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Abstract

If an M2-brane intersects anM5-brane the canonical Wess–Zumino action is plagued by a Dirac-anomaly, i.e., a
integer change of the action under a change of Dirac-brane. We show that this anomaly can be eliminated at the ex
gravitational anomaly supported on the intersection manifold. Eventually we check that the last one is cancelled by the
produced by the fermions present. This provides a quantum consistency check of these intersecting configurations.
 2004 Elsevier B.V.
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1. Introduction and summary

An M2- and anM5-brane form an electromagne
ically dual pair of branes in eleven dimensions, a
since 3+ 6 − 11 is a negative number their world
volumes have generically an empty intersection. Ho
ever, for exceptional brane configurations it can h
pen that their intersection is non-empty. Their int
section manifoldΣ ≡ M2 ∩ M5 can then be a man
ifold of dimensionsd = 0,1,2 or 3. An analysis of
the quantum-consistency of such intersections, a s
cial case of so-callednon-transversal intersections be
tween two generic manifolds [1,2], is the main top
of this Letter. The are two types of quantum incons
tencies we will have to worry about: (1) gravitation
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ABBJ-anomalies and (2) Dirac-anomalies, i.e., (n
integer) changes of the action under a change of
Dirac-brane. As we will see these two types of ano
alies are intimately related.

The relevance forM-theory of the exceptiona
configurations considered in this Letter, stems fr
the fact that eleven-dimensional supergravity admit
indeed classical susy-preserving solutions, that ca
interpreted as anM2-brane intersecting with anM5-
brane [3–8]. These solutions are typically localiz
only in the common transverse directions of the tw
branes, i.e., the currents of the branes areδ-functions
only in the common transverse coordinates. Th
exist also susy-preserving (implicit) solutions whe
one of the two branes is fully localized and the oth
is localized only in the common transverse directio
[5,9]. In absence of a complete classification of al
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possible solutions, the existence of solutions wh
both branes are fully localized is still an open questi

Nevertheless, in this Letter we assume that fr
a quantum point of view both branes are fully l
calized. The fundamental reason for this assump
is that sinceM2 and M5 are dual objects, only i
both currents areδ-functions on the correspondin
worldvolumes there exists a consistent minimal c
pling of the branes to each other, because only
this case the charge islocally integer and, therefore
the Dirac-brane unobservable, [10,11]. The second
reason is that only branes with aδ-like support rep-
resent a universal type of charge distribution. T
situation is similar to theD = 4 Julia–Zee dyons
[12]. These dyons represent semi-classical solution
the Georgi–Glashow model, whose magnetic cha
is fully localized (point-like localization) while thei
electric charge is smeared out. Nevertheless, at
level of second quantized quantum field theory
Julia–Zee dyons appear with fully localized magne
and electric charges [13].

While this point deserves clearly further investig
tion, here we take a pragmatic point of view and
sume that both branes, and therefore also their po
ble intersection, carry well-defined worldvolumes a
that the associated currents areδ-functions supported
on those worldvolumes.

For generic configurations (Σ = ∅) the two branes
are at a finite non-vanishing distance and their c
sical dynamics is trivially free from relative shor
distance singularities, i.e., singularities due to th
mutual interaction. In this case a Dirac-brane ca
(must) be used to describe their dynamics, and
minimal-coupling Wess–Zumino term describing t
mutual interaction is independent of the Dirac-bra
mod2π, if Dirac’s quantization condition holds.

If, on the other hand, the configuration is exce
tional (Σ �= ∅) the two branes stay at zero distan
In this case the mutual interaction is plagued
short-distance singularities and we will see that
canonical minimal WZ-term becomesDirac-brane-
dependent, i.e., it carries a (non-integer) Dirac-an
maly. In this Letter we show that for such co
figurations the recently developed Chern-kernel ap
proach [11,14,15] allows to write a new (manifest
Dirac-brane-independent WZ-term. However, this
new WZ-term turns out to be plagued by an inflo
gravitational anomaly—supported onΣ—if d = 0
or 2, while it is anomaly free ifd = 1 or 3. A cru-
cial ingredient for its construction is the new “desce
identity” (3.1).

Eventually we show that ford = 0,2 the inflow
gravitational anomaly onΣ is cancelled by the quan
tum anomaly produced by the fermions living on
This means that the total classical+ quantum effec-
tive action is (1) free from gravitational anomalies a
(2) Dirac-brane-independent.

