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The Weight Enumerators for Several Classes
of Subcodes of the 2nd Order Binary Reed-Muller Codes*

T. Kasamr

Department of Information Engineering, Osaka University, Toyonaka, Osaka Japan

In this paper explicit formulas for the weight enumerators for several classes
of subcodes of the 2nd-order binary Reed-Muller codes are derived. A large
set of the codes are shown to have the same weight enumerators. The classes
of codes studied in this paper contain the (0, 2)th-order Euclidean Geometry
codes and the codes studied by Berlekamp as subclasses.

INTRODUCTION

Recently, a theorem was proved by Berlekamp (1970) which asserts that
all sufficiently low weight codewords in certain supercodes of the (m — 3)rd-
order Reed-Mulier code must also be in the (m — 3)rd-order Reed—Muller
code. Theorem 1 is a simple generalization of Berlekamp theorem, Theorem 2
is a generalization of Berlekamp—Sloane theorem (1969), and Theorem Al
is an extension of the results by Berlekamp and Sloane (1970). These new
results, in conjunction with previously known results, enable us to derive
formulas for the weight enumerators for several classes of subcodes of the
2nd-order Reed-Muller codes. Theorems 3 and 4 show that a large set
of the codes have the same weight enumerators. The classes of codes studied
here contain the (0, 2)th-order Euclidean Geometry codes and the codes
studied by Berlekamp (1970) as subclasses.

1. DEFINITIONS AND THEOREMS ON WEIGHT RESTRICTION

Let « be an element of order # in GF(¢™), where ¢ is a power of a prime p.
Cyclic codes of length 7 over GF(g) will be considered.

Let o(X) = ¢, X" + ¢ X%2 + -+ 4 ¢, X%, where 0 < uy <uy < -+ <
u, < mc; 720and ;e GF(g) with 1 <</ << ¢

* The research reported in this paper was supported in part by NASA grant
NGL-12-004-046.
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370 KASAMI
Let' R = {e | v(o®) == 0} and
%
J(X) = _Ul(X — o).

LemMa 1. Let R be the subspace spanned by {X*|ee& R} of the residue
classes modulo f (X)) over GF(q™). Then, for any e ¢ R,

Xe¢ R.
Proof. Suppose that
Xe =Y ;X' mod f(X),

J€R

where b; € GF(g™). Then, for 1 < ¢ < ¢,

eu, ___ Ju,
81 = z bja .

JER
Hence,
¢ t
oof) =Y o™ =Y Y ebo =) bu(d) = 0.
=1 i=1 jeR jeR
That is, e e R.

Levmma 2. Let a and A be positive integers, and let
0oy <w, < <w, <n.
Then, (1) there are b, ..., b, in GF(g™) such that
X4 =Y b,X47" mod fo(X)

2=1
8
("r XA = by + 3, XA mOdfo(X))’
=2
and (2) there are by ,..., b in GF(q™) such that
XA47 = Y b, X4 mod fo( X)
i=1

(Or X470 = b 4+ Y b, X497 mod fO(X)),

where fo(X) = (X — o) - (X — o).

1 Exponents are to be taken as modulo #.
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Proof. XA, X47° .. X49" cannot be linearly independent in the residue
classes modulo f(X). Hence, there exist 4;,..., 5, in GF(¢™) such that

Y. by X47" = 0 mod fy(X),

i={

where b, £ 0 and 0 <X/ <Cs. Let j be the smallest nonnegative integer
such that pei+7 — [ is divisible by 7. Then, awe4?™™ = qwid for 1 < i < s.
Hence,

XA4r*™* = X4 mod Jo(X).
Thus,

[

s 7 &
(Z bz.’XAP‘”)p = 5PX4 L Y B XA" = 0 mod f(X).

=] =1

Since &'?' =~ 0, the first case holds. Similarly, the other three cases can be
proved.

Let A, with 0 <7 < /and 0 <{j < ¢; be nonnegative integers such that
either

A, = A4;p" with 4;,>0 and @ >0 for 0<j <1,
or

Aio = 0>
Ay = A,p"5 D with A; >0 and a,>0 for 0<j<H4,.

If Ay 7 0, then let 7, = 0 and, otherwise, let 7, = 1.

Taeorem 1. Suppose that A, + ZLI A, & R and that except for j, = j, ,
h=t,.oji=1,

11
Y Ay eR with  0<j; <.

g
2=0

Then,
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Proof. Assume that ¢ < ZLO t,. Then, by Lemma 2 there exist ;s
in GF(g™) such that

to
X =Y by, X mod(X — o) -+ (X — oMot
0

1=0

t—1
X = ¥ by X mod(X — o) - (X —ot)  for 1<i<],

=0
Wherebojl;:()and{ui,-[o CIi<L1<j<t}={u; |1 <7 <1} Hence,

to 14 £,—1
(X"" -3 bm-X""J) I (Xm- -3 b,,.XAw) — 0 mod f(X).
=0 =1 =0
Thus, residue class X4o+X,_ % is a linear sum of residue classes XEi o7
with 0 <j,<t,, 0<j; <#,.,0<j <t except for j,=7,,
Ji =1 ., j; = t,. From Lemma 1 it follows that

13
Ay+ Y Ay, €eR
=1

.. . v
This is a contradiction. Consequently, ¢ > Y, % .

Remark 1. Let t, =0, t;, =1, Ay =1, A;p =0, and A; =1 for
1 << ¢ < . Then, we have the BCH bound.

Remark 2. Let Cbeabinary cyclic code of length 27 — 1 whose generator
polynomial is g(X), and let « be a primitive element of GF(2™). Suppose
that g(X)’s roots include o for all ¢ in the set

1 4 20%e, 1 4 2i%a, ] L Qe

where a is a positive integer relatively prime to m, b is a nonnegative integer,
and « is a positive integer less than m.

(1) If ve Cis a code-word of weight < #, then v is also a code~word
in the (m — 3)rd-order cyclic Reed—Muller code of length 2™ — 1.

