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We analytically solve the time-dependent problem of a simply-supported laminated beam, composed of
two elastic layers connected by a viscoelastic interlayer, whose response is modeled by a Prony’s series of
Maxwell elements. This case applies in particular to laminated glass, a composite made of glass plies
bonded together by polymeric films. A practical way to calculate the response of such a package is to con-
sider also the interlayer to be linear elastic, assuming its equivalent elastic moduli to be the relaxed mod-
uli under constant strain, after a time equal to the duration of the design action. The obtained results, that
are confirmed by a full 3-D viscoelastic finite-element numerical analysis, emphasize that there is a note-
worthy difference between the state of strain and stress calculated in the full-viscoelastic case or in the
aforementioned ‘‘equivalent’’ elastic problem.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Three-layered sandwich structures, that can be schematized as
the composition of two external elastic elements bonded by one
interlayer with inelastic response, are commonly used in modern
constructions. The applications may range from structural insulat-
ing panels, consisting in a layer of polymeric foam sandwiched be-
tween two layers of structural board, to steel beams supporting
concrete slabs connected by ductile studs, to wood elements made
of layers glued together. Although the problem considered here is
general and may apply to various cases, the particular application
to which it will be specialized is that of laminated glass.

Laminated glass is a composite structure typically made of two
glass plies bonded by a thermoplastic polymeric interlayer with a
treatment in autoclave at high pressure and temperature. This pro-
cess induces a strong chemical bond between materials, due to the
union between hydroxyl groups along the polymer and silanol
groups on the glass surface. In this way, safety in the post-glass-
breakage phase is increased because the fragments remain attached
to the interlayer: risk of injuries is reduced and the damaged
element maintains a certain cohesion that prevents catastrophic
detachment from fixings.

In the pre-glass-breakage phase, the polymeric interlayers are
too soft to present flexural stiffness per se, but they can provide
shear stresses that constrain the relative sliding of the glass plies
(Behr et al., 1993). The degree of coupling of the two glass layers
depends upon the shear stiffness of the polymeric interlayer
(Hooper, 1973); thus, flexural stiffness is somehow intermediate
ll rights reserved.

: +39 0521 905924.
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between the two borderline cases usually referred to as layered
limit, i.e., frictionless relative sliding of the plies, and monolithic
limit, i.e., perfect bonding of the plies (Norville et al., 1998). Since
stress and strain in the monolithic limit are much lower than in
the layered limit, appropriate consideration of the shear coupling
offered by the interlayer is important to achieve an economical de-
sign. A number of studies have pursued this issue (Asik and Tezcan,
2005; Bennison and Davies, 2008; Ivanov, 2006).

The response of the polymer is highly viscoelastic and tempera-
ture dependent. There are three main commercial polymeric films:
Polyvinyl Butyral (PVB), Ethylene Vinyl Acetate (EVA), and Iono-
plastic polymers (IP) (Bennison and Davies, 2008; Bennison et al.,
2001). PVB is a polyvinyl acetate with addition of softeners that im-
parts plasticity and toughness, enhancing adhesion-strength and
increasing glass transition temperature Tg up to 20–25 �C. Commer-
cial EVA is a polyolefine with addiction of vinyl acetate that
improves strength and ultimate elongation, to attain mechanical
properties that are similar to PVB. A somehow innovative materials
is IP, a ionoplast polymer that, when compared with PVB, presents
higher stiffness (> 100�PVB), strength (> 5�PVB), glass-transition
temperature (Tg � 55 �C).

In general, the rheological properties are furnished by the man-
ufacturer in the form of tables, which record the relaxed shear
modulus of the polymer under constant shear strain as a function
of temperature and time. Such values are used in the common
design practice, by considering the polymer as a linear elastic
materials whose shear modulus is chosen according to the envi-
ronmental temperature and the characteristic duration of the
design load (Bennison and Stelzer, 2009). Depending upon polymer
type, room-temperature T and characteristic load-duration t0, the
relaxed shear modulus of the interlayer may vary from 0:01 MPa
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(PVB at T ¼ þ60oC under permanent load) up to 300 MPa (IP at
T ¼ 0oC and t0 ¼ 1 s). Assumption that both glass and polymer
are linear elastic allows for drastic simplifications in the structural
analysis and simplified approaches may also be provided for ready
calculations in the cases of most practical interest. For example, the
well-known model by Newmark et al. (1951) considers the interac-
tion of two beams bonded by shear connectors that provide a lin-
ear and continuous relationship between the relative interface slip
and the corresponding shear stress, and may be conveniently used
when the bending moment is known a priori, as in the case of stat-
ically-determined structures. A comprehensive discussion about
various possible simplified methods of analysis can be found in
Galuppi and Royer-Carfagni (2012).

A more precise rheological analysis should consider the polymer
as a linear viscoelastic materials, that can be usually interpreted by
a Prony’s series of units arranged in the Maxwell–Wiechert model
(Wiechert, 1893). The parameters that define the constitute proper-
ties may be found through creep or relaxation tests (Miranda
Guedes et al., 1998; Park and Y.Kim, 2001), or by measuring the
response to cyclic oscillations (Arzoumanidis and Liechti, 2003;
Kim et al., 2008); in some cases they are directly furnished by the
manufactures (Bennison and Stelzer, 2009). Temperature depen-
dence may be taken into account using the Williams–Landel–Ferry
model (Williams et al., 1955). However, a full viscoelastic analysis is
seldom performed in the design practice, because it is time con-
suming and requires a special software. Numerical experiments
can be found in the technical literature on specific particular exam-
ples, comparing the results with those obtained through the afore-
mentioned linear solution that makes use of the relaxed modulus
for the polymer. However, to our knowledge, no systematic study
exists that discusses the viscoelastic interaction of the glass plies
and, in particular, the specific effects of various different relaxation
times characterizing the Maxwell–Wiechert model.