The canonical and new WZ-terms differ by
local counterterm supported onΣ , that maps the
Dirac-anomaly in the gravitational anomaly, who
construction will be outlined in the concluding sectio

For the anomaly cancellation mechanism of op
M2-branes ending onM5-branes see [11,16].

2. Chern-kernels and Dirac-branes

In presence of a closedM2- and a closedM5-
brane the Bianchi identity and equation of moti
for the four-form fieldstrength of eleven-dimension
supergravity amount to1

(2.1)dH = J5,

(2.2)d ∗ H = 1

2
HH + hJ5 + J8,

whereJ8 (J5) is the δ-function supported Poincaré
dual form of the electric (magnetic) brane worldvo
umeM2 (M5), i.e., its current;h = db+B|M5, where
b is the chiral two-form onM5 andB is the potential
for H . The brane tensions are set toTM2 = TM5 = 2π .

In absence of theM2-brane (J8 = 0) the basic in-
gredient for the construction of a consistent WZ-te
for this system (see (2.6)) is the Chern-kernel. We
call now briefly the essential features of this constr
tion [15], concentrating on the main properties of t
Chern-kernel, the details of the resulting WZ-term
self,SA

WZ, being unessential for what follows.
To write an action for the system above one m

first solve (2.1) in terms of a potential, introducin
a four-form antiderivativeK for the magnetic cur

1 For simplicity we omit in (2.2) the gravitational curvatu
polynomialX8, which corrects eleven-dimensional supergravity
the term

∫
BX8 [17].
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(2.3)dK = J5, H = dB + K.

This solution is subject to the transformations (cal
Q-transformations in the following)

(2.4)K ′ = K + dQ, B ′ = B − Q, Q|M5 = 0.

These transformations leave the curvaturesH andh

invariant, and in writing an action one must ensure t
this invariance,Q-invariance, remains preserved.

As shown in [11,15], the r.h.s. of (2.2) become
well-defined closed form and there exists aQ-invari-
ant action if one chooses as solution fordK = J5 a
four-form Chern-kernel,

K = 1

4(4π)2
εa1···a5ŷa1Fa2a3Fa4a5,

(2.5)Fab = Fab + DŷaDŷb,

where theya (a = 1, . . . ,5) are normal coordinate
on M5, ŷa = ya/|�y|, Dŷ is the covariant differentia
w.r.t. the normal bundleSO(5)-connectionA, and
F = dA + AA is its curvature. This kernel, althoug
being invariant nearM5, is not unique but subjecte
to theQ-transformations (2.4) [11]. For what follow
it is important to notice thatK is singular on the
whole M5, becauseŷa does not admit limit when
ya goes to 0, while the three-formQ is regular
and has, actually, vanishing pullback onM5. The
four-form K can be seen as a kind of generaliz
Coulomb-like field (inverse-power-like singularities
or also as an angular form [18]. We recall also tha
normal coordinates theM5-brane current readsJ5 =
dy1 · · ·dy5 δ5(y).

In absence of theM2-brane one can then writ
down a WZ-term giving rise to the equation of moti
(2.2). It is convenient to write it as an integral ove
twelve-dimensional manifoldM12 whose boundary is
the eleven-dimensional target spaceM11, of a closed
and Q-invariant twelve-form,2

SA
WZ = 2π

∫

M12

LA
12,

(2.6)LA
12 = 1

6
HHH + 1

2
hdhJ5 + 1

24
P

(0)
7 J5,

2 Eventually, to get (2.2) one has to take into account also
kinetic Born–Infeld-type action forh, see [11].
where P8 = dP
(0)
7 is the second Pontrjagin form

of the normal bundle ofM5. We remember tha
the propertydLA

12 = 0 ensures that, in absence
topological obstructions,SA

WZ does not depend on th
particularM12 chosen. Writing it in this way the WZ
is manifestlyQ-invariant, depending only onH andh,
and in [15] it has been shown thatLA

12 is a closed
form and thatSA

WZ cancels the residual normal bund
SO(5)-anomaly localized on theM5-brane, [19].

As we observed already, for what follows th
detailed form ofLA

12 is irrelevant; what is crucial is
that its consistency relies heavily on the presenc
the Chern-kernel and on the corresponding solu
H = dB + K of the Bianchi-identitydH = J5.

