5].
Before continuing I should perhaps clarify the rôle of this work. In his seminal

paper [22], Girard presented proof nets, which are a succinct presentation of proofs
in CLL. One important feature of proof nets is that formulae which are equivalent
with respect to the dualities (for example, �⊗  and (�⊥o  ⊥)⊥) are considered to
be equal. This cuts down considerably the number of proofs. What I am striving for
here is a calculus which does not have these formula equivalences built-in. Consider an
analogous situation for the �-calculus with products and coproducts. We might consider
the formulae �× ( + �) and (�×  ) + (�× �) to be equivalent and in (categorical)
models they are isomorphic. However, we certainly do not insist on them being equal
(they are distinct types!). Indeed it is hard to imagine a programming language where
this is so. Thus I suggest that the linear ��-calculus is a more realistic foundation for a

1 “One may doubt that this is the proper way of analysing classical inferences” [33, pp. 244–245].
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programming language based on CLL. A language based on proof nets would probably
be some variant of Abramsky’s proof expressions [1, Section 6].

2. Classical logic

In this paper I shall only consider propositional formulations of the various logics.
Formulae of CL are given by the grammar

� ::=p |�×� |�+ � |�→�;

where p is taken from a countable set of atomic formulae which includes a distin-
guished member, ⊥, which denotes falsum.
Parigot’s formulation of CL is a particular sequence-conclusion natural deduction.

The conclusion is now a sequence of formulae, of which at most one is considered
active and is labelled with a bullet; the rest are considered passive and are labelled
with a variable. Parigot’s original presentation (for just the implication fragment) is as
follows.

�; �−�•; �
�; �−  •; �

�− (�→  )•; �
→I

�− (�→  )•; � �−�•; �
�−  •; �

→E

�−�•; �
�−�a; �

Passivate
�−�a; �
�−�•; �

Activate

As it stands this formulation appears to be a conservative extension of the (implication
fragment of the) natural deduction formulation of IL. But this is a slight illusion – in
any instance of the rules the active formula need not exist. Thus,

�; �−�
�−�→  •; �

→I

is a perfectly valid instance of the →I rule where there is no active formula in the
upper sequent and  is a completely fresh formula. To make the rôle of active and
passive formulae more precise I shall present the formulation so there is always exactly
one active conclusion in any deduction. This necessitates the use of the falsum, ⊥.
The resulting system, which I shall call CL�, is given in Fig. 1. I have also added the
conjunction and disjunction connectives to Parigot’s original formulation.
Judgements in CL� are of the form �−�•; � where � denotes a set of formulae

and � denotes a set of formulae labelled with �-variables, which are written as  a. The
bullet annotation signi�es that a formula is active. The Passivate rule is not permitted
if � is ⊥. CL� is a sound and complete formulation of CL in the following sense.

Theorem 1 (Parigot). `CL �−� i� `CL� �−�.
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�; �−�•; �
Identity

�; �−  •; �
�− (�→  )•; �

→I
�− (�→  )•; � �−�•; �

�−  •; �
→E

�−�•; � �−  •; �
�− (�×  )•; �

×I

�− (�×  )•; �
�−�•; �

×E−1
�− (�×  )•; �

�−  •; �
×E−2

�−�•; �
�− (�+  )•; �

+I−1
�−  •; �

�− (�+  )•; �
+I−2

�− (�+  )•; � �; �−’•; � �;  −’•; �
�−’•; �

+E

�−�•; �
�− ⊥•; �a; �

Passivate
�− ⊥•; �a; �

�−�•; �
Activate

Fig. 1. Natural deduction formulation of CL: CL�.

To demonstrate the power of CL�, here is a derivation of Peirce’s law

(�→  )→�; � −�•;  b
Identity

(�→  )→�; � −⊥•; �a;  b
Passivate

(�→  )→�; � −  •; �a
Activate

(�→  )→� − (�→  )→�•; �a
Identity

(�→  )→� −�→  •; �a
→I

(�→  )→� −�•; �a

(�→  )→� −⊥•; �a
Passivate

(�→  )→� −�•

− ((�→  )→�)→�• →I

Activate

→E

and of the law of the excluded middle (where ¬� def= � →⊥)

� ` �
Identity

� ` (�+ ¬�)• (+I−1)

� `⊥•; (�+ ¬�)a Passivate

` (� →⊥)•; (�+ ¬�)a →I

` (�+ ¬�)•; (�+ ¬�)a (+I−2)

`⊥•; (�+ ¬�)a Passivate

` (�+ ¬�)• Activate

It is quite instructive to compare these deductions to the corresponding sequent calculus
derivations.
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�; x : � . x : �; �
Identity

�; x : � . M :  ; �
� . �x : �:M : � →  ; �

→I
� . M : � →  ; � � . N : �; �

� . MN :  ; �
→E

� . M : �; � � . N :  ; �
� . 〈M;N 〉 :�×  ; �

×I

� . M : �×  ; �
� . fst(M ) : �; �

×E−1
� . M : �×  ; �
� . snd(M ) :  ; �

×E−2

� . M : �; �
� . inl(M ) : �+  ; �

+I−1
� . M :  ; �

� . inr(M ) : �+  ; �
+I−2

� . M : �+  ; � �; x : � . N : ’; � �; y :  . P : ’; �
� . case M of inl(x)→N ‖ →| inr(y)→ P : ’; �

+E

� . M : �; �
� . [a : �]M :⊥; a : �; �

Passivate
� . M :⊥; a : �; �
� . �a : �:M : �; �

Activate

Fig. 2. The ��-calculus

2.1. The (typed) ��-calculus

We can apply the Curry–Howard (formulae-as-types) correspondence to CL� to get
what Parigot calls the (typed) ��-calculus. Raw ��-terms are given by the grammar

M ::= x Variable
| �x : �:M Abstraction
| MM Application
| 〈M;M 〉 Pair
| fst(M ) First Projection
| snd(M ) Second Projection
| inl(M ) Left Injection
| inr(M ) Right Injection
| case M of inl(x)→M ‖ inr(x)→M Conditional
| [a : �]M Passivate
| �a : �:M Activate;

where x is taken from some countable set of �-variables, � is a well-formed type
(formula) and a is taken from some other countable set of �-variables.
Typing judgements are of the form, � .M : �; �, where � is a set of pairs of �-

variables and types written x :  , M is a term from the above grammar and � denotes
a set of pairs of �-variables and types written a : ’. For conciseness we drop the con-
vention from the formulation of CL� that the active formula is annotated with a bullet,
whence the convention that the non-labelled formula on the right of the turnstile is the
active formula. The rules for forming valid typing judgements are given in Fig. 2.
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Lemma 1. The following rules are admissible in the ��-calculus.

