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Elucidating the mechanisms by which multipotent cells differentiate into distinct lineages is a common
theme underlying developmental biology investigations. Progress has been made in understanding some of
the essential factors and pathways involved in the specification of different lineages from the neural crest.
These include gene regulatory networks involving transcription factor hierarchies and input from signaling
pathways mediated from environmental cues. In this review, we examine the mechanisms for two lineages
that are derived from the neural crest, peripheral sensory neurons and melanocytes. Insights into the speci-
fication of these cell types may reveal common themes in the specification processes that occur throughout
development.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Neural crest cells (NCCs) arise as an apparently homogeneous
population of cells along the dorsal aspect of the neural tube that mi-
grate extensively into the periphery to generate diverse structures.
They differentiate into a wide variety of cell types: neurons and glia
of the peripheral sensory and autonomic nervous system, pigment
cells, neuroendocrine cells and craniofacial mesenchyme that forms
bones and cartilage of the head. The neural crest (NC) has thus been
a favorite system for developmental biologists to understand the pro-
cess of specification: the acquisition of distinct characteristics that
allow differentiating cells to carry out their appropriate functions.

The process of developmental specification is also often referred to
as cell fate acquisition, where fate simply refers to the future outcome
of a cell or, for a dividing cell, its progeny or lineage. Here we use the
term specificationwithout assumption of the limits on a cell's potential,
the range of possible fates a cell could undertake given the appropriate
environmental stimuli. Cells that can respond to new environments are
said to display plasticity; cells with limited plasticity are deemed re-
stricted. As development proceeds, cells often undergo lineage restric-
tion, changing in their potential to become capable of giving rise to a
more limited number of cell types.

In this review we compare the processes regulating the specifica-
tion of two cell types, peripheral sensory neurons and pigment cells.
While these cells have clearly distinct characteristics, the process of
, draible@u.washington.edu
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their specification shares some common themes. They are both regu-
lated by a set of transcription factors that appear to define nodal
points in their development. Both are also regulated by receptor tyro-
sine kinases and their ligands, signaling systems that both control
their survival and influence their differentiation. Insights into the
specification of these cell types may reveal common themes in the
specification processes that occur throughout development.

Development of sensory neurons and melanocytes from the
neural crest

Peripheral sensory neurons are the afferent nervous system cells
that are responsive to external stimuli, and then transmit this infor-
mation to the central nervous system; these include the sensory
neurons of the dorsal root ganglia (DRG) in the trunk and a subset
of the neurons of the trigeminal ganglia of the head. The NC origin
of peripheral sensory neurons has been known since Wilhelm His's
original study of the NC (His, 1868; Horstadius, 1950). Ablation,
transplantation and vital dye labeling experiments in amphibian em-
bryos by Harrison, Detwiler, Raven and others confirmed these ini-
tial observations (reviewed in (Horstadius, 1950; Weston, 1970). In
contrast, neurons of the trigeminal ganglion have a dual origin
from both NC and placode (Hamburger, 1961; Johnston, 1966;
Noden, 1978). Here we will focus mainly on the DRG neurons de-
rived from trunk NC.

Sensory neurons can be divided into several categories depending
on the type of stimulus they respond to: mechanoreceptors that re-
spond to mechanical touch, proprioceptors that respond to limb and
muscle movement, thermoreceptors that respond to temperature,
nociceptors that respond to painful or pruritic (itch) stimuli (see
Delmas et al., 2007; Han and Simon, 2011; Schepers and Ringkamp,
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2010; Woolf and Ma, 2007 for review). Cells can be further distin-
guished by their sensitivity to the relative qualities of stimuli and
the speed of response (Vallbo et al., 1979). Evidence is emerging for
distinct labeled lines for different submodalities (reviewed in Ma,
2010). For example, at least four different types of peripheral thermo-
receptors have been described that respond to cold temperatures,
some of which also convey painful sensation or respond to heat
(Campero and Bostock, 2010). These functional sensory subtypes
can be distinguished by expression of different transient receptor po-
tential (TRP) channel subtypes (Dhaka et al., 2008; Hjerling-Leffler et
al., 2007). Distinct nociceptors are also distinguishable by the Mas-
related G protein coupled receptor (Mrgpr) family (Dong et al.,
2001). Similarly, distinct populations of neurons can detect different
qualities of mechanical stimuli. For example, four distinct subtypes
of low threshold mechanoreceptors have been identified by genetic
labeling techniques (Li et al., 2011). These findings suggest that
there may be dozens of distinct sensory neuron subtypes with possi-
ble overlapping responses to stimuli.