In presence of anM2-brane,J8 �= 0, one can write
the WZ-term as

SWZ = SA
WZ + SB

WZ = 2π

∫

M12

(
LA

12 + LB
12

)
,

(2.7)dLB
12 = 0, LB

12 Q-invariant,

whereLB
12 must describe (1) the minimal interactio

of theM2-brane with supergravity and (2) the mutu
interaction betweenM2 and M5. The first interaction
is canonical and corresponds to a contribution toLB

12
given bydB J8 = d(BJ8); the presence of the secon
is needed becausedB J8, although being closed, i
not Q-invariant. A Q-invariant completion could b
achieved by adding the mutual interaction termKJ8,
leading todB J8 +KJ8 = HJ8, but this is no longer a
closed form. Eventually one should have

(2.8)LB
12 = HJ8 + · · · ,

where the missing terms have to be (1)Q-invariant,
(2) B-independent and (3) such thatLB

12 becomes a
closed form. Our main problem consists therefore
figuring out to what the missing terms correspond t

If M2 andM5 do not intersect there is, of cours
a standard procedure for writing down the miss
terms above, that involves an (electric) Dirac-bra
for M2 i.e., a four-surfaceD4 whose boundary isM2,
∂D4 = M2. Denoting theδ-function onD4 with W7,
a seven-form, we have

J8 = dW7,

and one can perform the completion

(2.9)LB
12 = HJ8 − J5W7 = d(HW7),



150 K. Lechner / Physics Letters B 589 (2004) 147–154

rse,

at

n-
ac-
r

-
c-

t
is
ts

m

ct

on-
wo

re-

the
ing

ed

it.
e.,

ce,

e

xt

a
al

an
as
es

f

e

re

s

ep

s of

of
ays
in
us
which satisfies all the above requirements. Of cou
under a change of Dirac-brane the WZ-action

(2.10)SB
WZ = 2π

∫

M11

HW7 = 2π

∫

D4

H

changes by an integer multiple of 2π , sinceH has
integer integrals over any closed four-manifold th
does not intersectM5.3

From a twelve-dimensional point of view indepe
dence of the Dirac-brane is manifest since the Dir
brane-dependent termJ5W7 has integer integrals ove
arbitrary (closed or open) manifolds.

On the other hand, if the intersection manifoldΣ

is non-empty the WZ-action
∫
D4

H becomes Dirac
brane-dependent. Indeed, under a change of Dira
brane it changes by∫

D′
4

H −
∫

D4

H =
∫

S4

H =
∫

S4

K,

where S4 is a closed four-manifold. But sinceM2
intersectsM5 alsoS4 intersectsM5 and therefore par
of the flux ofK stays inS4 and part stays outside. Th
means that

∫
S4

K is no longer integer, and it represen
a Dirac-anomaly.

From a twelve-dimensional point of view, the ter
J5W7 can no longer be used to makeLB

12 a closed
form, because ifΣ is non-empty then the produ
J5W7 contains squares ofδ-functions (δ(x)δ(x)) and
becomes ill-defined; this is a consequence of the n
vanishing intersection of the normal bundles of the t
branes, see below.

The canonical Dirac-brane construction must the
fore be abandoned ifΣ �= ∅. In this case, sinceLB

12
must be closed, the first step to find out what
missing terms in (2.8) may be, consists in comput
d(HJ8) = d(KJ8). Now, the productKJ8 and its dif-
ferential in the sense of distributions are well defin
even if Σ �= ∅ (for d �= 3),4 but the point is that one
is not allowed to apply Leibnitz’s rule to compute
In fact, the result obtained using naively this rule, i.
d(KJ8) = J5J8, contains squares ofδ-functions—for
the same reasons as above—and it is ill-defined.

3 For an alternative argument for Dirac-brane-independen
based oninteger forms, see [20].

4 The cased = 3, corresponding toM2 ⊂ M5, is in some sens
trivial and will be solved separately below.
On the other hand, as we will show in the ne
section, the result of the evaluation ofd(KJ8) in the
sense of distributions is well-defined, and it has
simple interpretation if expressed in terms of norm
bundles.

3. Intersecting branes and normal bundles

Suppose thatΣ = M2 ∩ M5 is a closed manifold
with dimensiond = 0,1,2 or 3, and introduce its
currentJ which is a closed(11− d)-form. For this
case we will show that the unknown terms in (2.8) c
be deduced from a new kind of “descent-identity”—
such formulated in thirteen dimensions—that involv
the normal bundles ofM2 and M5.