� . M : �; �
�; x :  . M : �; �

Weakening
� . M : �; �

� . M : �; �; a :  
Weakeningp

�; x :  ; y :  . M : �; �
�; z :  . M [x; y := z] : �; �

Contraction
� . M : �; �; a :  ; b :  

� . M [a; b := c] : �; �; c :  
Contractionp

� . M : �; � �; x : � . N :  ; �
� . N [x := M ] :  ; �

Substitution

2.2. Reduction rules

There are �-rules corresponding to the introduction–elimination pairs, along with
commuting conversions for the disjunction (as these are quite well known, I shall not
give them here), a renaming rule and commuting conversions for the Activate rule.
These are as follows:

(�x : �:M)N  � M [x := N ]

fst〈M;N 〉  � M

snd〈M;N 〉  � N

case inl〈m〉 of inl〈x〉 → N‖inr〈y〉 → P  � N [x := M ]

case inr〈x〉 of inl〈x〉 → N‖inr〈y〉 → P  � P[y := M ]

�a : �: [a : �]M  � M where a 6∈ �FV(M)

[a : �] �b : �:M  M [b := a]

(�a : � →  :M)N  c �a :  :M [a : � →  ⇐ [a :  ] • N ] (∗)
fst(�a : � ×  :M)  c �a : �:M [a : � ×  ⇐ [a : �] fst(•)]
snd(�a : � ×  :M)  c �a :  :M [a : � ×  ⇐ [a :  ] snd(•)]

case(�a : � +  :M) of  c �a : ’:M [a : � +  ⇐
inl〈x〉 → N | inr〈y〉 → P [a : ’] case •of inl〈x〉 → N‖inr〈y〉 → P]

�FV(M) denotes the set of free �-variables in a term M (I shall omit its rather obvious
de�nition). The renaming rule is written  . In the commuting conversions ( c) I
have used the notation M [a ⇐ P[•]] to denote the term M where all occurrences of
the subterm [a]N have been (recursively) replaced by the term P[N ] (where P[•] is
a term with a single hole in it, and P[N ] is the term P where the hole has been
replaced by N ). These complicated commuting conversions are often glossed over in
other papers. In truth there is a special case of each conversion depending on the type
of the �-variable a. For example, the �rst commuting conversion (*) is de�ned as
follows:

(�a : � →  :M)N  c

{
�b :  :M [a : � →  ⇐ [b :  ] • N ] where  6=⊥
M [a : � →  ⇐ •N ] where  =⊥
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where

x[a : � ⇐ P[•]] def= x

(�x:M)[a : � ⇐ P[•]] def= �x:(M [a : � ⇐ P[•]])

(MN )[a : � ⇐ P[•]] def= (M [a : � ⇐ P[•]])(N [a : � ⇐ P[•]])

〈M;N 〉[a : � ⇐ P[•]] def= 〈M [a : � ⇐ P[•]]; N [a : � ⇐ P[•]]〉

fst(M )[a : � ⇐ P[•]] def= fst(M [a : � ⇐ P[•]])

snd(M )[a : � ⇐ P[•]] def= snd(M [a : � ⇐ P[•]])

inl(M )[a : � ⇐ P[•]] def= inl(M [a : � ⇐ P[•]])

inr(M )[a : � ⇐ P[•]] def= inr(M [a : � ⇐ P[•]])

(case M of inl(x)→N ‖ inr(y)→N ′)[a : � ⇐ P[•]] def= case M [a : � ⇐ P[•]] of
inl(x) → N [a : � ⇐ P[•]] ‖
inr(y) → N ′[a : � ⇐ P[•]]

(�b :  :M)[a : � ⇐ P[•]] def= �b :  : (M [a : � ⇐ P[•]])

([b :  ]M)[a : � ⇐ P[•]] def=
{

P[M [a : � ⇐ P[•]]] if a : � = b :  

[b :  ] (M [a : � ⇐ P[•]]) o’wise

The commuting conversions are quite unusual as they involve a substitution of a term
for a term, in contrast to the more familiar substitution of a term for a variable. Despite
the complexities of the commuting conversions, Parigot has (impressively) shown the
following results for this reduction system.

Theorem 2 (Parigot). (1) The ��-calculus is strongly normalising; and
(2) The ��-calculus is conuent.

Remark 1. The ability to activate a vacuous �-variable allows some strange behaviour
when considering the untyped ��-calculus. As mentioned by Parigot, the term �a:M ,
where a is not a free �-variable of M , can ‘consume’ any number of arguments, i.e.

(�a:M)N1 · · ·Nk c
k�a:M

for any number of terms N1; : : : ; Nk .

Remark 2. An interesting question is whether there is a natural computational inter-
pretation of the ��-calculus. In another paper [15] it is proposed that the ��-calculus
can be thought of as a �-calculus which is extended with control operators which allow
the current continuation to be saved and restored. This can be expressed using a set
of single-step reduction rules, from which an operational theory can be developed.
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2.3. Comparison with cut-elimination

It is folklore that the sequent calculus formulation of CL has the undesirable feature
of several disastrous critical pairs. A simple example of this is the following deriva-
tion [23, p. 151]:

�1 �2
...

...
� ` �

� ` �; �
WeakeningR

� ` �
�; � ` �

WeakeningL

� ` �
Cut

Given the usual process of local cut-elimination, it is not clear whether to reduce this
proof to �1 or to �2. It is interesting to note that this example translates (where I write
M(�) to denote the translation of a sequent calculus derivation, �, to a deduction in
CL�) to the following application of substitution in Parigot’s formulation:

M(�2)[x :=M(�1)];

where x is not a free �-variable of M(�2), and so by the de�nition of substitution,
this is equal to

M(�2):

Thus Parigot’s formulation resolves critical pairs essentially by its syntactic form.
Another important property of Parigot’s formulation is that � and �⊥⊥ are not forced

to be equal by the proof theory. Of course, we have the derived rules

...

�; x : � → ⊥ . x : � → ⊥
� . M : �

�; x : � → ⊥ . M : �
Weakening

�; x : � → ⊥ . xM : ⊥
� . �x : � → ⊥:xM : (� → ⊥)→ ⊥ →I

→E

and

�; x:� . x:�... Passivate
� . M: (� → ⊥)→ ⊥
�; x:� . [a: �] x:⊥; a:�

Weakeningp
� . M: (� → ⊥)→ ⊥; a:�
� . �x:[a: �] x:� → ⊥; a:�

→I

� . M (�x:[a: �] x): ⊥; a: �
� . �a: �:M (�x:[a: �] x): �

Activate
→E

Composing the �rst with the second gives

�a:(�x:xM)(�x:[a]x) � �a:(�x:[a]x)M

 � �a:[a]M

 � M ;
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but composing the second with the �rst yields

�y:y(�a:M (�x:[a]x)

which is in (head) normal form.2

2.4. Further consideration on normal forms

One motivation for the commuting conversion given in Section 2.2 is that the Acti-
vate rule can act as a barrier between an introduction–elimination pair and so we add
a reduction to remove it. This has both a familiar and unfamiliar feel to it. We are
used to this notion of commuting conversions to permit �-reductions when considering
the disjunction in IL. However in this case, it introduces a new, unfamiliar, form of
substitution, textual substitution, where whole subterms are replaced.
One could take these ideas further. Gentzen [21] suggested adding the rule

[¬�]
...
⊥

RAA
�

to the natural deduction formulation of IL to get a formulation of CL. However,
Prawitz [33] noted that applications of this rule can be restricted to cases where �
is atomic. This is achieved by both factoring formulae through the de Morgan du-
alities (thus eliminating certain problematic connectives) and by transformation. For
example, an application of the above rule where � = � →  is transformed to

[� →  ] [�]
 

→E [¬ ]
⊥

¬(� →  )
→E

...
⊥
RAA
 

� →  
→I

where clearly the size of the formula used in the application of the RAA rule has
been reduced. Prawitz suggests transforming all applications of this rule until they
involve only atomic formulae. However the use of the de Morgan dualities is vital
here; Prawitz [32, Footnote 1, p. 50] mentions that this technique does not extend to
all the connectives (the problematic one being the disjunction).

2This property enables Ong [29] to de�ne a categorical model. It is well known that a CCC with an
isomorphism A⊥⊥ ∼= A collapses to a boolean algebra.
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Ong [29] suggests a similar strategy for the ��-calculus by rewriting applications of
the Activate rule until they are of atomic type, although his motivation is to ensure
conuence when considering �-reduction. Given that this technique requires the use of
the formula equivalences when considering all the connectives, it is not considered any
further.