Sensory neurogenesis follows a precise schedule. NCCs that will
form DRG sensory neurons migrate on a ventral path between the so-
mite and neural tube to coalesce into the segmentally reiterated gang-
lia. Sensory neurons are added to the DRG in overlapping waves that
produce neurons of distinct function (Carr and Simpson, 1978;
George et al., 2007; Kitao et al., 1996; Lawson and Biscoe, 1979; Ma
et al., 1999). The first wave of neurogenesis gives rise to large diameter
mechanoreceptive and proprioceptive neurons, while the second
wave additionally generates smaller diameter mechanoreceptive,
thermoreceptive and nociceptive neurons. Specialized glial cells at
the junction between CNS and PNS called boundary cap cells give
rise to a third wave of neurogenesis, forming largely nociceptive neu-
rons (Hjerling-Leffler et al., 2005;Maro et al., 2004). Additionally, neu-
rons continue to be added to the DRG fromprecursors that lie amongst
the satellite glia that surround the ganglia (George et al., 2010).

Sensory neurons continue to mature through postnatal periods,
acquiring characteristics that allow them to respond to distinct stim-
uli. The steps involved in maturation have best been characterized for
a subset of nociceptors. As these nociceptors mature, they divide into
two groups: peptidergic nociceptors that respond to the neurotrophin
NGF and express the neuropeptide CGRP, and nonpeptidergic noci-
ceptors that respond to the neurotrophin GDNF and often bind the
lectin IB4 (Averill et al., 1995; Bennett et al., 1998; Molliver and
Snider, 1997; Molliver et al., 1997; Stucky and Lewin, 1999; Zwick
et al., 2002). The challenges for understanding sensory neuron devel-
opment are thus two-fold: determining how NC cells are initially
specified to this lineage, and how sensory neurons become distinct
from one another to respond to different stimuli.

It has been known for over 60 years that, like the sensory neurons,
the specialized pigment cells known as melanocytes also arise from
the NC (Rawles, 1947, 1948). For most of these years, it was thought
that during embryonic development, NC-derived melanocyte precur-
sors, known as melanoblasts, undergo a relatively uniform develop-
mental process, all migrating solely along a dorsolateral pathway
beneath the ectoderm, and subsequently invade the overlying epider-
mis to colonize skin and hair follicles. While this is indeed a major mi-
gratory path used by melanoblasts, additional evidence is emerging
that perhaps not all melanocytes are equivalent, due to differences
in embryonic melanoblast development. For example, epidermal me-
lanoblasts can also arise from NCCs that migrate along a ventral path-
way, coming from precursors previously thought to give rise solely to
Schwann cells (Adameyko et al., 2009). Ventrally migrating melano-
blasts also give rise to melanocytes that are not located in the skin
and hair follicles; melanocyte populations exist in the eye (iris, cho-
roid, ciliary body and Harderian gland), the inner ear, heart, and the
leptomeninges of the brain. Consistent with different subsets of mela-
nocytes, oncogenically transformed melanocyte lineages (melanoma)
acquire distinct molecular defects depending on the site and type of
melanoma, perhaps due to differences in embryonic origins
(Whiteman et al., 2011).

Prior to their extensive migration, the earliest developmental
stages of NC-derived melanocyte precursors in the trunk include the
generation of premigratory NC cells at the dorsal neural tube, the ini-
tial migration of these cells dorsal to the neural tube, and then their
movement to the Migration Staging Area (MSA), a region between
the neural tube and somite where melanoblasts destined for the dor-
solateral pathway pause before migration (Weston, 1991). At these
first developmental stages, signals directing early specification events
are generated, including those needed for dorso-lateral migration and
for the expression of melanocyte-specific genes. Evidence from sever-
al studies indicates that the specification of melanocytes occurs prior
to emigration (Raible and Eisen, 1994), and recent lineage tracing
studies in chick indicate it occurs within the dorsal neural tube from
a regionally defined population of cells located dorsal to roof plate
cells (Krispin et al., 2010).

Species-specific differences are apparent in early melanoblast
specification from NC (Kelsh et al., 2009). In the mouse, both dorso-
lateral and ventral migrating cells begin to migrate at embryonic
day (E) 8.5, while in avian and zebrafish systems, NC dorsolateral mi-
gration occurs later than ventral migration (Erickson et al., 1992;
Loring and Erickson, 1987; Raible et al., 1992). Mouse melanoblasts
migrating along the dorsolateral pathway express melanoblast
markers beginning at E9.0, leave the MSA from E10.5 onward, and
then begin to invade the developing epidermis at E11.5–12 (Luciani
et al., 2011; Mayer, 1973; Nakayama et al., 1998; Serbedzija et al.,
1990; Wilson et al., 2004; Yoshida et al., 1996). In contrast, zebrafish
melanoblasts show early migration along both dorsolateral and ven-
tral pathways, as measured by Tyrosinase (Tyr) and Dopachrome tau-
tomerase (Dct) expression (Camp and Lardelli, 2001; Kelsh and Eisen,
2000). Transplantation and single-cell labeling studies in avians have
been instructive in elucidating details of early melanoblast specifica-
tion/migration (Erickson et al., 1992; Reedy et al., 1998a,b).