The normal bundles ofM2, M5 andΣ , denoted
by NM2, NM5 and NΣ , carry respectively fibers o
dimensions 8, 5 and 11− d . On Σ the bundles of
M2 andM5 intersect to a bundleN = NM2 ∩ NM5,
whose fiber is of dimensionn = 5 + 8 − (11− d) =
d + 2, with structure groupSO(n). For example, if the
intersection is just a point, a(−1)-brane, thenn = 2;
and if M2 ⊂ M5 then n= 5 because in this cas
N = NM5.

If n is even we can define the Euler-formχ of the
bundleN , a form of degreen; if n is odd we takeχ to
be zero by definition. The Euler-forms of interest a
then

χ2 = 1

4π
εr1r2T r1r2,

χ4 = 1

2(4π)2
εr1r2r3r4T r1r2T r3r4,

whereT rs is the curvature ofN . Our descent notation
areχ = dχ(0), δχ(0) = dχ(1).

In going to thirteen dimensions we want to ke
the degrees of the currentsJ8, J5, J unchanged. This
implies that the worldvolumes ofM2,M5 and Σhave
to be extended respectively to five-, eight- and(d +2)-
dimensional manifolds. This keeps the dimension
the normal bundles, in particular the dimension ofN
and hence the degree ofχ , unchanged. In absence
topological obstructions such extensions are alw
possible [15], and they were implicitly understood
the twelve-dimensional construction of the previo
section.
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The result of the computation we referred to abo
amounts then to a descent-identity between thirteen
forms, involving theδ-function onΣ and the Euler-
form ofN ,

(3.1)d(KJ8) = Jχ, wheneverM2 /⊂M5.

The proof is given in Appendix A. It is obvious tha
d(KJ8) must be supported onΣ and hence propor
tional to J ; the proportionality factorχ follows then
essentially for invariance reasons. It is understood
said above, that ford = 1 one takesχ = 0. If M2 ⊂
M5 (d = 3) the productKJ8 is ill-defined; this case is
in some sense trivial and it is solved separately be

Our descent-identity is, actually, alocal realization
of the correspondingcohomological relation presented
in [2].

4. Wess–Zumino action and anomaly cancellation

Given the above identity it is easy to complete
twelve-form (2.8) to make it aQ-invariant and closed
form (d �= 3):

(4.1)L̃B
12 = HJ8 − Jχ(0),

where we introduced a standard Chern–Simons f
throughχ = dχ(0). The Wess–Zumino actions for th
four possible intersection manifolds ofM5 andM2
can then be written eventually as

1

2π
S̃B

WZ =
∫

M12

L̃B
12

(4.2)=
∫

M2

B +




∫
M12

(KJ8 − J11χ
(0)
1 ), d = 0,∫

M12
KJ8, d = 1,∫

M12
(KJ8 − J9χ

(0)
3 ), d = 2,

0, d = 3.

We recall that the termsKJ8 are required forQ-in-
variance, and that the terms with the Euler-forms
needed to ensure independence of the particularM12
chosen. Ford = 0,2 the Euler-form is non-vanishing
while for d = 1 it vanishes. In this caseKJ8 is indeed
a closed form, see (3.1).

Ford = 3 (M2⊂ M5) the productKJ8 = K|M2J8
is ill-defined, becauseK does not admit pullback o
M5, and (3.1) is therefore not applicable. But in th
case the term

∫
M2 B is, actually,Q-invariant. Indeed
under aQ-transformation one would have
∫
M2(B

′ −
B) = − ∫

M2 Q, and this vanishes becauseQ vanishes
on the wholeM5, see (2.4). In other words, forM2⊂
M5 the formL̃B

12 = dB J8 is alreadyQ-invariant and
closed; this explains the fourth line in (4.2).

From the list (4.2) one sees that ford = 0,2
the WZ-action is plagued by a gravitational anom
supported on the intersection manifoldΣ , δS̃B

WZ =
−2π

∫
Σ

χ(1), corresponding to the inflow anomal
polynomial

(4.3)−2πχ,

while for d = 1,3 it is anomaly free.
On the other hand onΣ there are also fermion

living, coming from the common reduction of the 3
component spinorsϑα , living on M5 and onM2. If
d is even, these fermions are a section of the ch
spinor bundle lifted fromT (Σ) ⊕ N , whereT (Σ) is
the tangent bundle toΣ , andN is the intersection o
the normal bundels, as above. For such fermions
anomaly can be computed as in [2], and the resul
polynomial reads

(4.4)

2π
(
ch

[
S+
N

] − ch
[
S−
N

])
Â

[
T (Σ)

] = 2π
Â[T (Σ)]

Â[N ] χ,

wherech indicates the Chern character,S±
N is the spin

bundle lifted fromN with ± chirality, andÂ is the
roof genus. From this polynomial one has to extr
the two-form part ford = 0, and the four-form par
for d = 2. Since the Euler form is already a for
of degree two and four respectively, the roof gen
above contribute both with unity and the anom
polynomial reduces precisely to 2πχ , cancelling the
inflow.