3. Classical linear logic

Linear logic is the logic obtained by removing the structural rules of Weakening and
Contraction. This has the e�ect of re�ning the traditional connectives into two di�erent
kinds: multiplicative and additive. Of course what remains is a terribly weak logic. To
regain full logical power the structural rules are re-introduced but in a controlled way,
via the exponentials. A fuller introduction to linear logic can be found, for example, in
Troelstra’s book [36], the article by Lincoln [27] or the original article by Girard [22].

3.1. The linear ��-calculus

Unlike the case for IL and CL, the grammars for intuitionistic linear and classical
linear formulae are di�erent. For CLL the grammar is

� ::= p |�⊗ � |�( � |�&� |�⊕ � |�o� | !� | ?�;

where p is taken from some countable set of atomic formulae which contains the
distinguished elements I (the unit for ⊗), t (the unit for &), f (the unit for ⊕) and
⊥ (the unit for o).
It is possible to extend a natural deduction formulation of ILL [8, 10] using Parigot’s

methodology, outlined in Section 2. However this process is not entirely straightfor-
ward. Firstly, it has to be established what the unit is in the linear equivalent of the
Passivate and Activate rules. It turns out that it is, ⊥, the unit for Par (o).3 Also,
some of the connectives are di�cult to handle directly and they shall be de�ned as
follows (cf. Section 3.4).

�⊥ def= �( ⊥
?� def= (!�⊥)⊥

�o def= ((�⊥)⊗ ( ⊥))⊥

A surprise is that the Promotion rule has to be extended for the classical formulation.
It seems that, rather, its ILL formulation is a particular instance of the full classical
formulation.

3As the Passivate rule really introduces the par unit and the Activate rule eliminates it, they shall be
considered as normal introduction and elimination rules.
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� − �• Identity

�; � −  •; �
� − (�(  )•; �

(I
� − (�(  )•; � � − �•; �′

�; � −  •; �; �′ (E

− I•
II

� − I•; � � − �•; �′

�; � − �•; �; �′ IE

� − �•; � � −  •; �′

�; � − (�⊗  )•; �; �′ ⊗I

� − (�⊗  )•; � �; �;  − ’•; �′

�; � − ’•; �; �′ ⊗E

� − �•; � � −  •; �
� − (�&  )•; �

&I

� − (�&  )•; �
� − �•; �

&E−1
� − (�& )•; �

� −  •; �
&E−2

� − �•; �
� − (�⊕  )•; �

⊕I−1
� −  •; �

� − (�⊕  )•; �
⊕I−2

� − (�⊕  )•; � �; � − ’•; �′ �;  − ’•; �′

�; � − ’•; �; �′ ⊕E

�1 − !�•
1 ; �1 �1 − !’•

1 ; �1

�n − !�•
n ; �n �m − !’•

m;�m

!�1; : : : ; !�n −  •; (!’1 (⊥)a1 ; : : : ; (!’m (⊥)am
�̃; �̃ − ! •; �̃; �̃

Promotion

� − !�•; �
� − �•; �

Dereliction

� − !�•; � � −  •; �′

�; � −  •; �; �′ Weakening

� − !�•; � �; !�; !� −  •; �′

�; � −  •; �; �′ Contraction

� − �•; �
� − ⊥•; �a; �

⊥I
� − ⊥•; �a; �
� − �•; �

⊥E

Fig. 3. Natural deduction formulation of CLL: CLL�

The natural deduction formulation of CLL, CLL�, is given in Fig. 3. Again the ⊥I

rule is only permitted if the formula being passivated is not ⊥. This formulation is
sound and complete in the usual sense.
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Theorem 3. `CLL � − � i� `CLL� � − �.

Applying the Curry–Howard correspondence to CLL� yields the (typed) linear ��-
calculus – an extension of the linear �-calculus [7]. Raw terms are given by the
grammar

M ::= x Variable

| �x:�:M Abstraction

| MM Application

| M ⊗M Multiplicative Pair

| let M be x ⊗ x in M Split

| 〈M;M 〉 Additive Pair

| fst(M ) First Projection

| snd(M ) Second Projection

| inl(M ) Left Injection

| inr(M ) Right Injection

| case M of inl(x)→M ‖ inr(x)→M Conditional

| promote M̃ | M̃ for x̃ | ã in M Promote

| derelict(M) Derelict

| discard M in M Discarding

| copy M as x; x in M Duplication

| [a:�]M Passivate

| �a:�:M Activate;

where, as for ��-calculus, x is taken from some countable set of �-variables, � is a well-
formed type (formula) and a is taken from some countable set of �-
variables.
Typing judgements are now of the form, � . M:�; �, where � is a multiset of

pairs of �-variables and types, written x:  , M is a term from the above grammar and
� denotes a multiset of pairs of �- variables and types, written a:’. As is the case
for ILL, in well-typed terms of the multiplicative-exponential fragment (⊗;(;o; !; ?)
variables occur exactly once. The rules for forming a valid typing judgement are given
in Fig. 4.

Lemma 2. The following is an admissible rule:

� . M:�; � �′; x:� . N :  ; �′

�; �′ . N [x := M ]:  ; �; �′ Substitution

3.2. Reduction rules

From the linear �-calculus there are both �-rules and commuting conversions. Of
course, the reductions for the Promotion rule have to be suitably extended. The �-rules
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x:� . x:�
Identity

�; x:� . M :  ; �
� . �x:�:M :�−◦ ; �

−◦I� . M :�−◦ ; � � . N :�; �′

�; � . MN :  ; �; �′ −◦E

.∗: I II � . M : I; � � . N :�; �′

�; � . let M be ∗ in N :�; �; �′ IE

� . M :�; � � . N :  ; �′

�; � . M ⊗ N :�⊗  ; �; �′⊗I

� . M :�⊗  ; � �; x:�; y :  . N :’; �′

�; � . let M be x⊗y in N :’; �; �′ ⊗E

� . M :�; � � . N :  ; �
� . 〈M;N 〉:�&  ; �

&I

� . M :�&  ; �
� . fst(M):�; �

&E−1
� . M :�&  ; �
� . snd(M):  ; �

&E−2

� . M :�; �
� . inl(M):�⊕  ; �

⊕I−1
� . M :  ; �

� . inr(M):�⊕  ; �
⊕I−2

� . M :�⊕  ; � �; x:� . N :’; �′ �; y:  . P:’; �′

�; � . case Mof inl(x)→ N ‖ inr(y)→ P:’; �; �′ ⊕E

�1 . M1: !�1; �1 �1 . P1: !’1; �1

�n . Mn: !�n; �n �m . Pm: !’m;�m
x1: !�1; : : : ; xn: !�n . N :  ; a1: !’1−◦⊥; : : : ; am: !’m−◦⊥

�̃; �̃ . promote M̃ | P̃ for x̃ | ã in N : ! ; �̃; �̃
Promotion

� . M : !�; �
� . derelict(M):�; �

Dereliction

� . M : !�; � � . N :  ; �′

�; � . discardM in N :  ; �; �′Weakening

� . M : !�; � �; x: !�; y: !� . N :  ; �′

�; � . copyM as x; y in N :  ; �; �′ Contraction

� . M :�; �
� . [a:�]M :⊥; a:�; �

⊥I
� . M :⊥; a:�; �
� . �a:�:M :�; �

⊥E

Fig. 4. The linear ��-calculus.
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are as follows:

(�x:�:M):N  � M [x := N ]

let M⊗N be x⊗y in P  � P[x := M; y := N ]

fst(〈M;N 〉)  � M

snd(〈M;N 〉)  � N

case inl(M ) of inl(x)→N ‖ inr(y)→P  � N [x := M ]

case inr(M ) of inl(x)→N ‖ inr(y)→P  � P[y := M ]

derelict (promote M̃ | P̃ for x̃ | ã in N )  � N [xi := Mi; aj : !’j−◦ ⊥⇐ (•Pj)]

discard (promote M̃ | P̃ for x̃ | ã in N ) in R  � discard M̃ ; P̃ in R

copy (promote M̃ | P̃ for x̃ | ã in N ) as y; z in R  � copy M̃ as x̃′; x̃′′ in

copy P̃ as w̃′; w̃′′ in

R [y := promote x̃′ | w̃′ for x̃ | ã in N;

z := promote x̃′′ | w̃′′ for x̃ | ã in N ]

Rather than give all the commuting conversions for the ILL connectives (they are
given in full in [10]), I shall only give the ‘promote-of-promote’ one, which for ease
of typesetting I shall present as two reduction rules depending on where the inner
Promotion rule occurs. First, I need to de�ne an important term, written Pa, which is
given by the derivation

x: !� . x: !� ⊥I

x: !� . [b: !�]x:⊥; b: !�
∅ . �x: !�:[b: !�] x: !�−◦ ⊥; b: !�

(I

∅ . [a: !�−◦ ⊥] �x: !�:[b: !�] x:⊥; b: !�; a: !�−◦ ⊥
∅ . �b: !�: [a: !�−◦ ⊥] �x: !�:[b: !�] x: !�; a: !�−◦ ⊥⊥E

⊥I

where a is the �nal passive variable. I use the shorthand Pã to represent the obvious
extension of the above term to multiple passive variables. The commuting conversions
for the Promotion rule are then

promote (promote M̃ | Ñ for x̃ | ã in P) | Q̃ for y | b̃ in R

 cpromote M̃ | Ñ ; Q̃ for x̃′ | ã′; b̃ in R[y := (promote x̃′ |Pã′ for x̃ | ã in P)]
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and

promote M̃ | (promote Ñ | P̃ for x̃ | ã in Q) for ỹ | b in R

 cpromote M̃ ; Ñ | P̃ for ỹ; x̃′ | ã′ in

R[b: !�−◦ ⊥ ⇐ • (promote x̃′ |Pã′ for x̃ | ã in Q)]:

There is a �-rule corresponding to the introduction-elimination pair for the ⊥,4 and a
number of commuting conversions for this unit (as per the discussion in Section 2.2).
These are as follows:

�a:�: [a:�]M  � M

(�a:�−◦ :M)N  c �a:  :M [a:�−◦ ⇐ [a:  ] • N ]

let �a:�⊗ :M be x⊗y in N  c �a:’:M [a:�⊗ ⇐ [a:’] let • be x⊗y in N ]

fst(�a:�& :M )  c �a:�:M [a:�& ⇐ [a:�] fst( • )]

snd(�a:�& :M )  c �a:  :M [a:�& ⇐ [a:  ] snd( • )]

case (�a:� ⊕  :M) of

inl(x)→N ‖ inr(y)→P  c �a:’:Ma:�⊕ ⇐ [a:’] case • of inl(x)→N ‖ inr(y)→P

derelict (�a: !�:M)  c �a:�:M [a: !� ⇐ [a:�] derelict (•)]

copy (�a: !�:M) as x; y in N  c �a:’:M [a: !� ⇐ [a:’] copy • as x; y in N ]

discard (�a: ! :M) in N  c �a:’:M [a: !� ⇐ [a:’] discard • in N ]

Of course there are �-rules for the connectives. Those for the ILL connectives have
appeared elsewhere [10, Fig. 4.3] and the new one, for the ⊥, is

[b:�] �a:�: M  � M [a := b]

A vital property of this formulation is the so-called subject reduction property.

Theorem 4. If � . M :�; � and M  �; c N then � . N :�; �.

3.3. Subformula property

It is worth pointing out that for the obvious de�nition of subformula, this formulation
fails to satisfy the subformula property, i.e. in a (�; c)-normal derivation it need not
be the case that all formulae are subformulae of the open hypotheses or conclusions.

4Here is an advantage of linearity: we need no side-condition for this rule as we do for the non-linear
system.
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An example of this failure is the following (�; c)-normal derivation:

!(�−◦ ⊥) − !(�−◦ ⊥)• !� − !�•

Der: Der:
!(�−◦ ⊥) − �−◦ ⊥• !� − �•

−◦E
!(�−◦ ⊥); !� − ⊥•

−◦I
!(�−◦ ⊥) − !�−◦ ⊥•

⊥I

! − ! • !(�−◦ ⊥) − ⊥•; !�−◦ ⊥a

Weak:
!(�−◦ ⊥); ! − ⊥•; !�−◦ ⊥a

−◦I
!(�−◦ ⊥) − !(�−◦ ⊥)•!� − !�• !(�−◦ ⊥) − ! −◦ ⊥•; !�−◦ ⊥a

Promotion
!(�−◦ ⊥); !� − !(! −◦ ⊥)•

Unfortunately, the formula !�−◦ ⊥ is not a subformula of the hypotheses or the con-
clusion. Devising an appropriate notion of subformula remains future work.

3.4. The Par connective

It is possible to extend the ��-calculus to allow the Activate rule to bind multiple
formulae (and similarly for the Passivate rule). In the linear setting this enables a direct
formulation of the par (‘o ’) connective, as follows:

� . M :⊥; a:�; b:  ; �
� .o�(a:�; b:  ):M :�o ; �

oI
� . M :�o ; �

� .o[a:�; b:  ]M :⊥; a:�; b:  ; �
oE

A fuller discussion of this alternative formulation will appear in [37].

4. Strong normalisation

It is possible to prove strong normalisation for linear ��-calculus directly by re-
working Parigot’s original proof [31]. However, I shall prove it by demonstrating
a translation from linear ��-calculus to the second-order ��-calculus (��2-calculus),
which allows the result to be proved by appealing to the strong normalisation property
of ��2-calculus. The translation is an adaptation of that used by Benton [6] to prove
strong normalisation for the linear �-calculus.
The method is as follows: If we wish to prove strong normalisation for a calculus C1,

knowing already that strong normalisation holds for a calculus C2, then it su�ces to
exhibit a translation M 7→ M◦ from C1 to C2 with the property that if M  N then
M◦  + N ◦. Thus if there were an in�nite reduction sequence

M0  M1  M2  · · ·
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in C1, then there would be an in�nite sequence

M◦
0  

+ M◦
1  

+ M◦
2  

+ · · ·

in C2, contradicting strong normalisation for that calculus.
The ��2-calculus is given by extending the ��-calculus of Section 2 with the

rules

� . M :�; �
� . �X:M :∀X:�; �

∀I and
� . M :∀X:�; �

� . M :�[ =X ]; �
∀E

and the reduction rule

(∀X:M)� � M [�=X ]:

Parigot [31] has shown that the reduction of terms always terminates (including, im-
portantly, the commuting conversion marked (∗) in Section 2.2).

Theorem 5 (Parigot). All well-typed terms of ��2-calculus are strongly normalising.