Subsequent to their migration throughout the embryo, melano-
blasts complete differentiation into mature melanocytes, which in-
cludes the establishment of extensive dendritic connections with
numerous epidermal keratinocytes (in human epidermis), coloniza-
tion of hair follicles (in mammals), and production of melanin
pigment. Synthesis of the two forms of melanin, brown/black eumela-
nin and red/yellow pheomelanin, occurs within unique melanocyte
organelles known as melanosomes. The melanin is transferred via
melanocyte dendritic processes to skin keratinocytes and hair. Mela-
nocytes exhibit complex subcellular trafficking of melanosomes, and
also exhibit numerous signaling pathways that affect pigment pro-
duction in response to extracellular cues, including ultraviolet radia-
tion (Miyamura et al., 2007).

Specification of sensory neurons and melanocytes by
WNT signaling

Both sensory neuron and melanocyte lineages are developmental-
ly regulated by WNT proteins, a family of secreted signaling glycopro-
teins essential for development. WNTs act as ligands for 7-
transmembrane G-protein coupled receptors of the Frizzled family,
and are also able to act as ligands for single transmembrane receptors
in some cell types (Kikuchi et al., 2009). Both WNT and Frizzled pro-
teins are conserved across many metazoan species, andWNT proteins
regulate a wide variety of downstream pathways at many different
stages during development (van Amerongen and Nusse, 2009).
WNT signaling is complex, given the large number of WNT and Friz-
zled proteins, their overlapping developmental expression patterns,
and the crosstalk that can occur among various WNTs and their re-
ceptors (Kikuchi et al., 2009). Additional complexity exists because
WNT signaling (along with additional signaling from FGF and BMPs)
directs early NC formation, and this signaling is temporally distinct
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from actions at later stages of sensory neuron and melanoblast spec-
ification (Garcia-Castro et al., 2002; LaBonne and Bronner-Fraser,
1998; Lewis et al., 2004; Monsoro-Burq et al., 2005; Yanfeng et al.,
2003).

Evidence for WNT signaling promoting sensory neuron differenti-
ation comes from studies of mouse NC (Lee et al., 2004). In these
studies, conditional expression of activated beta-catenin (β-catenin),
an effector molecule downstream of WNT that when activated trans-
locates to the nucleus and activates gene transcription, promotes sen-
sory neuron differentiation in vivo while preventing differentiation of
other NC cell types. Treatment of stem cell cultures derived from NC
with WNT1 also promotes sensory neuron differentiation (Lee et al.,
2004). However in zebrafish and in avian NC cultures, WNT signaling
does not appear to promote sensory neurogenesis (Dorsky et al.,
1998; Jin et al., 2001).

WNT1 and WNT3a act to specify melanocytes in mouse, chick,
zebrafish, and Xenopus NC. NC-specific overexpression of WNT1 or
activated β-catenin causes increased melanocytes in zebrafish and
in mouse NC explant cultures, respectively (Dorsky et al., 1998;
Dunn et al., 2000). Similarly, melanoblast formation is increased by
WNT3a overexpression in avian NC cultures (Jin et al., 2001) and by
WNT3a and β-catenin overexpression within mouse NC (Dunn et
al., 2005). While WNT1 and WNT3a appear to act through distinct
mechanisms (Dunn et al., 2005), they also show redundancy, as inde-
pendent mutants appear unaffected, yet combined absence of both
WNT1 and WNT3a signaling causes severe defects in the expansion
of NC cells, including melanocytes and neurons derived from cranial
and dorsal root ganglia (Ikeya et al., 1997).

The pathways downstream of WNT and β-catenin in melanoblast
development are complex, and experimental manipulation suggests
that their effects vary depending on the presence of other extracellu-
lar factors or the melanocyte developmental stage. For example, in
mouse, β-catenin blockage in NC inhibits melanocyte formation, as
well as sensory neuron formation (Hari et al., 2002), yet β-catenin
overexpression leads to sensory neuron formation, but not melano-
cyte formation (Lee et al., 2004). This may reflect multiple stages of
WNT-β-catenin regulation of NC specification, and a two-stage
model has been proposed in which a developmental stage promoting
sensory neuron formation precedes a stage controlling melanocyte
formation (Sommer, 2011). Melanoblast development in mouse ap-
pears sensitive to any perturbation in β-catenin levels, because mela-
nocyte proliferation and subsequent cutaneous melanocyte number
were reduced when active β-catenin was either reduced or increased
in NC melanoblast precursors (Delmas et al., 2007; Luciani et al.,
2011). This sensitivity to both high and low β-catenin levels may in
fact reflect levels of the transcription factor MITF (detailed below),
as β-catenin combines with Tcf/Lef to activate Mitf expression
(Dorsky et al., 2000; Takeda et al., 2000) and MITF has been shown
to activate melanoblast proliferation at low levels, yet repress it at
high levels (Carreira et al., 2006).