This represents a quantum consistency check o
intersectingM2/M5 configurations considered in th
Letter.

5. Concluding remarks

The anomaly cancellation mechanism presented
this Letter has a transparent meaning ford = 2, where
Σ is the worldvolume of a closed string.

Ford = 0 the intersection manifoldΣ is just a point
P and represents an instanton. In this case the
dle N is a two-plane centered onP , with structure
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groupSO(2) and Abelian connectionWrs , and the in-
flow anomaly−2π

∫
Σ

χ(1) reduces to−Λ(P), where
δWrs = d(εrsΛ). This anomaly has a clear meani
since the normal bundle transformations ofN corre-
spond just to rotations aroundP in the two-plane cen
tered atP , andΛ(P) is the variation of the polar angl
ϕ of that plane,δϕ = Λ(P). What is more obscure i
the meaning of (chiral) fermionic degrees of freed
on an instanton and the appearance of the corresp
ing quantum anomaly. In lack of this insight, above
took simply advantage from the fact that the index f
mula (4.4) makes sense also ford = 0.

Our strategy for constructing a consistent int
action between intersectingM2- andM5-branes as
sumes that the branes intersect “strictly”, i.e., that t
stay strictly at zero distance. An alternative strategy
describing intersecting branes would be to introduc
framing regularization, where the branes are move
a finite distanceε from each other. For each finiteε the
branes are non-intersecting and one could introd
consistently a Dirac-brane to describe their inter
tion, as explained in section two, see (2.10). Howe
for ε → 0 this WZ-term, although remaining finite
would become Dirac-brane-dependent, as explaine
the text.

Keeping then the branes strictly intersecting, th
are two ways for writing a classical action. T
first is S̃B

WZ given in (4.2): it is (manifestly) Dirac
brane-independent but carries a gravitational anom
(for d = 0,2). The second isSB

WZ given in (2.10):
it is (manifestly) free from gravitational anomalie
but it is plagued by a Dirac-anomaly. This mea
that there exists a local (in the sense of “We
Zumino”) counterterm that maps the Dirac-anom
in a gravitational anomaly and vice versa. Its impli
construction goes along the following lines. Starti
point is an identity similar to (3.1),

(5.1)d(KW7) = KJ8 − JΦ,

for some(d + 1)-form Φ, which can be proven using
for example, the regularizations given in Appendix
of [11]; again, one is not allowed to use naive
Leibnitz’s rule. Ford = 3 the termKJ8 in this identity
has to be replaced by 0. The formΦ, supported onΣ ,
is diffeomorphism invariant, but depends onW7, i.e.,
on the Dirac-braneD4. Using (3.1) together with (5.1
-

one gets

dΦ = χ ⇒ Φ − χ(0) = dω,

for somed-form ω onΣ ; for d oddΦ is thus a closed
form. It is then immediately seen that

S̃B
WZ = SB

WZ + 2π

∫

Σ

ω.

The counterterm we searched for is
∫
Σ

ω and it is
supported onΣ , as one may have expected. Th
proves in particular that the Dirac-anomaly itself
supported onΣ , in agreement with the fact that
Σ = ∅ then there is no Dirac-anomaly at all.

The configurations we have considered in this L
ter are exceptional in that, a priori, a small perturbat
makes the two branes again non-intersecting. The
bility of these configurations can, however, be infer
from the existence of their classical-solution (sem
localized) counterparts ofD = 11 Sugra, mentioned i
the introduction, whose stability is guaranteed by
persymmetry. There exist indeed solutions ford = 3,
preserving 1/2 susy [3], and solutions ford = 2, pre-
serving 1/4 susy [4,6]. To our knowledge no sol
tions ford = 1 or d = 0 are yet known. The results o
the present paper, indicating that intersectingM2/M5
configurations are quantum consistent for any va
of d , suggest that also ford = 0,1 supersymmetric
classical solutions may exist. A dimensional reduct
of the complete interacting system Sugra+ M2+ M5
to ten dimensions, analogous to the one of [21], m
help to answer this question.
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Appendix A. Proof of the descent-identity

Since J8 is the δ-function on M2, the first step
in proving (3.1) consists in evaluatingK restricted to
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M2. After that one can compute

(A.1)d(KJ8) = d(K|M2J8) = d(K|M2)J8.