An important feature of the translation is an encoding of coinductive types. What
follows is taken from Benton’s paper, to which the reader is referred. Let �(X ) be a
��2-type where X appears positively; its greatest �xed point is given by

�� = ∃X:(X → �(X ))× X;

where

∃X: def= ∀Y:(∀X: → Y )→ Y:

Expanding this out gives

��
def= ∀Y:(∀X:(X → �(X ))→ X → Y )→ Y:

Terms of type �� are built using

build� : ∀X:(X → �(X ))→ X → ��

def= �X:�f:�x:�C:�h:(hXfx)

along with its associated destructor

out� : �� → �(��)

def= �m:m�(��)(�X :�f:�x :(�[build�Xf](fx))):
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The translation of linear types to ��2-types is given inductively as follows:5

(�−◦ )◦ def= �◦ →  ◦

(�⊗  )◦ def= ∀X :(�◦ →  ◦ → X )→ X

⊥◦ def= ⊥
(�&  ) def= �◦ ×  ◦

(�⊕  ) def= �◦ +  ◦

(!’)◦ def= ��’◦

where

�’(X ) def=(∀Z :Z → Z)× ’× (∀Z :(X → X → Z)→ Z):

This translation can be lifted to terms in a straightforward manner. The details are
essentially the same as in Benton’s paper. The important new case is the Promotion
rule.

�1 . M1: !�1; �1 �1 . P1: !’1; �1

�n . Mn: !�n; �n �m . Pm: !’m;�m
x1: !�1; : : : ; xn: !�n . N :  ; a1: !’1−◦⊥; : : : ; am: !’m−◦⊥

�̃; �̃ . promote M̃ | P̃ for x̃ | ã in N : ! ; �̃; �̃
Promotion

which is translated to

(�̃; �̃)◦ . build� ◦

(
n∏

i=1
(!�i)◦ ×

m∏
j=1
(!’j)◦

)
hx: (! )◦; (�̃; �̃)◦

where

x def= 〈M◦
1 ; : : : ; M

◦
n ; P◦

1 ; : : : ; P
◦
m〉

h def= �p:〈A; B; C〉
A def= �Z :�z :discard (�1p) in · · · discard (�np) in

discard (�n+1p) in · · · discard (�n+mp) in z

B def= �b:  ◦ :(�am: (!’m−◦⊥)◦ : · · · �a1: (!’1−◦⊥)◦ : [b:  ◦]B′(�n+1p))(�n+mp)

B′ def= (�x1 : · · · �xn :N ◦)(�1p) · · · (�np)

C def= �Z :�g:copy (�1p) as x′1; x
′′
1 in · · ·

copy (�n+mp) as x′n+m; x
′′
n+m in (g〈x′1; : : : ; x′n+m〉〈x′′1 ; : : : ; x′′n+m〉)

5Obviously, this translation could be extended to the second-order linear ��-calculus, i.e.

(∀X :�)◦ def= ∀X :�◦
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and discard and copy are de�ned as in Benton’s paper and �k is the obvious kth
projection term. We are then in a position to consider the various cases of reduction
in the linear ��-calculus. I shall present only one case, the rest are essentially as given
in Benton’s paper.
Consider the reduction

derelict(promote M̃ | P̃ for x̃ | ã in N ) � N [̃x := M̃ ; ai: !’i−◦⊥⇐ (•Pi)]

which translates as

�2

(
out� ◦

(
build� ◦

(
n∏

i=1
(!�i)◦ ×

m∏
j=1
(!’j)◦

)
h x

))

 +
� �2((�w :〈(�1w); : : : ; (�n+wp)〉)(h x))

 �
2�2(h x)

 +
� �b:  ◦ :(�am: (!’⊥

m )
◦ : · · · �a1: (!’⊥

1 )
◦ : [b:  ◦](�x1 : · · · �xn :N ◦)(M◦

1 )

· · · (M◦
n )(P

◦
1 )) · · · (P◦

m)

 +
� �b:  ◦ :(�am: (!’⊥

m )
◦ : · · · �a1: (!’⊥

1 )
◦ : [b:  ◦]N ◦ [̃x := M̃◦](P◦

1 )) · · · (P◦
m)

 +
c �b:  ◦ : [b:  ◦]N ◦ [̃x := M̃◦; ai ⇐ (•P◦

i )]

 �N ◦ [̃x := M̃◦; ai ⇐ (•P◦
i )]

≡ (N [̃x := M̃ ; ai ⇐ (•Pi)])◦

Thus we can conclude the following.

Theorem 6. If M � N then M◦  +
�; c N ◦.

Corollary 1. The linear ��-calculus is strongly normalising.

5. Comparison with sequent calculus formulation

In this section I shall �rst show how to translate derivations in the sequent calculus
formulation to deductions in the CLL�. Given this translation I shall consider the
principal steps in the cut-elimination process for CLL and show how they are reected
in CLL�.6

I shall show how to translate sequent derivations in CLL to deductions in CLL� by
de�ning a procedure, M, inductively over the sequent derivation (where I shall use
the shorthand �⊥ to denote �−◦⊥).
• A proof of the form

� − �
Identity

6In fact, for ease of reference, I shall use the term annotations, i.e. the linear ��-calculus.
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is translated to

x:� . x:�
Identity

• A proof of the form
�1
...

�; �;  − �
�; �⊗  − �

⊗L

is translated to

M(�1)
...

z:�⊗  . z :�⊗  �; x:�; y:  . M :�
�; z:�⊗  . let z be x⊗y in M :�

⊗E

• A proof of the form
�1 �2
...

...
� − �; � �′ −  ; �′

�; �′ − �⊗  ; �; �′ ⊗R

is translated to

M(�1) M(�2)
...

...
� . M :�; � �′ . N :  ; �′

�; �′ . M ⊗N :�⊗  ; �; �′ ⊗I

• A proof of the form
�1 �2
...

...
� − �; � �′;  − �′

�; �−◦ ; �′ − �; �′ −◦L

is translated to

M(�1)
... M(�2)

f:�−◦ . f:�−◦ � . M :�; �
�; f:�−◦ . fM :  ; �

−◦E
...

�′; x:  . N :�′

�; �′ . N [x := fM ]:�′; �
Substitution
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• A proof of the form

�1
...

�; � −  ; �
� − �−◦ ; �

−◦R

is translated to

M(�1)
...

�; x:� . M :  ; �
� . �x :M :�−◦ ; �

−◦I

• A proof of the form

�1 �2
...

...
�; � − � �′;  − �′

�; �′; �o − �; �′ oL

is translated to

M(�1) M(�2)
...

...
�; x:� . M : �

�; x:� . [a]M : ⊥; �
⊥I

� . �x : [a]M : �⊥; �
−◦I

�′; y:  . N : �′

�′; y:  . [b]N :⊥; �′ ⊥I

�′ . �y : [b]N :  ⊥; �′ −◦I

z : �o . z : �o �; �′ . (�x : [a]M)⊗ (�y : [b]N ) : (�⊥)⊗ ( ⊥); �; �′ ⊗I

�; �′; z:�o . z((�x : [a]M)⊗ (�y : [b]N )) :⊥; �; �′ −◦E
�; �′; z:�o . �c : z((�x : [a]M)⊗ (�y : [b]N )) : �; �′ ⊥E

• A proof of the form

�1
...

� − �;  ; �
� − �o ; �

oR
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is translated to

M(�1)
...