(2) If g(a) = 0, u is even (or odd) and v € C is a code-word of weight
<L u-+4 2 (or u+ 1), then v is also a code-word in the (m — 3)rd-order
cyclic Reed—-Muller code of length 2™ — 1.

The proof is similar to the one of Corollary 1. Remark 2 is a strengthened
form of Berlekamp’s Theorem (Berlekamap, 1970). In (2) of Remark 2, let
eithera=1L,b=m—¢t+hLu=2t—1ora=1,b=5 u=2t—1.
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Then, we have Berlekamp’s Theorem. His assumption that C is invariant
under the translational group is removed. For even %, this remark gives a
stronger result.

Let (a, b) denote the greatest common divisor of integers a and b. Let?

wlm, ) = || + 1

and if mf(m, j) is odd, let
uy(m, j) = w,(m, j)
and if m/(m, j) is even, let

. m
uy(m, j) = [W]
For 1 <j<m/2 and 1 < u < wuym,j), let B be the cyclic code of
length 2™ — 1 whose generator polynomial is
4—1
g(X) = [] MO#X),
=0
where M P(X) is the minimal polynomial of o’ and « is a primitive element
in GF(2™). For 1 <j<m/2 and 2 < u < uy(m, j) + 1, let 2'* be the
cyclic code of length 2™ — 1 whose generator polynomial is

u—2
g(X) = MY(X) H M(1+21(2¢+1))( X).
2=0

For 1 <<j <m/2 and 1 < u < uy(m, j), let F'™ be the cyclic code of
length 2™ — 1 whose generator polynomial is®
u—1
2(X) = [T Me2* ™y X).
=0
For even m, 1 <j < m2 and 1 < u < [m/(2(m, )], let #¥ be the
cyclic code of length 2 — 1 whose generator polynomial is

u—1
gX) = MO(X) [T ME+2"7(X),

=0

2 la] denotes the greatest integer not greater than a, and [a] denotes the smallest
integer not less than a.
® In general, & { is not invariant under the affine group of permutations.
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For even m, 1 <j < m2 and 1 < u < [m(2(m, f))], let #* be the
cyclic code of length 2™ — 1 whose generator polynomial is

u—1
g(X) = [ M),
=0

Then, the extended code of #{* is identical with Z* in (Berlekamp, 1970),
and for odd m (or even m) the extended code of Z{%_,, , (or #{") is identical
with 2 in (Berlekamp, 1970).

The duals of Z{", 2\, F, ™, and £ will be denoted by o7,
Em, M, 94, and S, respectively. The duals of the even parts of #{%,
@, F, #M, and £ will be denoted by (¥, €, £, F and
S, respectively.t For even m, Ay is the (0, 2)th-order Euclidean
Geometry codes (Weldon (1967), Berlekamp (1968)).

COROLLARY 1.

() Ifve B is a code-word of weight < 2u, then v is also a code-word

. tugtma))
n E@(m’]) .

(2) If (myj) = (m, 2j), and if ve D U F™ is a code-word of weight
< 2u, then v is also a code-word in ﬂt;‘n‘f;"'m

(3) If(m,j) 7 (m, 2f), and if v e K (or FP) is a code word of weight
< 2u (or 2u — 1), then v is also a code-word in Qﬁfjgf’m

@) If (m, §) # (m, 2j), and if ve D (or F ) is a codeword of weight

. . {ug(m,g)-+1) o\ Ug(m, 1))
< 2u, then v is also a codeword in 9, | (or Fiisy)

(5) If m is even and (m,j) = (m, 2f), and if ve A (or F)is a
code-word of weight < 2u (or 2u — 1) then v is also a codeword in & Efn"%’z’ " (o7
y(ul(.m,m

tm, )12

o . 3 (2u—3)
Proof. By definition, 2§ has o}, o2, o127 as roots of the
generator polynomial. Hence,

Q2T a1+2m»—a, azmv31(1+23]) —ot +2m—3:’m’ a62m~(2u—3)](1_‘_2(214—3)a‘) _ 01,1'*’27”—(2“_3)]
are also roots of the generator polynomial. Let ¢(X) be the polynomial

corresponding to code-word v. Suppose that o(at+2"* ™) = 0 for all ¢ with
0 <7 < m. It is shown easily that if (m, j) = (m, 2f), then

G4 1)10 < i <m) = {(m )i |0 <i<m

4 The subcode of C consisting of all the even weight codewords will be called the
even part of C.
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and otherwise, {j(2/ -+ 1) | 0 i < m} ={(m, )(2{ + 1) | 0 < 7 < m}. Hence,
if (m, j) = (m, 2j), thenv e 99(:;1(;)” " and otherwise, v € ,,@(7,;2(7"; D . Suppose
that there is an 7, > u — 1 such that o(a+2"*™) = 0 for 0 < i < 4, and
o(al+® ™0y —£ 0, If the weight of v is even, then let p = 2, [ = 1, £, = 1,
Ay =0, Ay =1, ty =u 414y, Ay =0, 4, =27 @3 and a, = 2j.
Then, Theorem 1 guarantees that the weight of v is greater than £, - #; =
1 4+ 4, + u > 2u. If the weight of v is odd, thenletp = 2,1 =1, f, =0,
Ag = 1ty = u + iy, Ay = 0, 4, == 2m~2w-3iand g, = 2j. By Theorem 1,
the weight of v is greater than 2u — 1. Thus, (2) of this corollary holds for
2. Similarly, the other cases can be proved.

W, (i) will denote the sum of the coefficients of the radix-¢ form of 7.
For positive integers tand j, let K(z, j) = {£ > 0| Wy(i) > 3 U {i | W,(i) = ¢
and 7 > 22} U {7 |7 = 2% 2% — 2l — |, where /% and [ are positive
integers such that /f << & <C ¢ - 2}. Let « be a primitive element of GF(2™).