Since away fromM5 K is a closed form, the pullbac
K|M2 is closed a part from (possible)δ-function
contributions supported onΣ . This means that it is
sufficient to evaluateK|M2 in the vicinity ofΣ . OnΣ

the normal bundle ofM5 hasn coordinates in commo
with the normal bundle ofM2, precisely the ones o
N , so we can split the normal coordinates ofM5
as ya = (yr, yi) (r = 1, . . . , n) (i = n + 1, . . . ,5).
Near Σ we haveyr = 0, while theyi become 3−
d = 5 − n normal coordinates forΣ with respect to
M2. Correspondingly theSO(n)-connectionW of N
is embedded in theSO(5)-connectionA according to
Ars = Wrs , T = dW + WW .

We perform now the evaluation ofK|M2 nearΣ ,
i.e., foryr = 0 and keeping only terms that can giveδ-
function contributions when applying the differenti
for each case separately.

d = 0. In this caseΣ is a point in D = 11,
corresponding to a two-dimensional surface inD =
13, and its current is an eleven-formJ = J11. The
fiber ofN is two-dimensional (n = 2), with structure-
groupSO(2) and Euler-formχ2(T ). The identity to be
proved is therefore

(A.2)d(KJ8) = J11χ2(T ).

δ-function contributions localized atΣ are supported
in yi = 0 (i = 3,4,5) and they can arise from th
angular form

K0 = 1

8π
εijk ŷi dŷj dŷk,

sincedK0 = d3y δ3(y). It is then easy to evaluate (2.
for yr = 0 (r = 1,2) and to extract the contributio
proportional toK0,

K|M2 = 1

4π
εrs

(
T rs + (

δij − 3ŷi ŷj
)
AirAjs

)
K0.

Since one hasd[(δij − 3ŷi ŷj )K0] = 0, when taking
the differential only the first term contributes with
δ-function and one gets

d(K|M2) = d3y δ3(y)χ2(T ).

(A.2) follows then from (A.1) and fromd3y δ3(y) ×
J8 = J11.
d = 1. In this caseΣ is a worldline inD = 11 and
its current is a ten-formJ = J10. The fiber ofN is
three-dimensional (n = 3) and its Euler-form vanishe
The descent-identity reduces therefore to

d(KJ8) = 0.

As above one should extract fromK|M2, taken at
yr = 0 (r = 1,2,3), contributions proportional to th
angular form, that is nowK0 = 1

2π
εij ŷi dŷj (i, j =

4,5), dK0 = d2y δ2(y). But sinceK contains only odd
powers ofŷ, andK0 is even inŷ, in K|M2 the angular
form K0 appears always multiplied by odd powers
ŷ, and taking the differential the currentd2y δ2(y) can
never show up. This implies thatd(K|M2) = 0.

d = 2. In this caseΣ is a two-surface inD = 11,
and its current is a nine-formJ = J9. The fiber ofN is
four-dimensional (n = 4) with structure-groupSO(4)

and Euler-formχ4(T ). The identity becomes then

d(KJ8) = J9χ4(T ).

In this case one hasr = 1,2,3,4 andi = 5, and it is
straightforward to evaluate (2.5) atyr = 0,

K|M2 = 1

4(4π)2

y5

|y5|ε
r1r2r3r4T r1r2T r3r4

= y5

2|y5|χ4(T ).

The differential of the “angular-form” is here simp
d(y5/2|y5|) = dy5 δ(y5), and one gets

d(K|M2) = dy5 δ
(
y5)χ4(T ).

One concludes then as in the cased = 0.

d = 3. In this case we haven = 5, J = J8 and
χ = 0, and the r.h.s. of (3.1) vanishes. On the ot
hand, sinceΣ = M2 ⊂ M5, the pullbackK|M2 would
require to evaluateK for ya → 0. But this limit
depends on the direction̂ya = V a(σ) one chooses
to approachM2 at each pointσ , and K|M2 is ill-
defined. Notice however, that if one performs the lim
along an arbitrary but fixed vector fieldV a(σ), then
the resulting four-form(K|M2)

V can be shown to
be closed. But such a definition saves the iden
(3.1) only formally, becauseK|M2, and henceKJ8,
acquires a dependence on an unphysical vector fi
and it cannot be used in the WZ-action.
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