Here, we analytically solve the time-dependent problem of a
simply-supported laminated beam with viscoelastic interlayer un-
der constant loading, modeling the response of the polymer by a
Prony’s series in the Maxwell–Wierchert model. It will be shown
that the ‘‘memory effect’’ of viscoelasticity may affect the gross re-
sponse of the laminated glass beams, producing in same cases a
noteworthy differences with respect to those practical approaches
that consider the secant stiffness of the polymer only. The influ-
ence of the various parameters of the Prony’s series, and in partic-
ular the effects of the various relaxation times, is discussed.
Applicative examples to the most commercial types of polymers
used as interlayers are developed.

2. Mathematical model

Consider the simply-supported sandwich beam of length L
shown in Fig. 1, composed of two external linear elastic plies of
thickness h1 and h2, bonded by a thin viscoleastic interlayer of
thickness h. The structures is loaded by distributed load with
intensity pðx; tÞ, not necessarily time-independent and uniformly
distributed.
Fig. 1. Sandwich beam composed of two linear-elastic e
This example perfectly adapts to the case of laminated glass,
where the external plies are made of glass, whereas the interlayer
is a polymeric sheet. In the following, without loosing generality,
we will refer to this particular application. Therefore, the two
external glass layers present linear-elastic response, with Young’s
modulus E, whereas the interlayer is made of a viscoelastic poly-
mer, with time-dependent shear modulus GðtÞ.

2.1. Viscoelastic constitutive response

The most general model for linear viscoelasticity is the well-
known Maxwell–Wiechert model (Wiechert, 1893), schematically
represented in Fig. 2, which combines in parallel a series of Max-
well spring-dashpot units (with spring constant Gi and dashpot
viscosity gi) and a Hookean spring. This model takes into account
that relaxation does not occur at a single time-scale, but at a num-
ber of different time scales, each one associated with a Maxwell
unit.

When subjected to a fixed constant shear-strain, the shear mod-
ulus of the viscoelastic material decays with time according to an
expression usually referred to as Prony series, defined as

GðtÞ ¼ G1 þ
XN

i¼1

Gie�t=hi ¼ G0 �
XN

i¼1

Gið1� e�t=hi Þ; ð2:1Þ

where G1 represents the long-term shear modulus (when the mate-
rial is totally relaxed), whereas the terms Gi and hi ¼ gi

Gi
; i ¼ 1::N, are

respectively the relaxation shear moduli and the relaxation times,
associated with the ith Maxwell element composing the
Maxwell–Wiechert unit (Fig. 2). The instantaneous shear modulus
G0 is thus given by G1 þ

PN
i¼1Gi. Whenever N ¼ 1, the

Maxwell–Wiechert model is reduced to the Standard Linear Solid
Model, that combines a Maxwell spring-dashpot element and a
Hookean spring in parallel.

When the shear strain varies with time, i.e., c ¼ cðtÞ, under the
hypothesis of linear viscoelasticity, the corresponding shear stress
sðx; tÞ can be obtained by the Boltzmann superposition principle
(Boltzmann, 1874), that can be equivalently written in the forms

sðtÞ ¼ GðtÞcð0Þ þ
Z t

0
Gðt � nÞ @cðnÞ

@n
dn

¼ Gð0ÞcðtÞ �
Z t

0

@Gðt � nÞ
@n

cðnÞdn: ð2:2Þ

Clearly, when the imposed shear strain is constant in time
(c ¼ const), Eq. (2.2) is reduced to sðtÞ ¼ GðtÞc. Whenever the strain
is time-dependent, the stress depends on both the current strain
and the strain history up to the current time, through the hereditary
integral appearing in (2.2). This implies, for example, that when the
applied strain increases with time, the relaxation of the correspon-
dent stress is delayed with respect to the relaxation of the shear
modulus calculated according to (2.1) because, roughly speaking,
strain increases before stress has the time to relax.

The aforementioned observation is a keypoint for the present
work. In fact, the common design practice for laminated glass
xternal layers, bonded by a viscoelastic interlayer.



Fig. 2. Schematic representation of the Maxwell–Wiechert model.

Fig. 3. Qualitative comparison between the shear stress s, evaluated through Eq.
(2.2), and sS , evaluated through (2.3), in the case of linear-increasing shear strain.
Semi-logarithmic plot.
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consists in modeling the polymer as a linear elastic material, taking
at each instant t its equivalent elastic modulus to be GðtÞ calculated
according to the expression (2.1), i.e., the stiffness of the polymer is
assumed to be the same that it would exhibit if the strain had been
kept constant for the whole load history. In other words, the shear
modulus used in the calculations is that corresponding to the se-
cant stiffness at the end of a constant-strain process; because of
this, the solution obtained under this simplifying assumption will
be referred to as the Secant Stiffness Solution (SSS). Parameters asso-
ciated with it will be indicated with the suffix S. Hence, for a load
history leading to the shear strain cðtÞ, the shear stress sSðtÞ is as-
sumed not to be given by (2.2) but to be of the form

sSðtÞ ¼ GðtÞcðtÞ: ð2:3Þ

However, if the strain history is sufficiently fast, at each instant
t the modulus G does not have the time to reach the value GðtÞ gi-
ven by (2.1). Fig. 3 shows the qualitative comparison between the
shear stress evaluated through Eq. (2.2) (continuous line) and
through the approximation (2.3) (dashed line) in the case of a linear
increasing strain cðtÞ ¼ at, for the case of a material modeled
through a Prony’s series with N ¼ 1 and relaxation time h1.