Transcription factor regulation of sensory neuron and melanocyte
specification

Not surprisingly, cell fate specification is driven by the regulation
of gene transcription. Cell fate restriction of NCCs to the sensory neu-
ron or melanocyte lineages is achieved by activation of specific tran-
scription factors. A compelling model for this process involves
integration of signals at a “nodal point”, with activation of a transcrip-
tion factor or factors that acts as a master regulator that in turn con-
trols downstream differentiation genes (Weintraub et al., 1991). Such
transcription factors may act as pioneer factors, promoting access to
chromatin for other factors that allow differentiation to proceed
(Zaret and Carroll, 2011).

The earliest steps of sensory neuron specification are controlled by
basic helix–loop–helix transcription factors of the neurogenin
(neurog) family. These transcription factors have been well studied
in their regulation of neurogenesis, and play important roles in the
specification of neurons in the CNS and PNS (Kageyama et al., 2005;
Morrison, 2001; Sommer et al., 1996). Forced expression of neurog
genes is sufficient to produce ectopic neurons in Xenopus (Ma et al.,
1996) or zebrafish (Blader et al., 1997). Expression of neurog pro-
motes neurogenesis, inhibits gliogenesis and regulates cell migration
through a variety of different mechanisms (Ge et al., 2006; Hand et
al., 2005; Sun et al., 2001).

Ample evidence supports the idea that neurogs initiate sensory
neurogenesis. They are the earliest knownmarkers of the sensory neu-
ron lineage, and are expressed in migrating NC before overt neurogen-
esis in a subset of crest cells that may correspond to fate-restricted
precursors (Greenwood et al., 1999; Ma et al., 1999). Overexpression
of neurog in chick premigratory NCCs biases them to localize to the
DRG (Perez et al., 1999). Ectopic expression of neurog drives expression
of DRG neuronal markers in a heterologous tissue, the dermomyotome
(Perez et al., 1999). Both neurog1 and neurog2 are needed for DRG neu-
ron development (Ma et al., 1999). Targeted inactivation of either locus
alone resulted in loss of subsets of DRG neurons, some only transiently.
By contrast when both genes are mutated, DRG development was
completely blocked.

Zebrafish have only a single neurog gene used in sensory neuron
specification (Andermann et al., 2002; Cornell and Eisen, 2002). In
mouse, neurog1 and neurog2 each play a different role in the develop-
ment of a subset of cranial sensory neurons: neurog 1 is necessary for
proximal ganglion differentiation, while neurog2 is necessary for dis-
tal (epibranchial) ganglion formation (Fode et al., 1998; Ma et al.,
1998). Loss of zebrafish neurog1 function completely blocks all cranial
ganglion formation in addition to disrupting DRG development, dem-
onstrating that it assumes the role of both mammalian genes. In the
absence of neurog1, cells that would normally form sensory neurons
instead differentiate as glial cells, suggesting that it controls the
fates of neuroglial-restricted precursors (McGraw et al., 2008). A sim-
ilar role for neurog in directing binary cell fate decisions between neu-
rons and glia has been suggested to occur in the central nervous
system (Bertrand et al., 2002; Miller and Gauthier, 2007; Nieto et
al., 2001; Ross et al., 2003).

Does neurog act as a master regulatory gene for sensory neuron
specification? Several lines of evidence refute this idea, and suggest
additional factors are needed. Expression of neurog alone within
NCCs is not sufficient to distinguish cells as DRG sensory neurons. In-
troduction of neurog into NCCs promotes general neurogenesis, but
cells can form sensory or sympathetic neurons depending upon the
addition of exogenous factors (Lo et al., 2002). Recombination of neu-
rog into the mash1 locus allows cells that would normally express
mash1 to continue with autonomic neurogenesis rather than being
diverted to sensory lineages (Parras et al., 2002). Genetic lineage
marking techniques using cre recombinase and the ROSA26 lacZ re-
porter strain have demonstrated plasticity of cells expressing neu-
rog2: cells are strongly biased towards DRG contribution, but both
neurons and glia are labeled (Zirlinger et al., 2002). Thus neurog ex-
pression alone may not be sufficient to specify DRG neuron cell
type, and suggests that it works in combination with other transcrip-
tion factors as it does in the CNS (Helms et al., 2005; Nieto et al.,
2001).