� . M :’; c:�; b:  ; �
� . [a]M :⊥; c:�; b:  ; a:’; �

⊥I

x:�⊥ . x : �⊥ � . �c : [a]M :�; b:  ; a:’; �
⊥E

�; x:�⊥ . x(�c : [a]M) :⊥; b:  ; a:’; �−◦E
y:  ⊥ . y:  ⊥ �; x:�⊥�b : x(�c : [a]M) :  ; a:’; �

⊥E

z:�⊥ ⊗  ⊥ . z:�⊥ ⊗  ⊥ �; x:�⊥; y:  ⊥ . y(�b : x(�c : [a]M)):⊥; a:’; �
−◦E

�; z:�⊥ ⊗  ⊥ . let z be x⊗ y in y(�b : x(�c : [a]M)):⊥; a:’; �
⊗E

� . �z : let z be x⊗ y in y(�b : x(�c : [a]M)):�o ; a:’; �
−◦I

• A proof of the form

�1
...

� − �; �
�; �⊥ − �

(⊥L)

is translated to

M(�1)
...

x:�⊥ . x:�⊥ � . M :�; �
�; x:�⊥ . xM :⊥; �

−◦E
�; x:�⊥ . �a:xM :�

⊥E

• A proof of the form

�1
...

�; �−�
(⊥R)

�−�⊥; �

is translated to

M(�1)
...

�; x : � . M : � ⊥I

�; x : � . [a]M :⊥; �
(I

� . �x : �:[a]M : �⊥; �
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• A proof of the form

�1
...

�; �−�
DerelictionL

�; !�−�

is translated to

M(�1)
x :!� . x :!�

Derelict
...

x :!� . derelict(x) : � �; y : � . M : �
Substitution

�; x :!� . M [y := derelict(x)] : �

• A proof of the form

�1
...

�−�; �
DerelictionR

�−?�; �

is translated to

M(�1)
x :!(�⊥) . x :!(�⊥)

Dereliction
...

x :!(�⊥) . derelict(x) : �⊥ � . M : �; �
(E

�; x :!(�⊥) . (derelict(x))M :⊥; �
(I

� . �x:(derelict(x))M :?�; �

• A proof of the form

�1
...

�−�
WeakeningL

�; !�−�
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is translated to

M(�1)
...

x :!� . x :!� � . M : �
Weakening

�; x :!� . discard x in M : �

• A proof of the form
�1
...

�−�
WeakeningR

�−?�; �

is translated to

M(�1)
...

x :!(�⊥) . x :!(�⊥)
� . M : �

�; x :!(�⊥) . discard x in M : �
Weakening

�; x :!(�⊥) . [a] discard x in M :⊥; �
� . �x:[a] discard x in M :?�; �

(I

⊥I

• A proof of the form
�1
...

�; !�; !�−�
ContractionL

�; !�−�

is translated to

M(�1)
...

z :!� . x :!� �; x :!�; y :!� . M : �
Contraction

�; z :!� . copy z as x; y in M : �

• A proof of the form
�1
...

�−?�; ?�; �
ContractionR

�−?�; �
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is translated to

M(�1)
...

� . M :?�; c :?�; � x :!(�⊥) . x :!(�⊥)

�; x :!(�⊥) . Mx :⊥; c :?�; �
(E

�; x :!(�⊥) . �c:Mx :?�; �
⊥E y :!(�⊥) . y :!(�⊥)

z :!(�⊥) . z :!(�⊥) �; x :!(�⊥); y :!(�⊥) . (�c:Mx)y :⊥; �
(E

�; z :!(�⊥) . copy z as x; y in (�c:Mx)y :⊥; �
Contr

� . �z:copy z as x; y in (�c:Mx)y :?�; �
(I

• A proof of the form

�1
...

!�; �−?�
PromotionL

!�; ?�−?�

(where ?�=?’; ?�′) is translated to

M(�1)
...

x̃ :!�; y : � . M :?’; ?�′
⊥I

x̃ :!�; y : � . [a1]M :⊥; ã :?�
(I

x̃ :!� . x̃ :!� .Pã :!(�⊥); ã :?� x̃ :!� . �y:[a1]M : �⊥; ã :?�
Prom:

z :?� . z :?� x̃ :!� . promote x̃ |Pã for x̃ | ã in �y:[a1]M :!(�⊥); ã :?�
(E

x̃ :!�; z :?� . z(promote x̃ |Pã for x̃ | ã in �y:[a1]M) :⊥; ã :?� ⊥E

x̃ :!�; z :?� . �a1:z(promote x̃ |Pã for x̃ | ã in �y:[a1]M) :?’; ?�′

• A proof of the form

�1
...

!�−�; ?�
PromotionR

!�−!�; ?�
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is translated to

M(�1)
...

x̃ :!� . x̃ :!� .Pã :!(�⊥); ã :?� x̃ :!� . M : �; ã :?�
Promotion

x̃ :!� . promote x̃ |Pã for x̃ | ã in M :!�; ã :?�

One of the features of CLL is that the cut-elimination process is much better behaved
than it is for CL. For example, trying to construct the critical pair of Section 2.3
founders, i.e.

�−� �′ −�′
WeakeningR WeakeningL

�−�; ?� �′; !�−�′
?Cut?

�; �′ −�; �′

The instance of the Cut rule is not even valid! Hence the problematic critical pairs from
CL are removed by moving to the linear framework with its more re�ned connectives.
It is now possible to reconsider the (better behaved) process of cut-elimination for

CLL, by translating the steps across to CLL�. One might hope that there is a corre-
spondence between (at least) the principal cut reductions and reduction in the linear
��-calculus. For non-exponential rules there is an exact correspondence but the situ-
ation is not so nice for the exponential rules. Below are four instances of principal
cuts.
• (oR;oL)-cut.

�−�;  ; �
�−�o ; �

oR
�′; �−�′ �′′;  −�′′

�′; �′′; �o −�′; �′′ oL

�; �′; �′′ −�; �′; �′′ Cut

 cut

�−� ;  ; �; �′; �−�′

�; �′ −�; �′;  
Cut �′′;  −�′′

�; �′; �′′ −�; �′; �′′ Cut

The former deduction is translated to

�c:z((�x:[a]M)⊗ (�y:[b]N ))[z:=�u:let u be v⊗ w in w(�e:v(�d:[g]P))]

≡ �c:(�u: let u be v⊗ w in w(�e:v(�d:[g]P)))((�x:[a]M)⊗ (�y:[b]N ))
 � �c: let (�x:[a]M)⊗ (�y:[b]N ) be v⊗ w in w(�e:v(�d:[g]P))

 � �c:(�y; [b]N )(�e:(�x:[a]M)(�d:[g]P))

 2
� �c:[b]N [y:=�e:[a]M [x: =�d:[g]P]]

which is the translation of the latter.
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• (⊥R;⊥L)-cut.

�; �−� �′ −�; �′
(⊥R) (⊥L)

�′ −�; �⊥ �;′ �⊥ −�′
Cut

�; �′ −�; �′

�′ −�; �′ �; �−�
 cut Cut

�; �′ −�; �′

The former deduction is translated to

(�b:zN )[z:=�x:[a]M ]

≡ �b:(�x:[a]M)N

 � �b:[a]M [x:=N ]

which is the translation of the latter.
• (PromotionR, WeakeningL)-cut.