It is evident the aforementioned ‘‘delay’’ in the stress response
and the consequently stress increasing. It will be demonstrated la-
ter on the relevance of such a delay in the global response of a lam-
inated glass beam.
2.2. Governing equations

The analysis of a linear-elastic sandwich beam of the type rep-
resented in Fig. 1 has already been presented elsewhere. Referring
to (Galuppi and Royer-Carfagni, 2012) for the details, here the gov-
erning equations are briefly recalled and specialized to the case of
viscoelasticity.

With reference to Fig. 1, a right-handed orthogonal reference
frame ðx; yÞ is introduced with x parallel to the beam axis, supposed
horizontal, and y directed upwards. The glass-polymer bond is sup-
posed to be perfect and the interlayer normal strain in direction y
is negligible. Under the hypothesis that strains are small and rota-
tions moderate, the kinematics is completely described by the ver-
tical displacement vðx; tÞ, the same for the three layers, and the
horizontal displacements u1ðx; tÞ and u2ðx; tÞ of the centroid of
the upper and lower layers, respectively. The transversal displace-
ment vðx; tÞ is positive if in the same direction of increasing y, the
transversal load pðx; tÞ > 0 if directed downwards, while the bend-
ing moment Mðx; tÞ is such that Mðx; tÞ > 0 when v 00ðx; tÞ > 0. In the
sequel, ð0Þ will denote differentiation with respect to the variable x,
whereas (�) will represent differentiation with respect to t.

Let us define

Ai ¼ hib; Ii ¼
bh3

i

12
ði ¼ 1;2Þ; H ¼ t þ h1 þ h2

2
;

A� ¼ A1A2

A1 þ A2
; Itot ¼ I1 þ I2 þ A�H2 ð2:4Þ

and observe that Itot represents the moment of inertia of the full
composite section, corresponding to the monolithic limit.

It can be verified (Galuppi and Royer-Carfagni, 2012) that the
shear strain in the interlayer is constant through its thickness h
and given by

cðx; tÞ ¼ 1
h
½u1ðx; tÞ � u2ðx; tÞ þ v 0ðx; tÞH�: ð2:5Þ

From (2.2), the shear stress in the interlayer can be written as

sðx; tÞ ¼ Gð0Þcðx; tÞ �
Z t

0

@Gðt � nÞ
@n

cðx; nÞdn; ð2:6Þ

so that the equation of equilibrium in the y-direction, which is de-
rived in Galuppi and Royer-Carfagni (2012), becomes the following:

EðI1þ I2Þv
0000 ðx;tÞ�b Gð0Þc0ðx;tÞ�

Z t

0

@Gðt�nÞ
@n

c0ðx;nÞdn

� �
Hþpðx;tÞ¼0:

ð2:7Þ

This expression can be easily justified because the quantity

Gð0Þc0ðx; tÞ �
R t

0
@Gðt�nÞ
@n c0ðx; nÞdn

n o
coincides with s0ðx; tÞ, i.e., the

derivative of the shear stress in the interlayer. Fig. 4.a shows the
the equilibrium of an infinitesimal beam element, divided into
two pieces by an ideal horizontal cut in the interlayer at the level
s� (s� may be chosen arbitrarily). It is then clear that the shear stress
sðx; tÞ gives a distributed torque per unit length equal to
�bsðh1=2þ s�Þ in the upper piece, and �bsðh2=2þ s� s�Þ in the
lower piece. Consequently, condition (2.7) represents the equilib-
rium in the y�direction under bending of the whole composite

package, i.e., EIv
0000 ðx; tÞ þm0ðx; tÞ þ pðx; tÞ ¼ 0, with I ¼ I1 þ I2 and

mðx; tÞ ¼ �bsðx; tÞðh1=2þ s�Þ � bsðx; tÞðh2=2þ s� s�Þ
¼ �bsðx; tÞH: ð2:8Þ

It is the effect of such a distributed torque due to the shear stress
transferred by the interlayer, that increases the stiffness of the lam-
inated glass beam.

Furthermore, equilibrium in x direction of each one of the two
pieces (Fig. 4b) leads to



Fig. 4. Equilibrium of an infinitesimal element of the composite package.

2640 L. Galuppi, G. Royer-Carfagni / International Journal of Solids and Structures 49 (2012) 2637–2645
EA1u001ðx; tÞ ¼ b Gð0Þcðx; tÞ �
Z t

0

@Gðt � nÞ
@n

cðx; nÞdn

� �
; ð2:9Þ

EA2u002ðx; tÞ ¼ �b Gð0Þcðx; tÞ �
Z t

0

@Gðt � nÞ
@n

cðx; nÞdn

� �
: ð2:10Þ

In fact, the axial force in the ith glass layer is Ni ¼ EAiu0iðx; tÞ, so that
(2.9) and (2.10) represent the axial equilibrium of the two glass
plies under the mutual shear force per unit length bsðx; tÞ transmit-
ted by the polymeric interlayer, i.e., EA1u001ðx; tÞ ¼ �EA2u002ðx; tÞ ¼
bsðx; tÞ.