TrHEOREM 2. Let j be a positive integer which divides m — v - 2. If
w << 2 — D with 2 <r <m—2 and if the roots of the generator
polynomial of a binary cyclzc code C of length 2™ — 1 tnclude all o for which

I << 2w
and
i¢ Kim—r,j),

then the extended code of C contains no code-words of weight w unless
w = 27"+ — UL for some | with 1 <1< (m—v-F2))5. The proof of
this theovem is stated in Appendix 11.5

COROLLARY 2.

(1) Ifve @™ U.I, where mi(m, j) is even or ve ) U €M U £,
then the weight of v is of the form

2m-t | 21
where m|2 < i < m, i is divisible by (m, J) and e is etther 0, 1, or —1.
(2) Ifve ™ and v 5~ 0, then
i << mf2 + (u— 1)5.
(3) Ifve®™ and v + 0, then
1 << mf2 + Qu— 3).

5 Casual readers may skip the proof since in this paper this theorem is used only for
the case of # = 2, which is covered by Lemma Al.
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@) Ifvecé™ and o+ 0, then
1 << mf2 + Qu — 1),

(5) Ifve%™us™, v=£0, and ml(m, j)is even, then
i << m2 + (u— 1)].

Proof. (1) Since &, €, &, ¥\, and # ¥ are subcodes of the
second-order cyclic Reed—Muller code, the weight w must be of the form

2m—1 _lL_ 621'—1’

where m/2 < ¢ <X m and e is either 0, 1 or —1 (Kasami (1967)). If w < 271
with m = 5, then w < 271 — 2. By Theorem 2, { is divisible by mod(m, §).
If m <4 and w =271 4 2, then 7 is divisible by (m, j). Assume that
o == 2m1 L 201 with £ > 2 and ¢ is not divisible by (m, j). Then, since
M, EW, £, G, and S ™ contain the all one vector, the extended
codes of ™, €, £, G{* and S contain a code-word of weight
2m-1 — 21 This contradicts Theorem 2. (This part also follows immediately
from Lemma Al.)

(2) Since &7 is a subcode of the dual of the 1 - 2-Vi~1 error
correcting BCH code, the Carlitz—Uchiyama bound (Berlekamp (1970))
guarantees that its minimum weight 4 is bounded by

d > 2m~1 __ Jm/2H{u~1)j-1,

That is, if v €7\, then
1 << mf2 4+ (u— 1)j.
Similarly, (3) and (4) can be proved.

(5) The BCH bound guarantees that the minimum weight d of &\
or S is bounded by

d > 2m—1 __ Jm{2+(u-1)j-1, (1)
This implies part (5), if m/(m, j) is even.
For nonprimitive cases, the following corollary holds:
CorOLLARY 3. Let m be even, let 1 < j; << m/2, and let j = (m, ;).
(1) Ifved¥, v+ 0, and mfjis even, then the weight of v is of the form

M (=1 2 ath 0 < i < Quo— 1) jufj
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(2) Ifved, v 0and m|jis odd, then the weight of v is of the form
2ml__(—1)f2mAERL with 0 < i< Qu— 2) Juf)

Proof. (1) &, is a subcode of &™) Since m/j is even, 27 — 1
is divisible by 2/ +- 1. Hence, the order of a!*?’ is (2™ — 1)/(2/ 4 1). Since
2341 4 ] is divisible by 22 +- 1, a codeword of &\"*™ " is derived from
a codeword of a code of length (2™ — 1)/(2/ 4- 1) by repeating (27 -} 1)-times.
Hence, the weight of a codeword of &, ™" is divisible by 2’ -- 1. Thus,

by Corollary 2, part 4, the weight w of a nonzero codeword of & 9‘1“ is either
w = 2m-1 . 21
where mj2 < i << mf2 + (2u — 1)j; and (m — i)/j is even, or
w = 2"t 4 2
where m/2 <{ i < mf2 + (2u — 1)j; and (m — ©)/j is odd. Since m is divisible
by 27, w is of the form
2mTh (1) 2mL with 0 <4 << (20 — 1) fuf.

(2) Since m is even and m/j is odd, j must be even. By definition,
S is a subcode of @“’;722”"’]/2)). From the proof of part (1),  is of the form

w — 2717—1 _ (_l)z 2m/2+2’j/2—1

where 0 < 7 < m/j. By the BCH bound (1) for #{*,
0.<i < 2u— 1) i

2. SoMmE THEOREMS ON WEIGHT DISTRIBUTION

In this section, a large subset of the codes defined in Section 2 are shown
to have the same weight enumerators.

Let C and C’ be g-ary linear codes of the same length » and the same
dimension &, and let C; and C;" be the duals of C and C’, respectively.
Let 4, and 4,/ denote the number of code-words of weight @ in C and (",
and let B, and B,’ denote the number of code-words of weight w in C,
and Cy', respectively.

LemMma 3. Let O < wy < - < wy, << n. Suppose that A, = 0 for either
0 <w <<worwy, <w<<n,andthat A, = A, unless either 0 < w < w, ,
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Wy, <w <<norw=uw, wthl <i<2u lIf B, =208, for- 0 o << 2u,
then A,, = A, for all w.

Proof. If w; =1 and w,, = # — 1, then this lemma follows directly
from the Pless Theorem (Pless (1963)). Assume that w,, << 7 — 1. (In case
that e; > 1, almost the same argument holds.) Let w,, 4 = w,, + 1 < .
By the Pless power-moment identities (Pless (1963), Berlekamp (1968))
for C and ', we have that for ¢ > 0,

t
S wid,=¢"Y BFn) — 4, —n'4,, )
WKWK Wayyg =0
w1—1 n—1
Y w' A,/ +ZwA + X w'd,
Wy KWK Wy g W> Wy
¢
Y B — A — Ay, ®
=0

where 4y = 1,4, = Ofort > 1 and F{’(n) is dependent only on ¢, ¢, ¢, and z.
Then, we have that for 0 < ¢ < 2u,

2u+1 ¢ wi—1 . n~1 ;

7 ’ 4
Y wldy,—4,)+ Y WA+ T w'd) —o.
2=1 w=1 W Woy g

Let 8 ,..., 8y, be the clements of the last row of the inverse matrix of

1 J T 1
wy Wy Woy 41
'uilz w.zg w%u+1
(w)?* - (e0gu1)™
Then,
ou 2wl w1 n-1
> a3 wid, —Au)+ ¥ W'+ Y wa, |
t=0 =1 W Wayyqy
w1—1 ~1
=Ady, .+ Y 4, ZStw + Z A, tZStw
w=1 W> Wy 4 g =0

= 0.
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From the known property of van der Monde determinant,

2u
Y 8wt >0, for w<w or w>>w.
i=0

Hence, we have
A, =0 for 0 <w <w; or w,, <w <mn.