!�−�; ?� �′ −�′
PromotionR WeakeningL

!�−!�; ?� �′; �−�′

Cut
!�; �′ −?�; �′

�′ −�′
Weakening∗L

 cut �′; !�−�′
Weakening∗R

�′; !�−�′; ?�

The former deduction is translated to

discard (promote x̃|Pã for x̃|̃a in M) in N

 ∗
� discard Pã in discard x̃ in N

which is the translation of the latter.
Unfortunately, this nice relationship between the cut-elimination process and term

reduction breaks down when considering the (PromotionR, DerelictionL)-cut. Here the
cut reduction is of the form

!�−�; ?� �′; �−�′
PromotionR DerelictionL

!�−!�; ?� �′; !�−�′
Cut

!�; �′ −?�; �′

 cut
!�−�i?� �′; �−�′

!�; �′ − ?�; �′ Cut:
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The former deduction is translated to

N [z := derelict(w)][w := promoteỹ | P̃a for ỹ | ã in M ]

≡ N [z := derelict(promoteỹ | P̃a for ỹ | ã in M)]

 � N [z :=M [ỹ := ỹ; ai : ?�i ⇐ (•Pai)]]

≡ N [z :=M [ai : ?�i ⇐ (•Pai)]]:

Unfortunately, the inner textual substitution need not be equivalent to the identity
substitution and so the latter term is not the translation of the latter deduction. What
appears to be the problem is the asymmetry between the types � and �⊥⊥ as discussed
in Section 2.3. When considering the re�ned connectives of CLL this entails certain
connectives being available only indirectly, via the negation. In this light maybe it is
too much to ask for there to be an exact match with the highly symmetric sequent
calculus.

Remark 3. In previous accounts of this work [13, 12] I tried to �nd a formulation
whose reduction behaviour did correspond to the cut elimination relation. This is pos-
sible given a di�erent formulation of the Promotion rule, i.e.

�1 . M1 : !�1; �1 �1 . P1 : !((!’1 (⊥)(⊥); �1

�n . Mn : !�n; �n �m . Pm : !((!’m (⊥)(⊥); �m
x1 : !�1; : : : ; xn : !�n . N :  ; a1 : !’1 (⊥; : : : ; am : !’m (⊥

�̃; �̃ . promote M̃ | P̃ for x̃ | ã in N : ! ; �̃; �̃
Promotion

where the Pi terms have a double-negated type (which additionally has to be an expo-
nential type to satisfy subject reduction). The associated reduction rule is

derelict(promote M̃ | P̃ for x̃ | ã in N )

 � N [̃x := M̃ ; aj : !’j (⊥⇐ (derelict(Pj)•)] (†)

and the other reduction rules involving the Promotion rule remain the same. For this
formulation we �nd that if we permit only �-reduction of the form

�x:(Mx) � M

then we can prove the desired correspondence theorem.

Theorem 7. If
�1

� − � cut

�2
� − � then M(�1) ∗

�; c; � M(�2).

However this formulation is quite cumbersome and the principle reduction (†) con-
tains an unusual form of textual substitution (one which is clearly admissible but not
derivable from the normal form of textual substitution). However it is worth pointing
out that the problems of Section 3.3 concerning the subformula property are resolved
with this formulation.
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6. Translations

Just as there are translations from IL into ILL [10, Chapter 2, Section 5], there are
also translations from CL into CLL. These have been studied by Schellinx [34] in
his thesis. As he points out they are (necessarily) quite complicated, requiring a large
number of exponentials. Interestingly there is no unique ‘optimal’ solution as is the
case for IL. Rather there are two candidates. The T-translation which is based on a
linear decomposition of � →  as !?� (? ; and the Q-translation which interprets
� →  as !�(?! . They are de�ned as follows:

pQ def= p (p atomic)

(� →  )Q def= !�Q (?!�Q

(�×  )Q def= !�Q⊗! Q
(�+  )Q def= ?!�Qo ?! Q;

pT def= p (p atomic)

(� →  )T def= !?�T (? T

(�×  )T def= !?�T⊗!? T
(�+  )T def= ?�To ? T:

Theorem 8 (Schellinx). `CLL !�Q − ?!�Q i� `CL � − � i� `CLL !?�T − ?�T.

These translations can be lifted to translations between the ��-calculus and the linear
��-calculus. Rather than give all the details I shall show how the implication rules for
CL� are translated using both the Q and T strategies.
The implication introduction rule

�; x :� . M :  ; :�
� . �x:M :� →  ; :�

→I

is T-translated to

z : !((!?�T−◦? T)−◦⊥) . z: !((!?�T−◦? T)−◦⊥) !?�T ; x : !?�T . MT: ? T ; ã : ?�T

z : !((!?�T−◦? T)−◦⊥) . derelict (z): (!?�T−◦? T)−◦⊥ !?�T . �x:MT: !?�T−◦? T ; ã : ?�T

!?�T ; z : !((!?�T−◦? T)−◦ ⊥) . derelict (z)(�x:MT):⊥; ã : ?�

!?�T . �z:derelict (z)(�x:MT): ?(!?�T−◦? T); ã : ?�T

The implication elimination rule

� . M :� →  ; � �′ . N :�; �′

�; �′ . MN :  ; �; �′ →E
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is T-translated to

!?�T . MT: ?(!?�T (? T); ?�T ỹ : !?�′T . A: !((!?�T (? T) (⊥); b̃ : ?�′T ; c : ? T

!?�T ; !?�′T . MTA:⊥; c : ? T ; ?�T ; ?�′T

!?�T ; !?�′T . �c :MTA: ? T ; ?�T ; ?�′T

where A denotes the term

promote ỹ | P̃b; c for ỹ | b̃; c in �z : [c] z (promote ỹ | P̃b for ỹ | b̃ in NT)

The implication introduction rule

ỹ :�; x :� . M :  ; ã :�
ỹ :� . �x :M :� →  ; ã :�

→I

is Q-translated to

ỹ : !�Q; x : !�Q . MQ: ?! Q; ã : ?!�Q

z . z: !(!(!�Q (?! Q) (⊥) ỹ : !�Q . �x:MQ: !�Q (?! Q; ã : ?!�Q

z . derelict (z): !(!�Q (?! Q) (⊥ ỹ : !�Q . promote ỹ | P̃a for ỹ | ã in �x :MQ: !(!�Q (?! Q); ã : ?!�Q

!�Q; z : !(!(!�Q (?! Q) (⊥) . derelict (z)(promote ỹ | P̃a for ỹ | ã in �x :MQ):⊥; ã : ?!�

!�Q . �z:derelict (z)(promote ỹ | P̃a for ỹ | ã in �x :MQ): ?!(!�Q (?! Q); ã : ?!�Q

Finally, the implication elimination rule

� . M :� →  ; � �′ . N :�; �′

�; �′ . MN :  ; �; �′ →E

is Q-translated to

!�Q . M : ?!(!�Q (?! Q); ?!�Q !�′Q .A: !(!(!�Q (?! Q)(⊥); a : ?! Q; ?!�′Q

!�Q; !�′Q . MQA:⊥; a : ?! Q; ?!�Q; ?!�′Q

!�Q; !�′Q . �a:MQA: ?! Q; ?!�Q; ?!�′Q

where A denotes the term

promote z̃ | P̃b; a for z̃ | b̃; a in (�x :NQ) promote x |Pa for x|a in �y:[a] derelict (x)y

Filling in all the details gives the following theorem.

Theorem 9. `CLL� !�
Q − ?!�Q i� `CL� � − � i� `CLL� !?�

T − ?�T.

In fact, these translations preserve reductions as well, although I shall not give any
details here. Unlike the case for the various translations of IL into ILL [9], it is quite
hard to determine computational interpretations of these two translation strategies.