The boundary conditions may be of two types: essential (geo-
metric) and natural (force). For this case, at the boundary �x ¼ 0
or �x ¼ L; 8t one can prescribe (Galuppi and Royer-Carfagni,
2012):

EðI1 þ I2Þv 000ð�x; tÞ þ b Gð0Þcð�x; tÞ �
Z t

0

@Gðt � nÞ
@n

cð�x; nÞdn

� �
¼ 0

or vð�x; tÞ ¼ 0;
EðI1 þ I2Þv 00ð�x; tÞ ¼ 0 or v 0ð�x; tÞ ¼ 0;
EA1u01ð�x; tÞ ¼ 0 or u1ð�x; tÞ ¼ 0;
EA2u02ð�x; tÞ ¼ 0 or u2ð�x; tÞ ¼ 0;

ð2:11Þ

In the case of a simply supported beam, first and second of (2.11)
are respectively satisfied by the essential conditions vð�x; tÞ ¼ 0
and the natural conditions v 00ð�x; tÞ ¼ 0 at �x ¼ 0 and �x ¼ L. For what
concerns the last two of (2.11), observe that

	 if the beam is axially constrained at one of its ends, the condi-
tions are identically satisfied if u1ð�x; tÞ ¼ u2ð�x; tÞ ¼ 0 at the con-
sidered edge �x ¼ 0 or �x ¼ L;
	 if the beam is not axially constrained and the borders are trac-

tion-free, then EAiu0ið�x; tÞ ¼ Nið�x; tÞ ¼ 0; i ¼ 1;2 at the consid-
ered edge �x ¼ 0 or �x ¼ L.

As it is shown in the sequel, Eqs. (2.7), (2.9) and (2.10) can be
re-arranged in one partial integro-differential equation for the
function vðx; tÞ with the same procedure outlined in (Galuppi
and Royer-Carfagni, 2012). To illustrate, observe that Eqs. (2.9)
and (2.10) provide condition

A1u001ðx; tÞ ¼ �A2u002ðx; tÞ; ð2:12Þ

from which, up to a Rigid Body displacement (Galuppi and Royer-
Carfagni, 2012),

u2ðx; tÞ ¼ �
A1

A2
u1ðx; tÞ; ð2:13Þ

which implies that N1ðx; tÞ ¼ �N2ðx; tÞ. Observe now that the bend-
ing moment in the ith glass layer, i ¼ 1;2, is Miðx; tÞ ¼ EIiv 00ðx; tÞ.
Consequently, the resulting bending moment in the whole cross-
section of the composite beam (see Fig. 4) is Mðx; tÞ ¼ M1ðx; tÞþ
M2ðx; tÞ þ N2ðx; tÞH ¼ M1ðx; tÞ þM2ðx; tÞ � N1ðx; tÞH, that is

Mðx; tÞ ¼ EðI1 þ I2Þv 00ðx; tÞ þ EAu02ðx; tÞH
¼ EðI1 þ I2Þv 00ðx; tÞ � EAu01ðx; tÞH: ð2:14Þ

From this, one finds the relationships

HA1u01ðx; tÞ ¼ ðI1 þ I2Þv 00ðx; tÞ �Mðx; tÞ=E;

HA2u02ðx; tÞ ¼ �ðI1 þ I2Þv 00ðx; tÞ þMðx; tÞ=E:

�
ð2:15Þ

By substituting (2.15) in (2.5) and, afterwards, in (2.7), one finds the
governing partial integral–differential equation for the function
vðx; tÞ in the form

EðI1 þ I2Þv
0000 ðx; tÞ � bItot

hA�
Gð0Þv 00ðx; tÞ �

Z t

0

@Gðt � nÞ
@n

v 00ðx; nÞdn

� �

þ b
hEA�

Gð0ÞMðx; tÞ �
Z t

0

@Gðt � nÞ
@n

Mðx; nÞdn

� �
þ pðx; tÞ ¼ 0:

ð2:16Þ

This form is convenient whenever the beam is statically deter-
mined, i.e., when the bending moment Mðx; tÞ is defined by the
external loads. Eq. (2.16) can be considered as the viscoelastic gen-
eralization of Newmark’s equation (Newmark et al., 1951).

In the particular case of time-independent load, pðx; tÞ ¼ epðxÞ,
the equilibrium Eq. (2.16) is reduced to

EðI1 þ I2Þv
0000 ðx; tÞ � bItot

hA�
Gð0Þv 00ðx; tÞ �

Z t

0

@Gðt � nÞ
@n

v 00ðx; nÞdn

� �

þ b
hEA�

GðtÞ eMðxÞ þ epðxÞ ¼ 0; ð2:17Þ

in which eMðxÞ is the bending moment due to epðxÞ. In this expression
the second and the third terms represent the effect of the bonding
offered by the polymeric interlayer. In particular, the second term
represents the interfacial shear strain, dependent on the shear
strain history; the effect of such a contribution on the behavior of
the sandwich structure is, in general, favorable.

2.3. Solution via Galerkin analysis

A method for solving Eq. (2.16) is to apply the Galerkin’s meth-
od (Galerkin, 1915) for the spatial domain, i.e., to express the ver-
tical displacement vðx; tÞ by a series expansion of the form

vðx; tÞ ¼
XM

j¼1

ajðtÞ/jðxÞ; ð2:18Þ

where /jðxÞ is the jth shape function and ajðtÞ is the corresponding
time-dependent amplitude. The spatial shape functions have to
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satisfy the boundary condition and to be linear independent; if the
/jðxÞ are choose to be orthogonal one to another, i.e.,

Z L

0
/jðxÞ/kðxÞdx ¼

K if j ¼ k;

0 if j – k;

�
ð2:19Þ

(where K is a generic constant) the resulting set of equations will be
uncoupled. An appropriate choice of the shape functions for the
case of simply supported beams is

/jðxÞ ¼ sin
pxj
L
: ð2:20Þ

Consequently, ajðtÞ gives the time-dependent maximum sag of the
beam vmaxðtÞ ¼ vðL=2; tÞ ¼ jajðtÞj, associated with the jth shape
function.