Thus, by (2) and (3) we have Lemma 3.
Now, we have the following theorem:

THEOREM 3. Let j be a factor of m such that m(j is odd and m = j. For
any positive integers jy , jo , and jy such that (m, j;) = (m, j;) = (m, j3) = J,
A, G and &1 (or B, Q‘“’ and F ') have the same weight enumerators
as &/‘“’ (o7 95?“”) where ] < uy(m, ])

. (uy(m,1)) :
Proof. Since ", € and & are subcodes of o/ S 2™, there is no
code~word of weight @ unless w is of the form

w = 2 4 2, )

where € = 0 or 41, m/2 <7 < m and { is divisible by j (Corollary 2,
part (1)).

By Corollary 2, part (2), there is no code-word of weight w in o7 J(“’ unless
w = 0, 21 or some number of the form w = 2m~1 £ 21 with m/2 < i <
m|2 + (. — 1)j and 7 = 0 (mod j). Since # is not divisible by 2j, @ is
either 0, 2 or

Il g omenzietl with 1 <i<u— L )

By the assumption, (m, 1) = (m, jo) = (1, J5) = j = (m, 2f) = (m, 2J5) =
(m, 2j5). Since B,*, #9, Z7 and F are supercodes of 2,2
Corollary 1, parts (1) and () 1mply that Z\, #9, 29, and 9"“) have
the same number of code-words of weight = for 0 <w < 2u Consequently,
this theorem follows from Lemma 3.

Remark 3. Consider &'®, where mj(m,j) is odd. Then o'*?" =
QF20-242") and o142 and o2 are primitive elements of GF(2™).
Theorem 3 and weight restriction (5) imply that the cross-correlation between
two maximal linear shift register sequences with recurrent polynomials
M®(X) and MO-¥+2")(X) is a three-valued correlation. This was first
proved by Welch (1969) by a different approach.
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TuroREM 4. Let 1 < j; << mf2 and let j = (m, j,). For 1| < u < uy(m, §),
& and £ (or F i) and F ) have the same weight enumerators.

Proof. If m[jis odd, then this theorem is covered by Theorem 3. Suppose
that m/[j is even. By Corollary 3, part (1), the weight of a nonzero codeword
in &5 (or &) is of the form,

om=1 __ (_1)1 2m/2+i]’—1

where 0 <7/ << 2u— 1 (or 0 <7 << (2u— 1)j/j). Corollary 1, part (4)
shows that f W and F{* have the same number of code-words of weight w
for 0 < w << 2u. Thus, Theorem 4 follows from Lemma 3.

We use a version of the theorem due to McEliece (1970). Let C be a
binary cyclic code of length # = 2™ — | whose check polynomial’s roots are
{of [1€Q}. Let Sy, Sy ..., Sy be elements of GF(2™) such that

S; =0, unless 1 €0, 6)
Szi =S84 (7)

where suffices are to be taken as modulo 7.
TreoreM (McEliece). Suppose that for allv < land for all Sy, Sy ..., Sy
satisfying conditions (6) and (7),
S,;.S;, 8, =0.

217 % v
Gy tigtent+i, =0

Then, the weight of a code-word of C is divisible by 2™, and the number of
codewords of C whose weight is divisible by 2* is equal to the number of n~-tuples
(Sp seer Spq) which satisfy the following condition besides (6) and (7):

83,8, *++ S;, = O.

iy+igtee ¢y =0(mod n)

Let I have the same meaning as in the McEliece Theorem, and let Q'
be the set of those ’s in Q for which there exist 7, ,..., 7, in Q such that

i 4yt b4, = Omod 2m — 1.

Let C’ be a cyclic code of length 2™ — 1 whose check polynomial’s roots are
{of | £ €Q'}. Then, the following simple corollary holds:
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CoroLLARY 4. C and C’ have the same ratio of the number of code-words
whose weight is divisible by 2' to the total number of code-words.

For example, if m is even, then ¥ and .#{* have the same ratio of the
number of code-words with weight 271 4 2m/2-1 to the total number of
code-words.

There are some questions. For 7, and j, such that (m, j;) = (m, j,) and
mf(m, j1) is even, do Z{* and #Z{¥ (or ¥\¥ and ¥, or F{¥ and F}¥)
have the same weight distribution ? Are the codes stated in Theorems 3 or 4
isomorphic to each other under some permutation of the coordinates ?

Very little is known on the weight structure of subcodes of the 3rd or
high order Reed-Muller code (or supercodes of the (m — 4)th or lower
order Reed-Muller code). The following remark on the minimum weight
code-words is a strengthened version of Theorem 11 in (Kasami-Lin—
Peterson (1968a)).

Remark 4. Let C be a p-ary cyclic code of length p™* — 1 with generator
polynomial g(X), let 8 be a primitive element of GF(p™%)and let I < ¢ << m.
If g(B*) = O for every 7 such that

0<i < z(p(m—c)s . 1)’
W) < (m—e)(p* — 1),

then any code-word of minimum weight p™=9¢ — [ is a scalar multiple
of the incidence vector® of an (m — c)-flat through the origin in EG(m, p*).

This remark is proved by showing that the reciprocal of the locator
polynomial of a code-word of weight p'™—¢)* — 1 is an affine polynomial.