7. A linear=non-linear formulation

As is the case for the linear �-calculus it is possible to present the linear ��-calculus
in a number of ways. It is fairly easy to see how one could split the contexts into linear
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�; x :� .l x:�;�
Identityl �; x : � .n x: �; �

Identityn

�;�; x :� .l M :  ; �;�
�;� .l �x :�:M :� (  ; �;�

(I
�; x: � .n M : �;�

� .n �x: �:M : � → �;�
→I

�;� .l M :� (  ; �;� �;�′ .l N :�; �′;�
�;�; �′ .l MN :  ; �; �′;�

(E
� .n M : � → �; � � .n N : �; �

� .n MN : �; �
→E

�;� .l M :�; �;�
�;� .l [a :�]M :⊥; a :�; �;�

Passivatel
� .n M : �; �

� .n [a : �]M : f ; a : �; �
Passivaten

�;� .l M :⊥; a :�; �;�
�;� .l �a :�:M :�; �;�

Activatel
� .n M : f ; a : �; �
� .n �a : � :M : �; �

Activaten

� .n M : �; �
�;− .l FM : F�;�

FI
�;− .l M :�;�
� .n GM :G�;�

GI

�;� .l M : F�; �;� �; x : �;�′ .l N :�; �′;�
�;�; �′ .l let M be Fx in N :�; �; �′;�

FE

� .n M :G�;�
�;− .l derelict (M):�;�

GE

Fig. 5. A linear=non-linear formulation of the linear ��-calculus.

and non-linear zones with rules for moving between them. Instead I shall sketch briey
how one can apply the ideas of Benton [5] to the linear ��-calculus (for brevity I shall
only discuss the ((; !)-fragment). Benton proposed (following a categorical insight)
to present ILL in three parts: a linear subsystem, a non-linear subsystem and a third
part containing operations to move between the two subsystems. The exponential can
then be thought of as a composite of these operations. I shall not go into any real
detail here, the reader is referred to Benton’s paper (and further details will appear
in [37]).
I shall use the following conventions: � to range over non-linear formulae, � to

range over linear formulae, � to range over linear contexts, � to range over non-
linear contexts, � to range over linear passive contexts and � to range over non-linear
passive contexts. Formulae are then de�ned by the grammars

� ::=p | � → � |G�
� ::= q |�( � | F�

where p ranges over some countable set of non-linear atomic formulae including a
distinguished member f , and q ranges over some countable set of linear atomic formulae
including the distinguished member ⊥.
We have two forms of typing judgement, linear and non-linear, which are of the

form �;� .l M :�; �;� and � .n M : �;� , respectively. The rules for forming valid
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typing judgements are given in Fig. 5. The resulting system then consists of both the
��-calculus and (part of) the linear ��-calculus along with operations to move between
the systems.
An important feature of this formulation is that the structural rules are admissible,

i.e.

�;� .l M :�; �;�
x : �;�;� .l M :�; �;�

Weakening and

x : �; y : �;�;� .l M :�; �;�
z : �;�;� .l M [x; y := z]:�; �;�

Contraction

The �-rules for this formulation are then quite succinct

(�x :�:M)N  � M [x :=N ]

(�x : �:M)N  � M [x :=N ]

�a :�: [a :�]M  � M

�a : � : [a : �]M  � M; where a =∈ �FV (M)

let F(M) be F(x) in N  � N [x :=M ]

derelict (G(M)) � M:

There are also commuting conversions, which are to the reader. It is possible to translate
between this linear=non-linear formulation and the linear ��-calculus. First we need
some translations between types.

p◦ def= p;

(�−◦ )◦ def= �◦−◦ ◦;

(!�)◦ def= F(G(�◦));

q? def= q

(�−◦ )? def= �?−◦ ?

(F(�))? def= !(�?)

p? def=
{⊥ ifp = f

p otherwise

(� → �)? def= !�?−◦�?

(G(�))? def= �?

Theorem 10. (1) If � . M :�; � then there is a term M◦ such that −;�◦ . M◦:�◦;
�◦;−.
(2) If �;� . M :�; �;� then there is a linear ��-term M? such that !�?;�? .

M?:�?; �?; !�?.
(3) If �.M : �;� then there is a linear ��-term M? such that !�? .M?: �?; !�?.

However, as is the case for ILL, it is not immediately clear how much of an im-
provement this formulation is. A smaller set of reduction rules has been gained at
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the expense of a loss of information about Weakening and Contraction, which surely
are the raison d’être of linear proof theory. Of course, at the level of a programming
language, explicit duplication and erasure of data structures would be quite tiresome
and it seems that this mixed presentation might be of some practical value.

8. Conclusions and future work

In this paper I have demonstrated how Parigot’s techniques can be applied to CLL to
yield a classical linear �-calculus. I would claim that the linear ��-calculus, considered
as a programming language, is of more use than one based on proof nets. As mentioned
earlier, proof nets rely on equivalent types being considered equal – this would present
an unusual programming paradigm where, for example, the type inference mechanism
would have to be adapted to factor all types by the various equivalences. In the linear
��-calculus there are explicit coercion terms.
There are other proposals for natural deduction formulations of CLL. Troelstra [36]

presents linear versions of Gentzen’s original proposals. Martini and Masini [28] present
a di�erent formulation with the motivation of having the o connective as fundamental
and not, as it is in this paper, derived. Albrecht et al. [3] give yet another formulation
which is very compact and appears to be closely related to a proof net formulation (in
particular, the formulae equivalences are essential and implicit).
In the formulations of CL� and CLL�, I have included all of the connectives sepa-

rately. Of course the formulae equivalences of both logics mean that, in fact, we could
trim this down. For CL� both Parigot [30] and Ong [29] restrict their attention to a
fragment with just the implication connective (and the Activate and Passivate rules).
For CLL� the most obvious fragment includes just the linear implication (−◦) and the
exponential (!). As an illustration of how this might work, I shall show how the tensor
(⊗) and its unit (I) can be simulated with just these connectives. Term formation for
these connectives is then de�ned as

M⊗N def= �x :(xM)N;

let M be x⊗y in N def= �a:’:M (�x :�y : [a:’]N );

∗ def= �x:⊥ : x;

let M be ∗ in N def= �a:’:M ([a:’]N ):

The �-rules are preserved by this translation, i.e.

let M⊗N be x⊗y in P def= �a:’:(�z :(zM)N )(�x :�y : [a:’]P)
 � �a:’:(�x :�y : [a:’]P)M N
 �

∗ �a:’: [a:’]P[x := M; y := N ]
 � P[x := M; y := N ];
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let ∗ be ∗ in M def= �a:’:(�x :x)[a:’]M
 � �a:’: [a:’]M
 � M:

If either the ��-calculus or the linear ��-calculus were to be made into a programming
language, a design decision would have to be made as to which connectives were built-
in and which ones were de�ned. Although experience might tell otherwise, it would
seem likely that any programming language would be as verbose as possible, whereas
an intermediate language might well pro�t for having only a few connectives. This is
clearly future work.
A semantic study would also be desirable. Ong [29] has proposed a categorical

semantics and a class of game-theoretic models for CL�. It would be interesting to
see if a similar extension of linear categories [11] would produce some sort of (weak)
?-autonomous category [4]. I should also like to investigate to what extent this work
can be adapted to give a natural deduction formulation of classical S4, in the same
way that work on ILL can be adapted for intuitionistic S4 [16].
This study has revealed some weaknesses with Parigot’s approach. In particular, the

treatment of the Promotion rule (or any S4-like modality) is quite poor. The problem
appears to be that the inherent asymmetry of the system forces certain connectives to be
treated rather weakly (o and ?). As demonstrated in Section 3.4, this can be alleviated
to some extent by mild extensions to the system. Alternatively, one could move to a
full sequence-conclusion natural deduction, similar to Bori�ci�c’s formulation [18]. Both
these possibilities will be explored in full in [37].
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