Two factors that might function in conjunction with neurog are
Brn3a and Isl1, homeobox transcription factors that are co-
expressed in early postmitotic sensory neurons (Fedtsova and
Turner, 1995). Targeted inactivation of either factor results in sensory
neuron death (Eng et al., 2001; Huang et al., 1999; McEvilly et al.,
1996; Sun et al., 2008; Xiang et al., 1996), and loss of both together
show additive effects (Dykes et al., 2011). Brn3a and Isl1 perform sev-
eral functions to regulate the transition from progenitor to differenti-
ated neuron. Both factors are required for repression of early
neurogenic factors (Dykes et al., 2010; Eng et al., 2007; Lanier et al.,
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2007; Sun et al., 2008). These factors also block alternate differentia-
tion pathways; ectopic expression of central nervous system genes
occurs in their absence (Lanier et al., 2009; Sun et al., 2008). In addi-
tion, Brn3a and Isl1 directly promote the expression of differentiation
genes (Dykes et al., 2010; Eng et al., 2004, 2007; Sun et al., 2008). In
some cases this synergy comes about by their ability to bind to com-
mon regulatory regions (Dykes et al., 2011). Taken together, these
studies support a model where Brn3c and Isl1 regulate the transition
from neurogenic precursor to differentiating sensory neuron.

Although sensory neurons share common developmental aspects,
such as their positioning in the DRG and gross aspects of central and
peripheral projections, it is their distinct characteristics that define
their functions to detect particular sensations. These characteristics
are acquired during the maturation of sensory neurons, a process
that is regulated by the Runx family of transcription factors. Related
to Drosophila Runt, Runx proteins were identified as transcription
factors with oncogenic potential (Ito, 2004). These transcription fac-
tors are regulated by Brn3a (Dykes et al., 2010), and are expressed
in different subsets of sensory neurons: Runx1 in nociceptors and
Runx3 in proprioceptors (Inoue et al., 2002; Levanon et al., 2001,
2002). Runx1 is required for proper maturation of nociceptive neu-
rons, refining the differences between peptidergic and nonpeptider-
gic classes (Chen et al., 2006b; Kramer et al., 2006; Marmigere et al.,
2006; Yoshikawa et al., 2007). Loss of Runx1 results in loss of the non-
peptidergic Ret+ nociceptors, resulting in insensitivity to thermal
and neuropathic pain. Overexpression of Runx1 results in increased
neuropeptide expression (Kramer et al., 2006). Runx1 is also neces-
sary for expression of genes necessary for nociceptor functions, in-
cluding different classes of the Mrgpr receptors (Chen et al., 2006b;
Liu et al., 2008). Runx3 is required for differentiation of propriocep-
tors (Chen et al., 2006a; Inoue et al., 2002; Kramer et al., 2006;
Levanon et al., 2002). Loss of Runx3 results in mistargeting of axons,
and eventual loss of neurons. Overexpression of Runx3 results in an
increase in proprioceptors at the expense of TrkB+ mechanorecep-
tors (Inoue et al., 2007; Kramer et al., 2006).

Similar to sensory neurons, melanocyte differentiation is also
influenced by the interplay of transcription factors and growth factors
influencing fate restriction. Just as one or more neurogs are key factors
for sensory neuron development, melanocyte specification and
differentiation are due to regulated expression of another basic
helix–loop–helix transcription factor, microphthalmia associated
transcription factor (MITF). MITF expression is seen in cells of
the dorsal neural tube and early emigrating melanoblasts, and
continues throughout melanocyte differentiation (Lister et al.,
1999; Nakayama et al., 1998; Opdecamp et al., 1997; Thomas and
Erickson, 2009). MITF regulates expression of many early genes that
regulate aspects of melanocyte development and survival, including
but not limited to Silver/Pmel17, Dopachrome tautomerase, Tyrosi-
nase, Tyrosinase-related protein 1, Mlana, and Slc45a2, and it has
been suggested that the earliest expression of MITF marks specifica-
tion of the melanoblast lineage (Thomas and Erickson, 2008, 2009).
Animals containing null mutations for Mitf lack melanocytes in
mice, fish and man, and misexpression of MITF can promote pigmen-
tation in mouse fibroblasts in culture (Tachibana et al., 1996) and in
zebrafish embryos in vivo (Lister et al., 1999) suggesting that MITF
expression specifies NCCs to a melanocytic fate. While MITF is re-
quired for survival of melanocytes in rodents, zebrafish, and avians
(Hodgkinson et al., 1993; Hughes et al., 1993; Lister et al., 1999;
Mochii et al., 1998; Opdecamp et al., 1997), detailed analysis of Mitf
mutant mice that do not produce MITF protein yet still express Mitf
mRNA demonstrates that presumptive melanoblasts are observed in
early migrating crest but only transiently, and are thought to undergo
apoptosis (Hou et al., 2000; Nakayama et al., 1998; Opdecamp et al.,
1997). Consistent with this notion, lineage-tracing studies have indi-
cated that melanoblasts, along with other crest derivatives, are spec-
ified prior to emigration within defined locations in the dorsal neural
tube (Krispin et al., 2010). The subset of cells from which melano-
blasts will form in the neural tube exhibit low levels of FOXD3,
SNAIL and SOX9, implicating that reduced expression of these tran-
scription factors is needed for melanoblast specification.