3. WEIGHT ENUMERATORS

In this section, weight enumerator formulas will be derived for &{* with
all possible % and j, for &/ and € with odd m/(m, j), for Z{* and ¥{*,
where m is divisible by j and mj is even, and for #{*, where m is divisible
by j. By Theorems 3 and 4, we assume without loss of generality that m
is divisible by j. Weight enumerator formulas for 27{* and #{* with odd m
and for o7{* and 9% with even m were derived by Berlekamp (1970).
Except for these two cases, the following results are new.

% The component corresponding to the origin is deleted.
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3.1 Weight Enumerators for o, €5, and & with Odd m|j

Let j be a factor of m such that m/j is an odd integer greater than 1. By
Theorem 3, o7, €4, and & have the same weight enumerators. Formulas
for weight enumerators for 2/{" with 1 <u < wy(m,j) will be derived
below. A% and B will denote the number of code-words of weight w in
A ™ and B, respectively. o7 is the even part of 7. Since 7.
invariant under the affine group of permutations, the following equation
due to Prange holds (Berlekamp, 1968):

(u) 5
j 18

A(u) — A(u)

2i—1 2M—23

— 2i4")@™ — 2i). (8)

Hence, it is sufficient to find 4§ + Agn o; .7 For 1 <i <u—1, let

aé") = Z_MM(Aé?n)—l_z(m—a)/2+ia—1 + A;z)-—1+2(m-a)/2+ii—1)- )
(Refer to (5).) By the Pless translated power moment identities with center

2m-1 (Pless (1963), Berlekamp (1968)), we have that for 1 < < wy(m, f)
andt > 1,

o 2%
Q2mt-mu | Z 2(m+2i?'—-:i)taéu) — Z Béu)Fz(i)(zm _ 1), (10)
=1 i=0

12
22mt—m(u+l) + i 2(m+2ii—j)taz{u+l) — i B§u+1)Féi)(2m — 1) (11)

i=1 i=0
By Corollary 1, B{*) = B{»+Vfor0 < i < 2u. Hence, for 1 < ¢ <{ uwe have
i 2it(glutl) — gy = Dlmii-mu(] — 2-m), (12)
=1

By solving simultaneous equations above and using the formula for van der
Monde determinant, we have

i—1 j iy +i j
u) — D—mu—(2i-1)j(Im (2m+] _ 22“) (ZMK] - 22t])
a§u+l) — a; Y =2 (2-Di(2m — 1) tI—_[ % — 22t9) it (2262 — 22t)

=1
J— (_l)u-—z 2—mu—(2£—1)5+(u—i+1)(u—i)]‘(zm . 1)

=1 _ omtd—2it ¥l _ Qm—(2i+2t-1)i

<=z =7

7 Since 5, AW = 274, A 4 is found from other A$7’s.
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For the convenience of notation, let

1) h 1 — 2220411
b, == for 50
=1, for A =0,

where 2/ and % are nonnegative integers. Then, for 0 < & < w(m, j) — i,

) 7
a§z+ +1) a§z+ )_

— (— 1)t 2 i@ Di—tm—(0h (O [ [(m :_]){(2])] [(m ~]-)£(2j) - 1] §

(13)

Since a!* = 0, we have

i

(14)

7 —

DA gl — Jm—(@i-1y(Qm 1) [(m “])/(2])] .

12 1 ;
For j = 1, this formula was derived by Berlekamp (1970) in a different way.
By (13), we have that for 1 <7 <Cuy(m, j) and O << 7 << uy(m, j) — 4,

@it — Q-mi—@i=1y(om 1) [(m _]){(2])]
2 7 —

2

x (1 + é ()i [0 M) = ’]) (15)

A compact form of the last factor of (15) is unknown except for u = u,(m, j)
(refer to Theorem Al).

3.2 Weight Enumerators for Nonprimitive Cases

Let j be a factor of m such that m/j = 2 mod 4. E{¥, F{¥, I'® and J¥

w
will denote the number of code-words of weight w in &%, F¥, #{") and

2, respectively. Referring to Corollary 3, let

) —kgp(u)
aﬁ” =2 E2Z~1‘(,1)12m/2+w—1

for 1 <u <<[m/(4j)] and 0 < ¢ << 2u — 1, where b = mu for 1 <u <
[m[(4)] and k& = m(u — 1/2) for u = [m[(4j)], and let

(W) __ ~A—mu—1/2) y(u)
B =2 I

am—1_(_1)igm/etis~1

for I <u <[m/(4/)] and 0 < i < 2u — 2. From Corollary 1, parts (4)
and (5), it follows that

F® — J9  for 0w < 2u—1.

643/18/4-6
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Use the Pless translated power moment identities with center 21, Then,
forl < u < m/(4j),

f (—2)H (b — gi) = 2mp-mustH(2m 1) for 0 <1< 24,

e (16)
% (—2)i(Bi+D) — pwy = gmiamtuiD(Om — 1) for 0 <t < 2u— 1,
o (17

where af®) = bj¥) = b{* | = 0. By solving (16), 5{»*V — @' can be found.
Since a‘ﬁ’ =0, b“jfl’ can be found. Substitute this value for 45" in (17),
and solve (17). By a similar way to the one used in Section 3.1, each 5{™
can be found. Then, a{* with 1 < u < m/(4j) can be determined. For
u = [mj(4))], & = b by definition. Thus, formulas for a{* and 5{* can
be derived.