By defining kj ¼
/
0000
j ðxÞ
/jðxÞ
¼ j4p4

L4 and lj ¼
/00j ðxÞ
/jðxÞ
¼ � j2p2

L2 , the expansion
(2.18) for vðx; tÞ is substituted into the equilibrium Eq. (2.16).
The result is

EðI1þ I2Þ
XM

i¼1

aiðtÞki/iðxÞ�
bItot

hA�
XM

i¼1

li/iðxÞ Gð0ÞaiðtÞf

�
Z t

0

@Gðt�nÞ
@n

aiðnÞdn

�

þ b
hEA�

Gð0ÞMðx;tÞ�
Z t

0

@Gðt�nÞ
@n

Mðx;nÞdn

� �
þpðx;tÞ¼0: ð2:21Þ

Multiplying each term for the jth shape function, integrating over
the spatial domain and applying (2.19), where K ¼ L

2, one finally
obtains

EðI1 þ I2Þ
L
2

ajðtÞkj �
bItot

hA�
L
2
lj Gð0ÞajðtÞ �

Z t

0

@Gðt � nÞ
@n

ajðnÞdn

� �

þ b
hEA�

Gð0Þ
Z L

0
Mðx; tÞ/jðxÞdx

�

�
Z t

0

@Gðt � nÞ
@n

Z L

0
Mðx; nÞ/jðxÞdx

� �
dn

�

þ
Z L

0
pðx; tÞ/jðxÞdx ¼ 0; ð2:22Þ

In the case of constant loading, (2.22) is reduced to

EðI1 þ I2Þj
j4p4

L4 ajðtÞ þ
bItot

hA�
j
j2p2

L2 Gð0ÞajðtÞ �
Z t

0

@Gðt � nÞ
@n

ajðnÞdn

� �

þ bGðtÞ
hEA�

Z L

0

eMðxÞ sin
pxj
L

dxþ
Z L

0
epðxÞ sin

pxj
L

dx ¼ 0: ð2:23Þ

But the load function epðxÞ can also be expanded into a Fourier
sine series of the form

epðxÞ ¼X1
n¼1

cn sin
npx

L
; cn ¼

1
L

Z L

0
epðxÞ sin

npx
L

dx: ð2:24Þ

Observing that, in a simply supported beam, the bending moment
associated with the load per unit length (2.24) is given byeMðxÞ ¼P1

n¼1
L2

n2p2 cn sin npx
L , one obtains, from (2.23), the set of uncou-

pled equations for the time-dependent amplitude ajðtÞ in the form

EðI1 þ I2Þ
j4p4

L4 ajðtÞ þ
bItot

hA�
j2p2

L2 Gð0ÞajðtÞ �
Z t

0

@Gðt � nÞ
@n

ajðnÞdn

� �

þ bGðtÞ
hEA�

L2

j2p2
cj þ cj ¼ 0: ð2:25Þ

In the sequel, the paradigmatic case of a simply-supported
beam subjected to a sinusoidal load will be discussed.
3. Simply supported laminated glass beam under sinusoidal
loading

Suppose that the simply-supported laminated glass beam is
subjected to a time-independent sinusoidal loading epðxÞ, with
which the associated bending moment eMðxÞ is

epðxÞ ¼ p0 sin
px
L
; eMðxÞ ¼ L2

p2 p0 sin
px
L
: ð3:26Þ
3.1. Full viscoelastic solution

Eq. (2.17) is reduced to

EðI1 þ I2Þv
0000 ðx; tÞ þ bItot

hA�
Gð0Þa1ðtÞ �

Z t

0

@Gðt � nÞ
@n

v 00ðx; nÞdn

� �

þ bGðtÞ
hEA�

L2

p2 p0 þ p0 ¼ 0: ð3:27Þ

Hence, the exact solution for the vertical displacement (2.18) is
given by

vðx; tÞ ¼ a1ðtÞ sin
px
L
; ð3:28Þ

where the time-dependent amplitude a1ðtÞ is the solution of the
integral–differential equation

EðI1 þ I2Þa1ðtÞ
p4

L4 þ
bItot

hA�
p2

L2 Gð0Þa1ðtÞ �
Z t

0

@Gðt � nÞ
@n

a1ðnÞdn

� �

þ bGðtÞ
hEA�

L2

p2 p0 þ p0 ¼ 0: ð3:29Þ

Obviously, j a1ðtÞ j represents the maximum sag of the beam at the
instant t.

By substituting for GðtÞ the expression (2.1), the integral differ-
ential Eq. (3.29) for the time-dependent amplitude a1ðtÞ may be
rearranged in the form

a1ðtÞ þ
Z t

0

XN

i¼1

Aie
�ðt�nÞ

hi a1ðnÞdn ¼ f ðtÞ; ð3:30Þ

where

Ai ¼
bItotp2Gi

hA�L2hi

1
EðI1þI2Þp4

L4 þ bItotp2G0
hA�L2

; ð3:31Þ

f ðtÞ ¼ �p0

b G1 þ
PN

i¼1Gie�t=hi

� 	
L2

hA�Ep2
þ 1

2
4

3
5 1

EðI1þI2Þp4

L4 þ bItotp2G0
hA�L2

: ð3:32Þ

The solution of Eq. (3.30) can be represented in the form
(Polyanin and Manzhirov, 1998)

a1ðtÞ ¼ f ðtÞ þ
Z t

0

XN

i¼1

Bieliðt�nÞf ðnÞdn; ð3:33Þ

where the constants li are the N roots of the algebraic equation

XN

i¼1

Ai

lþ 1=hi
þ 1 ¼ 0: ð3:34Þ

This is equivalent to finding the roots of an polynomial of Nth-order.
The coefficient Bi can be found from the linear system of algebraic
equations