The reduced FOXD3 expression in presumptivemelanoblasts is con-
sistent with studies demonstrating it having a repressive role in mela-
nocyte specification and being a key regulator in a melanocytic versus
glial fate. FOXD3 is expressed in emigrating crest but is not expressed
in melanoblasts or melanocytes. Misexpression of FOXD3 in late emi-
grating avian crest results in reduced MITF expression, reduced num-
bers of melanocytes and increased numbers of glial cells (Thomas and
Erickson, 2009). FOXD3 mutant zebrafish have an expanded MITF ex-
pression domain, and FOXD3 has been shown to directly repress the
transcription of mitf in zebrafish (Curran et al., 2009). This repression
of FOXD3 via HDAC1 is required for MITF expression in avian melano-
cytes (Thomas and Erickson, 2009). Murine knockout studies, while
confirming early roles in NC formation (Teng et al., 2008), have yet to
address these functions of FOXD3 in mouse melanocytes.

Additional transcription factors that may play a role in specifica-
tion of melanocytes are the SOXE family of HMG box transcription fac-
tors—SOX8, 9 and 10—that are all expressed in the dorsal neural tube
around the time of NC formation (Hong and Saint-Jeannet, 2005).
SOX9 is downregulated in trunk NCCs in mouse, chick, Xenopus and
zebrafish (Cheung et al., 2005; McKeown et al., 2005; Spokony et al.,
2002; Yan et al., 2005). In Xenopus (Spokony et al., 2002), knockdown
of SOX9 function affects cranial crest but does not cause a loss of pig-
ment cells. Similarly in zebrafish, lack of Sox9b expression causes cra-
niofacial defects with limited alterations of pigment cells, restricted to
reduction of iridophores and altered pigmentation within melano-
cytes (Yan et al., 2005). Gain of function studies with SOX9 in Xenopus
(Taylor and LaBonne, 2005) and chick (Cheung and Briscoe, 2003)
demonstrate its ability to promotemelanocyte differentiation, howev-
er this action may only occur early via promotion of increased NC, as
ectopic, prolonged expression of SOX9 in melanoblasts of transgenic
mice results in a hypopigmented state (Qin et al., 2004). Consistent
with this, overexpression studies have shown that SOX9 can induce
the expression of SOX10 in frog, fish and chick (Aoki et al., 2003;
Cheung and Briscoe, 2003; Yan et al., 2005).

In contrast to SOX9, SOX10 is required for melanocyte develop-
ment in mouse (Britsch et al., 2001; Lane and Liu, 1984; Southard-
Smith et al., 1998), Xenopus (Honore et al., 2003), and zebrafish
(Dutton et al., 2001; Kelsh and Eisen, 2000). In mouse and zebrafish
SOX10 null mutants,Mitf and an additional early melanoblast marker,
Kit, are both absent, suggesting a key involvement of SOX10 in spec-
ifying melanocyte fate (Dutton et al., 2001; Hou et al., 2006). Addi-
tional studies in vitro have demonstrated that SOX10 directly binds
the MITF promoter to direct transcription, therefore its role in pig-
mentation may be through the upregulation of Mitf, which in turn
proceeds to direct melanocyte migration and differentiation. Inter-
species differences are apparent, as SOX10 but not SOX9 expression
is maintained in melanocytes in mice (Hou et al., 2006; Osawa et al.,
2005), SOX10 is lost in human melanocytes in concert with a reacti-
vation of SOX9 (Passeron et al., 2007), and in zebrafish SOX9 is down-
regulated and then, after initial melanocyte specification, SOX10 is
also downregulated in all NC cells except glial cells (Dutton et al.,
2001). Even though interspecies differences are noted in SOXE ex-
pression patterns, it is still likely that gene relationships in regulatory
loops will be conserved. An elegant series of experiments and model-
ing has further dissected the initial specification of melanocytes in
zebrafish (Greenhill et al., 2011). This work supports a more refined
model, where SOX10 is only needed for initiation of Mitf expression,
and then acts as a feed-forward inhibitor to block melanocyte differ-
entiation genes, perhaps as a mode for maintaining plasticity. In this
model SOX10 is no longer needed for differentiation, and in
fact MITF in conjunction with HDAC is involved in downregulation
of SOX10 to overcome its inhibitory effects on melanocyte
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differentiation. Additional studies are needed to assess how this gene
regulatory network functions in mice, and also in human melanomas
that exhibit co-expression of SOX10 and MITF.

Growth factor regulation of sensory neuron and
melanocyte specification

While the expression of combinations of transcription factors may
set a cell's potential, configuring the genome to interpret environ-
mental cues, the expression of growth factor receptors is critical for
enabling a cell to respond to these cues. For the development of sen-
sory neurons and melanocytes, growth factor receptors play impor-
tant roles in cell type specification. In addition, these receptors
regulate cell survival, as both melanocyte and sensory neuron differ-
entiation is sculpted by cell death.