3.3 Weight Enumerators for oZ\" and G with Even mj

Let j be a factor of m such that m/j is even. A{* and G* will denote
the number of code-words of weight w in 7" and Z{*, respectively. Refer
to Corollary 2, parts (2) and (5). For 1 < u < mf(2f) and 0 <7 < u, let

—~muy g{u)
=2 (Azm —1_gm/2+25-1 + Azm 1+2m/2+za—1)y

bl(-u) = 2_m(“+1/2)(G;’$)_1_2m/z+u_1 + G;Z)—l_l_zm/h—u'—l)-

By definition, @ttm/ @) — pim/@N) Let q; = a+m/%), Then, the following
equations are derived by a similar way to the one used for (12):

1/22 22iit(a§u) — aéu—&)) — 2mt—mu(2m _ 1) _ 22(u—1)7ta1(;i)1
=0
for 2 <u<<m{(2j) and 1<t <u, (18)
uil 22iat(b(u) _ a{u)) p— 2mt—m(u+1/2)(2m/2 _ 1)
=0
for 1 < u << m/(2)) and 1<t <y, (19)

m/(29)
Z 22“t(a(u) — a) = Qmi-mu + Z Zzuta

i=u

for 1 <u<<m{(2) and 1< (20)
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We first derive a formula for a!); from (20) and Theorem Al. Then, a
formula for a{* will be derived by using the formula for a{*; and (18).

%—~1
By solving Eq. (20), we have
o o qyumi a—giml—wt (umo) i) [P(2])] [m)(2]) — 1 —74
a’ —a = (=172 [ i H u—1—3 ]

m/(27)
e ~—3% YR Tt t—1 —
us (_I)u 1 5 2654+-(u—2) (u—i—1)7 Z o2t [][ l] a,.
7 J

= il —1 —4
1)
Fori =u— 1,
. m/(23)
afitl = ——tm+2i [m/ (izj)]j + 272 t -21 2% EL a,
=g}
i [MCD) | gmsy T g e [I2) —
— - D—lmi29) [ ; ]] + 2m=2u t;) 2 2“[ ; ]jam/(w)-—t-

From Theorem Al in Appendix I,
2t 00,0, = 21w 1yt [P [0 D) o)
3 7

where [t]; = szl (1 —2%)if £ > 0 and [0], = 1. Hence,

m/ (@) —2—1

mi(2]) — ¢
2m-2 Z 2_2Jt[ I ]-) ] Ly (20)—t
i=0 ! 3
m{25)~2—1
_ 27:1—2&1—772(M+J)/(2]) Z (_l)tzt(tﬁlh
t=0

y [m/(zj_) — t], [m/(2j)] [(m —;’)/(21')]

7 4

-

J

By an identity due to Berlekamp (1970), this equals to

7

2—(m+)e [m/(zj)] .

Thus, we have

D = 2-tm2ii(2ii 1) [m/§2j)] . (23)

2



386 KASAMI

For j = 1, this formula was derived by Berlekamp (1970). By solving (18),

aéi—[»h—]—l) — ai,“"”

- (_I)h 2~(m+2a')z~(m—(h+1)a)h (_(2m 1 [m/ 22])]

. [m/(2]) —i— 1] L (2(i+h)j _ 1) [i + h] [m/(Z])] )

h—1 ] i+ h
{ 1yhe —lmi2n)i—(m—(+D)DR m/(2]) mj(2f) —i—1
= R e S}

) ((Zm—2ij ;2;}])(3(i;-h)] — 1) . (2m . 1))

Hence, for 1 < k& < mf(2j) — i and 0 < i < mf(2)),

a§i+h) _ 2—(m+2i)i [111/52])] (2iy —14+ hz_ll (_1)t 2—(m—(t+l)j)t
? =1

<[ EEHEED )
By (19), we have

DI gth) — (] yIQ-mi2im =Gt 2 — 1) [m/ E_zj)]
7

h—1
for 1<h<mi2)—i and 0<i<mlQ2) (25

) [m/(Zj) —1 — 1]] ’

A formula for b+ follows from (24) and (25).

3.4 Weight Enumerators for J\» with Even m|j

Suppose that m/j is even. By Corollary 2, part (5), the weight of a code-
word in ¥ U AW is of the form,

zm—l + e.2m/2+13—1’

where ¢ is cither 0, 1 or —1 and 0 <7 << u — 1. Let G, (or 1)) denote
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the number of code-words of %{* (or £ of weight @, and for 0 <i <u — 1
let

ﬂz = 2_mu—m/2(G2m~—1+2m/2+zj—1 + sz-—l_zm/2+zy—1)!

’ —nu—
ai = 2-mu m/Z(sz—1+2m/2+zi~1 - sz—l__zm/2+za—1))
bi == 2—mu+m/2(12m_1+2m/2+”_1 + Izm—lkzm/2+u—1)’

’ —
bi = 2 mu+m/2(12m—1+2m/2+ii—1 - Izm—l_zm/2+21—1)-

By Corollary 1, part (3), the dual codes of #{*) and #{* have the same
number of codewords of weight w for 0 <C @ <{ 24 — 1. Hence, by sub-
tracting the Pless translated power moment identities with center 271 for
J W from those for ¥{*), we have that

u—1
22mt~mu(2-m/2 . 2m/2) + Z 2(m+2u)t(ai _ bi) =0,
i=0

for 1<t<<u—1,

_22mt+m—mu(2—m/2 o 2m/2) +uil 2(m/2+i9)(2t+1)(ail . bz,) — 0,

=0
for 0t <Cu—1.
By Corollary 4, we have
ay = by.
Since the coeflicient matrices are nonsingular, a; — b, and a; — b, are
determined uniquely by the linear equations above. Since ¢, is found in

Section 3.3 and a4, is derived from a; by using the Prange Symmetry relation,
b, and b, can be found.

APPENDIX I: Weicnr Exumsrators For ;2"
,,Q/iul(m'l)) is the even part of the 2nd-order cyclic Reed-Muller codes,
and for even m, o ;ul(m’z)) is the (0, 2)th-order Euclidean Geometry codes.

Theorem Al is an extension of the results by Berlekamp and Sloane (1970).
Let j be a factor of m and j == m. Let m/j = #. By definition, «" is a root
of the generator polynomial of ﬂ;ul(m’m if and only if

min W,,(72") < 3.