XN

i¼1

Bi

�1=hm � li
þ 1 ¼ 0; m ¼ 1; . . . ;N: ð3:35Þ

In the sequel, this analysis will be referred to as the Full Viscoelastic
Solution (FVS).
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3.2. The ‘‘secant stiffness’’ solution

As already mentioned in Section 2.1, the common design prac-
tice of laminated glass is to neglect the delayed response conse-
quent to Boltzmann superposition formula (2.2), and to assume
that the shear stress in the interlayer is simply of the form
sSðtÞ ¼ GðtÞcðtÞ, where cðtÞ is the strain in the polymer, whereas
GðtÞ is given by (2.1). In this Secant Stiffness Solution (SSS), the gov-
erning Eq. (2.16) for the vertical displacement vSðx; tÞ is simplified
in the form

EðI1 þ I2Þv
0000

S ðx; tÞ þ
bItot

hA�
GðtÞv 00Sðx; tÞ þ

bGðtÞ
hEA�

Mðx; tÞ þ pðx; tÞ ¼ 0:

ð3:36Þ

When the load is sinusoidal and time-independent as per (3.26), one
has vSðx; tÞ ¼ aSðtÞ sin px

L , where aSðtÞ is the solution of

EðI1 þ I2ÞaSðtÞ
p4

L4 þ
bItot

hA�
p2

L2 GðtÞaSðtÞ þ
bGðtÞ
hEA�

L2

p2 p0 þ p0 ¼ 0:

ð3:37Þ

This is an algebraic equation that can be readily solved since GðtÞ is
known.

3.3. Evaluation of the state of stress

Once the vertical displacement is determined as in Section 3.1,
or as in Section 3.2, the state of stress can be readily evaluated.
Such analysis will not be done here for the sake of briefness, but
the method to calculate the state of stress is recorded for
completeness.

In a statically determined beam, the bending moment is known;
indicating in general with vðx; tÞ the vertical displacement, the
relation (Galuppi and Royer-Carfagni, 2012)

Mðx; tÞ ¼ EðI1 þ I2Þv 00ðx; tÞ þ ð�1ÞiNiðx; tÞH; ð3:38Þ

allows to determine the axial force Niðx; tÞ on the ith ply once vðx; tÞ
is known. Moreover, the bending moment acting on the ith ply may
be evaluated as Miðx; tÞ ¼ EIiv 00ðx; tÞ and the maximum stress in the
ith ply is obviously given by

jrðiÞjmax ¼max
x

Niðx; tÞ
Ai


Miðx; tÞ
Ii

hi

2










: ð3:39Þ

The horizontal displacement in the external plies may be calculated
recalling that Niðx; tÞ ¼ EAiu0iðx; tÞ. Finally, (2.5) and (2.6) allow to
calculate the shear stress sðx; tÞ in the interlayer, once that uiðx; tÞ
have been determined.

4. Comparison between approximate and exact solutions

Results obtainable with the full viscoelastic approach are now
compared with those obtainable through the secant stiffness ap-
proach (3.37) and with the numerical solutions of a FEM model,
accounting for time-dependent material behavior of the interlayer
in the composite package. Numerical simulations have been made
with the FEM code Abaqus, using a 3-D mesh with solid 20-node
quadratic bricks with reduced integration, available in the program
library (ABAQUS, 2010). The structured mesh has been created by
dividing the length of the beam into 50 elements, its width into 10
elements and the thickness of each glass ply into 3 elements.

As a representative example, consider the case of a laminated-
glass beam under the sinusoidal load (3.26), with p0 ¼ 0:75 N/m.
With the notation of Fig. 1, assumed parameters are
L ¼ 3000 mm, b ¼ 500 mm, h1 ¼ h2 ¼ 10 mm, s ¼ 0:76 mm,
E ¼ 70000 MPa, while the interlayer shear modulus GðtÞ is given
by (2.1).
4.1. Influence of interlayer shear modulus

First of all, it is useful to point out the influence of the inter-
layer-stiffness itself on the response of the laminated glass beam,
by considering both material (glass and polymer) to be linear elas-
tic and time-independent. Such static analysis has been discussed
at length in (Galuppi and Royer-Carfagni, 2012) and here we recall
the main results.

The response of laminated glass beams may vary between two
borderline cases (Norville et al., 1998): (i) the layered limit, corre-
sponding to G! 0 so that the beam is composed of free-sliding
glass plies, (ii) the monolithic limit, with G!1, where no relative
slippage between the glass plies occurs. The flexural response
turns out to be that of a beam whose cross section has moment
of inertia I that, recalling the definitions (2.4), takes the value
I ¼ I1 þ I2 for the layered limit and I ¼ Itot in the monolithic limit.
In general, the actual response is intermediate, depending upon
the shear stiffness of the polymeric interlayer, through its shear
modulus G.

Fig. 5 shows the values of the maximum sag as a function of G,
when this is varied from 10�4 MPa to 102 MPa. It is evident from
the graph that for values of G higher than, approximatively,
10 MPa, the laminated glass beam exhibits a monolithic behavior,
whereas for G < 10�3 MPa the layered limit is attained. Of course,
such threshold values depend on the geometric and mechanical
properties of the beam, as well as on the boundary and loading
conditions. However, for the most recurrent cases in the design
practice for laminated glass, they may be considered reference
values.