The influences of growth factors on sensory neuron development
have a long history; Levi-Montalcini and Hamburger identified the
first growth factor (nerve growth factor, NGF) studying the survival
of DRG neurons (Hamburger and Levi-Montalcini, 1949). The neuro-
trophins NGF, BDNF, NT3 and NT4 are target-derived growth factors
that promote sensory neuron survival (reviewed in Ernsberger,
2009). The receptor tyrosine kinases TrkA, TrkB and TrkC respond to
each neurotrophin respectively. TrkC is expressed very early in divid-
ing sensory precursors (Henion et al., 1995; Rifkin et al., 2000). Ex-
pression of TrkA, TrkB and TrkC are refined to distinct sensory
neuron types within the DRG (Farinas et al., 1998; Kashiba et al.,
1996; Li et al., 2010; McMahon et al., 1994; Mu et al., 1993; Rifkin
et al., 2000; Wright and Snider, 1995; Zhang et al., 1994): TrkA ex-
pression overlaps with nociceptor markers, TrkB is expressed in a
subset of mechanoreceptors, and TrkC is expressed in cells corre-
sponding to proprioceptors. Targeted inactivation of Trk receptors
and their ligands confirmed that they function in specific DRG neuron
subtypes. When TrkC receptors or NT3 were functionally inactivated,
large proprioceptors were selectively lost (Ernfors et al., 1994; Farinas
et al., 1994; Klein et al., 1994; Minichiello et al., 1995; Tessarollo et al.,
1994). In contrast, when trkA receptors or NGF were inactivated,
smaller nociceptors were lost (Crowley et al., 1994; Minichiello et
al., 1995; Smeyne et al., 1994).

The well-established roles of neurotrophins and their receptors in
neuron survival confounded interpretations of whether these signals
play additional roles in cell specification. Prevention of cell death by
inactivation of the proapoptotic gene BAX revealed roles for NGF/
TrkA in maturation of nociceptor subtypes and NT3/TrkC for matura-
tion of proprioceptors, including proper axonal projections (Genc et
al., 2004; Guo et al., 2011; Luo et al., 2007; Patel et al., 2000, 2003).
These studies supported the idea that neurotrophin signaling played
critical roles in the definition of sensory neuron cell type. When
TrkC coding sequence is used to replace the TrkA locus, a small frac-
tion of cells acquire proprioceptor characteristics (Moqrich et al.,
2004), supporting the idea that receptor activation has an effect on
lineage choice. While factors that regulate the initiation of Trk recep-
tors are largely unknown, both Runx factors and Brn3a are required
for their continued expression and dynamic refinement (Dykes et
al., 2010; Inoue et al., 2007; Lei et al., 2006; Ma et al., 2003).

The receptor tyrosine kinase Ret acts a receptor for GDNF family
ligands along with the GFRalpha co-receptors (reviewed in
Ernsberger, 2008). As mentioned earlier, Ret expression distinguishes
differentiated subtypes of sensory neurons, including nonpeptidergic
nociceptors from peptidergic nociceptors (Bennett et al., 1998;
Molliver et al., 1997). Ret function is required for the differentiation
and maintenance of nonpeptidergic nociceptors from TrkA+ precur-
sors (Luo et al., 2007, 2009). Ret is also expressed in a distinct subset
of early differentiating sensory neurons (Kramer et al., 2006). Ret
function is necessary in these cells for the development of a subset
of rapidly adapting mechanosensory cells (Luo et al., 2009). In con-
trast to Trk family receptors, Ret appears to have little control of cell
survival, with the majority of its effects directed towards maturation
of sensory neurons.

A variety of mouse studies have shown that the type III receptor
protein-tyrosine kinase Kit oncogene (KIT) is required during defined
critical portions of melanocyte development between E9.5 and E15.5
for migration, survival, proliferation, and later on for differentiation
(Botchkareva et al., 2001; Cable et al., 1995; Ito et al., 1999;
Mackenzie et al., 1997; Nishikawa et al., 1991; Yoshida et al., 1996).
Similarly, the zebrafish ortholog Kita is required for melanocyte mi-
gration and survival at two different developmental timepoints
(Rawls and Johnson, 2003), and also for melanocyte differentiation
(Mellgren and Johnson, 2004). However, these are all functions that
would be executed after melanoblast specification, suggesting KIT
does not play a role in this process. In support of this idea, NC cultures
derived from KIT null embryos still exhibit MITF+ cells at early NC
developmental stages (Hou et al., 2000). Also, KIT expression in
avian systems occurs in melanoblast precursors, not glial–melano-
blast precursors, suggesting KIT expression may be coincident with
melanoblast lineage restriction (Lecoin et al., 1995; Luo et al., 2003).