0TI <j
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This implies that ,@;ul(m’m is a polynomial code, that is, the binary subfield
subcode of (#(2? — 1) — 3)rd-order generalized Reed-Muller code of length
2™ — 1 over GF(2’) (Kasami-Lin—Peterson (1968b)). Therefore, the extended
code of o7 ;ul(m’j)), denoted by &7, can be characterized as follows. Let Py
be the set of polynomials of variables X] ,..., X of degree less than 3 over
GF(29). Yor f(X;,..., X5) € Pg, let o( f) be the binary vector of length 2™
whose first component is £ (0,..., 0) and whose i-th component with 1 <7 < 2™
is f(ay , @z s @), Where Bt = Y ;.81 with a;, € GF(2/) and B is a
primitive element of GF((2))™). For f€ P, v(f) is orthogonal to every
code-word of the extended code of 2, ™", (Kasami-Lin—Peterson (1968b)).
Hence 2(Tr(f)) is orthogonal to every code-word of the extended code of
B2 where Tr(f) = f+ f2 + - + f¥7. That is

A, 2{o(Tr(f)) | f € P

Let P, be the set of those polynomials in P, which are of the form

€+ Z ¢ X; + Z e XXy,
7 i<h
where ¢, € GF(2), ¢;€ GF(2)) and ¢ € GF(2?). Since Tr(cX?) = Tr(c'X)
with ¢ = ¢ and Tr(c) € GF(2) for c € GF(2),

{o(Tr(f)) | f € P} = {o(Tx(f)) | f € Pr}.

If fiePy, foe Py and f; £ f,, then Ti(f)) %= Tr(f,) and, therefore,
o(Tr(fy)) 7 v(Tr(fy)). Since the dimension of {o(Tr(f))|f€ Pst is
U+ m(im + 1) [2, st = {(Tr(f)) | fe Pr). Let Y = by -+ Yy buXs,
with 1 < ¢ < mfj and b, € GF(2’) be an invertible affine transformation.
Forfe Py, g = f(bio + Xnea 835X » bag + S peg b Xy 5-.) € Prand o(Tr( g))
has the same weight as v('"Tr( f)). It follows from Corollary 16.351 (Berlekamp
(1968)) that any polynomial in P can be reduced by an invertible affine
transformation of its variables and by substituting X, and Tr(c,) for X2
and constant term ¢, , respectively, to one of the canonical forms:

XX + X X, + -+ Xy 1 X, 0<ig<m2, (Al
X Xo 4 XXy + v+ Xoo o Xoy + Xpon, 0 < <H2, (A2)
/ XXy + Xo Xy + o Xy Xos + 1, 0<i<im2 (A3)
Let PR),, P2, and P, denote the sets of those polynomials in Py which

can be reduced to the forms (Al), (A2), and (A3), respectively, by an
invertible affine transformation of its variables and by substituting X, for
X* and Tx(cy) for a constant term ¢, . Then, the following lemma holds:
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Lemma Al.  The weight of
o(Tr(f)) = 2™ — 2™ for fePD,
= 2™ for feP®,
= 2™ M for fe PP,

Proof. By induction on ¢, this lemma will be proved. The number of
(X, , X,) such that Tr(X, X,) = 1 (or 0) with X, € GF(2Y) and X, € GF(2Y)
is 27322 — 1) (or 2%-1 4 27-1), By the induction hypothesis, the number
of (X3, X,,.., X5 such that Tr(X,X, + X;X;+ - + Xy 1 X)) = 1
(or 0) is 221 . Di—j=is—1 (or QMI—2/-1 | DMi—i-ii-1) Gince

TH{X X,y + Xp Xy + -+ X1 X))
= Tr(X,.X,) + Tr(Xs X, + - + Xy 4. Xp)),
the number of (X ,..., X) such that Tr(X, X, + - + X, 1 X)) = 1 is
(221 — Q1YL | Qi=i~iiely | (-1 . 23-1)(QM-2l _ i——ai-1)

= Q-1 __ Dj—ig—1

The other cases can be proved similarly.
Now let

F=XXo+ -+ X Xoy + 6+ 0 Xy + 0 + caXa,

where ¢y € GF(2) and ¢, € GF(2?). Then, fe PR (or PY)) if and only if
ey = 0 for 20 < h < and Tr(cy + 45 + =+ + €25160;) =0 (or 1),% and
fe P, if and only if ¢, 5= 0 for some % with 2i < kb < . In case that
J1 — fe 18 a polynomial of degree less that 2, then let f; ~ f, . Relation “~"
is a congruence relation. For each f, € Py, there are 2%f,’s in P4’ such
that f; ~ f,. By relation “~”, P{, is partitioned into | PJ), | 2-22 blocks,
where | S| denotes the number of elements in set S. Let lP‘l’ | =0 for
i > 2in. For each fe P{2), there is exactly one block whose members have
relation “~" with f. For a representative f of each block, there are
220+1(Qmi=2ij _ 1) polynomials in P, which have relation “~" with f.

m,t
Consequently, we have that

| PR =277 —1)| P . (A4)
Obviously,
| P2, = | P2 1. (AS)

8 Use X1 X, + Xy + X, = (X; + )Xo +¢1) + ci6n -
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Let fe PS), ;, and let

f :fo + XrT1+1f1 s

where f, € P and f, € P, are independent of Xp.y . If f = fy + Xmiafi
=1+ Xgfy and fy £ fy, then f5~f'. We proceed to count the

number of polynomials in P, ;. Without loss of generality, let
f=l+(Xan
= o + Xy Xp + XXy + - + Xyp 1 Xow + e1Xonna
+ (b + b Xy + b Xy + ot 4 DX ) X

where ¢y € GF(2), ¢ € GF(2), cycy = 0, bye GF(2), 0 <k < if2, and if
¢; = 1,then2k + 1 < 7. For afixed f, € P,, different choices of 4, , b, ..., b5
give different f’s in P, .