4.2. Influence of interlayer viscosity

Two different viscoelastic material are here taken into account,
for the sake of comparison. The first one, referred to as Material A
can be model thorough a Standard Linear Solid Model, where in
(2.1) N ¼ 1 and G0 ¼ 471 MPa, G1 ¼ 0:999 G0; h1 ¼ 1 s. The full vis-
coelastic solution a1ðtÞ may evaluated through Eq. (3.33). The cor-
respondent maximum sag vmax ¼ ja1ðtÞj is plotted as a function of
time in Fig. 6, where the graph is compared with the Secant Stiff-
ness Solution as well as with numerical experiments.

It is important to note that the maximum sag of the laminated
beam assumes values comprised between:

	 the ‘‘instantaneous solution’’ vmax0, i.e., the solution associated
with GðtÞ ¼ G0; such a limit is attained for t < h1;
	 the ‘‘long-term solution’’ vmax1, associated with GðtÞ ¼ G1.

Observed that the deformation of the FVS is time-increasing
and, as already pointed out in Section 2.1, there is a delay in the
material stress response with respect to the SSS. Consequently,
the response of the laminated glass beam is stiffer than the re-
sponse evaluated through the Secant Stiffness approach, and the
beneficial effect of the shear stress transferred among the glass
plies by the interlayer is higher. It is also evident that the numer-
ical experiments are in complete agreement with the FVS.

Consider then the second case for Material B, whose instanta-
neous shear modulus is G0 ¼ 471 MPa and exhibiting three differ-
ent relaxations (three terms in the Prony’s series), at times
h1 ¼ 10�2 s, h2 ¼ 1 s and h3 ¼ 102 s with corresponding moduli
G1 ¼ 0:99 G0;G2 ¼ 0:009 G0 and G3 ¼ 0:0009 G0. Fig. 7 shows again
the comparison between the maximum sag obtained by the FVS of
(3.33) and the SSS of (3.37). The numerical experiments confirm
again the exactness of the FVS.

As in the previous example, the FVS exhibits a delay in the
relaxation with respect to the SSS. It is important to note, here, that
the first relaxation, although associated with a decrease of about



Fig. 8. Ionoplastic interlayer. Comparison of evolution of maximum sag with time
obtained with: the Full Viscoelastic Solution (FVS), the Secant Stiffness Solution
(SSS).

Fig. 5. Simply supported beam under a sinusoidal load: maximum sag for different
values of the shear modulus G of the interlayer (static analysis).

Fig. 7. Material B: comparison of the maximum sag obtained with: the Full
Viscoelastic Solution (FVS), the Secant Stiffness Solution (SSS), numerical
experiments.

Fig. 6. Material A: comparison of the maximum sag obtained with: the Full
Viscoelastic Solution (FVS), the Secant Stiffness Solution (SSS), numerical
experiments.

Table 2
Assumed terms of Prony’s series for a particular type of ionoplastic polymer
(G 0 = 375 MPa).

Term index Gi/G0 hi [s]

1 0.1271000 5.991E�12
2 0.1081000 6.240E�10
3 0.0889700 7.136E�08
4 0.0943170 2.200E�05
5 0.1150000 2.935E�03
6 0.1344000 4.620E�01
7 0.1321000 3.444E + 01
8 0.0953880 8.336E + 02
9 0.0570700 2.468E + 04

10 0.0276820 8.071E + 05
11 0.0120420 5.897E + 07
12 0.0077434 9.944E + 10

Table 1
Assumed terms of the Prony’s series for a particular type of PVB (G0 = 471 MPa).

Term index Gi/G0 hi[s]

1 0.1606000 3.256E�11
2 0.787770 4.949E�09
3 0.2912000 7.243E�08
4 0.0711550 9.864E�06
5 0.2688000 2.806E�03
6 0.0895860 1.644E�01
7 0.0301830 2.265E + 00
8 0.0076056 3.536E + 01
9 0.0009634 9.368E + 03

10 0.0004059 6.414E + 05
11 0.0006143 4.135E + 07
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99% of the shear modulus GðtÞ, does not influence substantially the
behavior of the laminated glass beam. In fact, the value of the shear
modulus after the first relaxation, is high enough to attain the
monolithic limit in the sandwich structure behavior, as recalled
in Fig. 5; hence, the relaxation of the structure, i.e., the increase
of the maximum sag, is not noteworthy. On the contrary, it is the
third relaxation, corresponding to a further decrease of the shear
modulus of 90%, that strongly determines the decay in the re-
sponse of the laminated glass beam. An analogous phenomenon
may be observed, as it will be shown in the following section, for
commercial polymers commonly used for laminated glass.

4.3. Different types of interlayers

Among the most used commercial polymeric films, PolyVinyl
Butyral (PVB) and Ionoplastic Polimers (IP) are the most commonly



Fig. 9. Ionoplastic interlayer. Magnification of the maximum sag calculated with FVS and SSS for a load duration comprised between (a) one hour and one week and (b) one
year and 50 years.

Fig. 10. PVB interlayer. Comparison of evolution of maximum sag with time
obtained with: the Full Viscoelastic Solution (FVS), the Secant Stiffness Solution (SSS).

2644 L. Galuppi, G. Royer-Carfagni / International Journal of Solids and Structures 49 (2012) 2637–2645
used. Ethylene Vinyl Acetate (EVA) is also commonly employed,
but its viscoelastic properties are similar to those of PVB and there-
fore it will not be considered here.

There are many types of PVBs and IPs, and they both can be
modeled by a Prony’s series. Here we will consider the parameters
reported in Tables 1 and 2 for PVB and IP, respectively, that have
Fig. 11. PVB interlayer. Magnification of the maximum sag calculated with FVS and SSS
and 50 years.
been furnished by a leader producer (Bennison and Stelzer,
2009). Such data are specific of a particular type of polymer, and
may vary from material to material within the same category
(PVB or IP). Therefore, the reader is strongly warned not to consider
these data as universal values for design, but rather to ask for them
to the producer when needed.