The G protein-coupled Endothelin receptor type B (EDNRB) is a 7
transmembrane domainmembrane protein that is expressed in mela-
noblasts and required for normal development of melanocytes and
enteric ganglia (Hosoda et al., 1994). EDNRB is regulated by Endothe-
lin 3 (EDN3) signaling, and is required for embryonic melanocyte de-
velopment from E10 to 12.5, a time period when the melanoblast
precursors reach the MSA and E12.5, when they have migrated
away from the MSA (Lee et al., 2003; Pavan and Tilghman, 1994;
Shin et al., 1999). Overexpression of the chick EDNRB ortholog
EDNRB2 directs cells that would normally migrate medially (and
not become melanocytes) to migrate dorsolaterally; this suggests
that, at least in avians, the EDNRB2 signals that direct dorsolateral mi-
gration can be experimentally separated from those signals regulating
specification (Harris et al., 2008). Collectively, these studies suggest
EDNRB is essential for later stages of melanoblast development, and
not for melanoblast specification, and in support of this, EDNRB
does not appear to be necessary for initial protein expression of the
melanoblast genes SOX10, MITF, and KIT (Hou et al., 2004). This re-
quirement for EDNRB for later melanoblast developmental stages
does not preclude its influence on earlier NC development. Rather,
murine and avian NC culture studies hint that EDN3/EDNRB signaling
may regulate survival, proliferation, differentiation, and migration of
a bipotent glial–melanocyte NC derivative (Dupin and Le Douarin,
2003; Dupin et al., 2000; Lahav et al., 1996, 1998; Opdecamp et al.,
1998; Reid et al., 1996; Trentin et al., 2004).

Conclusions

Detailed analyses of individual NC lineages provide insights into
the specific cellular pathways that are involved both during develop-
ment and in disease states. Additionally, much can be learned from
comparison of these pathways, both between species and between
specific lineages. Many of the genetic factors essential for cell fate
specification in NC-derived sensory neurons and melanocytes are
well characterized. The bHLH transcription factors Neurog and Mitf
play central roles in cell fate specification of sensory neurons and me-
lanocytes, respectively. The initial expression of these two markers
appears to coincide with specification of each lineage, although fol-
lowing their expression, plasticity remains that is subject to signaling
input. Future studies in other NC cell lineages will determine if other
transcription factors play similarly central roles in specification.

Signaling pathways play an essential part in NC lineage specifica-
tion. To date, only WNT factors have been identified as common sig-
nals regulating the earliest steps in sensory neuron and melanocyte
specification upstream of Neurog and Mitf. Although both lineages
can be specified by WNT signaling, each clearly responds with differ-
ent transcriptional and biochemical downstream pathways that
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result in distinct lineages. Thus many questions remain regarding
which molecular mechanisms at the earliest stages of specification di-
rect such a precise outcome. While the timing of WNT signals may
provide a mechanism for specificity, temporal changes imply an alter-
ation in the internal state of NCCs, so that the WNT signals are inter-
preted in a different context over time. The mechanism by which
there are changes in NCC competence to respond to WNT signals re-
mains unknown.

NC lineage specification also involves overcoming transcriptional
repressors at appropriate developmental stages, and many questions
remain regarding this process. For example, FOXD3 is essential for
early stages of NC development, yet its expression acts to repress
the melanocyte lineage (Kos et al., 2001; Wang et al., 2011). Thus at
some point prior to or coincident with melanocyte lineage specifica-
tion, FOXD3 expression must be downregulated. Future studies will
be required to determine what mechanisms overcome FOXD3 repres-
sion in melanocyte lineage precursors, and what maintains its expres-
sion in other lineages; the existence of other transcriptional
repressors functioning in NC specification may await discovery as
well.

Finding these novel factors governing early NC lineage specifica-
tion is not trivial, and studies on these earliest stages of NC lineage
specification are technically difficult. Reliance on markers is problem-
atic, as this requires gene expression robust enough for visualization.
Lineage tracing is becoming more informative, such as moving from
LacZ-based expression tracing to real-time fluorescence markers in
fish and mice (Shibata et al., 2010), yet one still needs the ability to
reliably identify lineages.

Still broader questions remain regarding spatial differences in NC
development. For example, cranial crest appears to show differences
in development and plasticity as compared to trunk NC. In the
trunk, specific anatomical sub-regions or different migratory path-
ways may influence NC development. Understanding the molecular
differences that contribute to these regional subtypes may reveal es-
sential factors that act in different embryonic regions. Recent work
studying both dorsolaterally-migrating melanocytes and those that
arise from regions adjacent to developing nerves in the trunk, head,
and neck has begun to shed light on these differences (Adameyko
et al., 2009, 2012). In summary, by comparing and contrasting com-
mon themes governing individual cell types, such as the melanocytes
and sensory neurons, we are able to gain insights into basic develop-
mental pathways involved in specification of lineages. These findings
will be applicable when elucidating the specification of other neural
crest lineages.
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