(1) Suppose that ¢; = 0. If b; 7 0 for some [ with 2k < | < i, then
fePgl, ,U PR, if and only if & =7 — 1. The number of these cases is

2(21'—1)7-!—1(21715—2(2'—1)3' _ 1) { Pr%)z—l ' (A6)
If b, = 0 for every [ with 2k < I < 7, then

= (Xl + bszﬂ)(Xz + leth—H)
+ o (Xaieg + b X)) (Xon + bon1 Xma)
+ (biby + A bap1b97) X}zﬁﬂ + 0o X1 + 6o -

Replace X%, by Xz;. Then, fe P, ;UPR, . if and only if & =i
and by + by + -+ + by;_1by; = 0. The number of these cases is
222]'+1 I P(_l)

i -

(A7)

(2) Suppose that ¢; = 1. If b; == 0 for some [ with 2k 4+ 1 << ! < m,

then fePE, .., and f¢PR, UPE, . If b, =0 for every I with

2h <l <m, then fePf,, and f¢PR, UPP, .. If by=0 for
2k + 1 < [ < i and by, .y 7~ 0, then
f = (Xl + berTH—l)(X?. + lerTH-l)

+ o (Xoneg F bon X)) (Xan + bon 1 Xma)

+ (B1be + A bypaban) szﬁﬂ + Xongs + (b0 + bzn+1X2h+1) X -
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Replace X%, by Xz, and use
b2h+1X2h+1XrT1+1 + X2h+1 + (bo + blbz e bzh~1b2h) XrTz+1

= (bzh+1X2h+1 + bo + b1b2 + -t b2h—1b2h)(XrTﬂ+1 + b2—h1+1
+ bansa(bo + byby + -+ + ban_aban).

Then, fe P, ;U P2, if and only if & = i — 1. The number of these
cases is

2@Di 1) | P2, , |
_ 2(2i—1):+1(2f . 1)(2mf—2(z—1):' — 1 p%?i_l l. (A8)
By (A5)~(A8),
| PRyl = 22| PR |+ 2220 1y PR (a9)

Now, we have the following theorem:
Turorem Al. (1) | PRy | = 1; (2) For 0 <i < imf2,
Y ( 1)'%_1 (m—t)j : t
IPm.i’:2Zl+] (2m—3_1) (227__1'
! /e =

Proof. Obviously, | P | = 1. By (A9),
| P =24 —1).

Thus, Lemma A2 holds for # = 2. Assume that the lemma holds for i < /.
Consider the case of # = [ + 1. If 2{ </, then it follows from (A9) that

20—1 i
I Pl(}L)l,i | = 2ile+1)s (H (2(L+1—t)a L 1)/ ]_[ (22” _ 1))
=1

=1
X {222](2(1—2i+1)]' —_ 1) + 222’] — 1}

2i—1

= Du(e+D)i (g (2u+1-07 1)/ ﬁ (2%t — 1)).

=1
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If 2¢ = [+ 1, then from (A9), we have

" . 23 i~1 3 . X
| Pl(—ll—)l,i — 2z(z+l)a (H (2(l~t)a o 1)/ H (229t o 1)) (2(1—21—!—2)1 —1)
=0

=1

2i—1

= Qw4 (H (1=t 1)/ ﬁ ot — 1)).
=0 t=1

Since

]Pl%,)ﬁl - A(ul(m,i)) - A(ul(m,j)) _ A(ul(m,y)) +A(u1(m,7))

om—1_gm—1-1 om-1_nm—ii—1_1 - gm~1_gym—11—1 m—1yom—ij-1>

formula (22) follows from Theorem Al.

APPENDIX II: Proor oF THEOREM 2

We follow the proof by Berlekamp—Sloane (1969) and use the same nota-
tions as those in Berlekamp-Sloane (1969) except for P™). In this proof,
P™ will denote a power series of the form

Py — Z lez‘k,

keK(n.)
where j divides # 4 2. For P in this meaning, Lemma 1 of Berlekamp-
Sloane (1969) still holds, which is proved as follows:
If 2,y <2 — 277 — | with 0 << 7 < mis in K(n, §), then &k, is of
the form
IRV, Ve TR
a4+l

Hence, = + 1 is divisible by j. Suppose that L < 3,7, 2% ZZ‘;OAZ < M.
(We use ¢, instead of %, in (16) of Berlekamp-Sloane (1969).) In order to
prove the new version of Lemma 1, it is sufficient to consider the case in which
ZZ:; 2% 4, is 2 + 4. For this case, since 272 — ZZLO 4; — 1 e Kn,j)
and the weight of 2 3770 4, is 2, 2* S, 4, is of the form

20 L2,

where 0 <7, <p, <#+ 2+ 7 and p, — 7, is divisible by j. Since the
weight of Sc 22 S A, is 2m+ 4, p, and 7, with 0 < v <7+ 1 are
all different. On the other hand, ZZ:; 2 Z;;O 4, is of the form

n+2+w .
2Ly 2,

i=n+l—mn
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when 0 <{7 <<p << #n— o Then, the set of 27 + 4 distinct numbers
{Po s> Pas1s To reo» Tuqay 18 identical with {r,p,n+ 1 —m 0+ 2 —m,.,

n -+ 2 + 7}. Consider polynomial over GF(2),

n+1
FX)=Y (X" +X) =X+ X+ 3 XX 4),

t=n41—m

Since XP» + X7 = X(X? ™ + 1) = 0 mod(X? + 1,2)and X™+1 +- 1 =0
mod(X’ + 1, 2),

Xo 4 X7 = X7(Xo~ 4 1) = 0 mod(X’ - 1, 2).

Hence, p — 7 is divisible by j. Since (# — 7= — 1) 4 2 is divisible by j,
the modified version of Lemma 1 holds. Now, the proof of this theorem
proceeds in the same way as the one by Berlekamp and Sloane, which holds
still for @ < 2#* — 4. By induction, #; + 2 and =, + 1 are divisible by j
and 6, — 1 € K(n; , j). It is concluded that

= Tl gmmmg | gmerdl 2nz+2—(ﬂz+1+1)"1_
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