Fig. 8 represents the comparison of the evolution in time of the
maximum sag of the laminated glass beam with ionoplastic inter-
layer, obtained through the Full Viscoelastic Solution (FVS) and the
Secant Stiffness Solution (SSS). For the considered parameters, the
greatest discrepancies are approximately obtained one hour and
one year after that the load has been applied. It is evident that,
for times lower than, approximatively, 50 years, the shear modulus
of the interlayer is high enough to attain the monolithic limit in the
sandwich structure behavior (see Fig. 5); hence, the relaxation of
the structure, i.e., the increase of the maximum sag, is not note-
worthy. However, as it is shown in Figs. 9, the increasing of the
sag evaluated through FVS and SSS is noticeable also for lower
times. Figs. 9 represent a magnification of the aforementioned
graph for times comprised between: one hour and one week; one
year and 50 years. After one day, the increasing of the maximum
sag predicted with the SSS may be about 13% higher than that ob-
tained with the FVS; after one year the difference can be up to 5%.
Much greater differences are evident after 50 years of load applica-
tion, as it is clear from Fig. 8; however, time-scales of this order are
usually higher than the usual design-life of laminated glass
structures.
for a load duration comprised between (a) one hour and one week and (b) one year
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Of course the times at which these differences are the most evi-
dent depends upon the parameters of the Prony’s series used to
model the material. Notice that, in general, such times do not coin-
cide with the relaxation times hi associated with the greatest Gi, i.e.,
the greatest drop of the shear stiffness. In fact, one should always
recall from Fig. 5 that in the laminated beam the gross decay in stiff-
ness occurs only at particular values of the shear modulus G. If the
viscoelastic phenomenon does not reduces G of a sufficient amount,
the laminated beam remains anchored to the monolithic limit.

Fig. 10 represents the counterpart of Fig. 8 for the case of PVB;
from a comparison between these two pictures, one could notice
that the differences between the FVS and the SSS are similar at
the qualitative level. It is evident that, due to the higher decay of
GðtÞ of the PVB, the laminated glass beam attains the monolithic
behavior just for times less than, approximatively, 1 s. As it is
shown in Fig. 8a and Figs. 11b for time scale of the order of 1 day
and 1 year, respectively, the difference between the maximum
sag evaluated through FVS and SSS is relevant (about 5% for one
year load-duration).

The greatest differences between the FVS and the SSS are again
noticed at time-scales of the order of 50 years (Fig. 10), but cer-
tainly within the lifetime of the structure. Differences may be up
to 25%.

In conclusion, IP interlayers are much stiffer than PBV interlay-
ers, hence, they are less sensitive to viscoelastic phenomena. For
PVB-laminated beams the usual practice of calculating the re-
sponse through the secant stiffness approach may lead to rather
conservative results.

5. Discussion and conclusions

The common practical way to calculate the response of lami-
nated glass is to consider both glass and polymeric interlayer as
linear elastic materials; the viscoelastic behavior of the polymer
is considered a priori, by taking its equivalent elastic modulus to
be the relaxed modulus under constant strain after a time equal
to the whole duration of the design action. Here, we have analyti-
cally solved the time-dependent problem of a laminated-glass sim-
ply-supported beam under constant loading, modeling the
viscoelastic response of the polymer by a Prony’s series of Maxwell
elements (Maxwell–Wiechert model).

In the case in which the shear strain imposed to the polymer is
constant in time, the corresponding shear stress is decreasing in
time and implies a relaxation of the material. But the value of
the shear modulus so calculated according to the characteristic
duration of the applied loads cannot be used in an equivalent static
analysis, to evaluate stress and strain of the composite beam under
constant applied loads. In fact, it takes time for the polymer to re-
lax and, as this process progresses, also the strain of the polymeric
interlayer increases in time: the corresponding stress thus depends
on both the current strain and the strain history up to the current
time. In particular, when the strain in the polymer is increasing
with time, the relaxation of the stress is delayed with respect to
the relaxation that would result if the polymer was constantly
strained at the actual value throughout its whole history. Hence,
the gross response of the laminated beam is in general stiffer than
it would results if calculated according to the common design prac-
tice, i.e., modeling the polymer with its relaxed modulus associated
with the duration of the design action.

In general, the aforementioned delay provides a decrease of the
vertical displacement of the beam itself, thus increasing the appar-
ent stiffness of the composite structure. Hence, an increase of the
shear stress, due to the effect of the viscoelastic ‘‘memory’’ of the
polymer, leads to an increase of the overall stiffness of laminated
glass.

The effect of the relaxation of the shear modulus on the overall
response of the sandwich beams depends upon the order of mag-
nitude of the shear modulus itself. A range of values of G can be de-
fined, outside which the beams is not sensitive to the variation of
the polymer stiffness. Under a threshold value, the beams behaves
as a layered structure, while for high values of the shear modulus
of the interlayer, the beam presents a monolithic response.

In conclusion, a full viscoelastic analysis is recommended when
one is interested in a precise, non-conservative, design of a lami-
nated glass structures. The differences between the full viscoelastic
calculations and the simiplified approach that makes use of the se-
cant stiffness of the polymeric interlayers strongly depend upon
the viscoelastic properties of the material, reaching differences
up to 20� 25% for PVB interlayers, for load durations of the order
of one year. Therefore, take your time in the calculations. . .and let
the polymer relax.
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