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The Weight Enumerators for Several Classes 
of Subcodes of the 2nd Order Binary Reed-Muller Codes* 

T. KASAMI 

Department of Information Engineerhzg, Osaka University, Toyonaka, Osaka Japan 

In this paper explicit formulas for the weight enumerators for several classes 
of subcodes of the 2nd-order binary Reed-Muller codes are derived. A large 
set of the codes are shown to have the same weight enumerators. The classes 
of codes studied in this paper contain the (0, 2)th-order Euclidean Geonaetry 
codes and the codes studied by Berlekamp as subclasses. 

INTRODUCTION 

Recently, a theorem was proved by Berlekamp (1970) which asserts that 
all sufficiently low weight codewords in certain supercodes of the (m --  3)rd- 
order Reed-Muller code must also be in the (m --  3)rd-order Reed-Muller 
code. Theorem 1 is a simple generalization of Berlekamp theorem, Theorem 2 
is a generalization of Berlekamp-Sloane theorem (1969), and Theorem A1 
is an extension of the results by Berlekamp and Sloane (1970). These new 
results, in conjunction with previously known results, enable us to derive 
formulas for the weight enumerators for several classes of subcodes of the 
2nd-order Reed-Muller codes. Theorems 3 and 4 show that a large set 
of the codes have the same weight enumerators. The classes of codes studied 
here contain the (0, 2)th-order Euclidean Geometry codes and the codes 
studied by Berlekamp (1970) as subclasses. 

l. DEFINITIONS AND THEOREMS ON WEIGHT RESTRICTION 

Let c~ be an element of order n in GF(qm), where q is a power of a prime p. 
Cyclic codes of length n over GF(q) will be considered. 

Let v(X) = q A  ~ I + c ~ X  ~ +  " " + c ~ X  ~, where 0 ~<u 1 < u  2 < - - "  < 
ut < n, ci :7£ 0 and ci ~ GF(q) with 1 ~< i ~< t. 

* The research reported in this paper was supported in part by NASA grant 
NGL-  12-004-046. 
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Let  1 R = { e l v ( ~ )  = O } a n d  

f ( x )  = [ I  ( x  - ~,-,). 
i = 1  

LEMMA 1. Let R be the subspace spanned by {X e ] e ~ R} of the residue 
classes modulo f (X) over GF(q~). Then,for any e ~ R, 

X ~ ¢ ~ .  

Proof. Suppose that 

X ~ ~ ~ bsXJ m o d f ( X ) ,  
~ R  

where bj ~ GF(q~). Then,  for 1 <~ i <~ t, 

°~eu~ ~ E bJ°2%" 

JeR 

Hence, 
t t 

v(~°) = Z c~ ~ ° ~ ' =  Z Z c , b / ~ '  = Z b~v(~) = o. 
z ~ l  i=1 j~R jeR  

That  is, e ~ R. 

L:EMMA 2. Let a and A be positive integers, and let 

0 <~w t < w  2 < " "  < w  8 < n .  

Then, (1) there are b 1 ,..., b~ in GF(q ~) such that 

8 

X A ~ ~ b~X A'~' modfo (X ) 

(or X A~-~ b I @ ~ biXA~°a(~-l) modfo(X)), 
/=2  

and (2) there are b 1 ..... b s in GF(q ~) such that 

~ h XA~ ~(~-~) mod fo(X ) N A P  as ~ ~ i ~  

i~1 

i~g 

~here fo(X) = ( x  - ~wO ... ( x  - ~8).  

1 Exponents are to be taken as modulo n. 



2ND ORDER B I N A R Y  REED--MULLER CODES 371 

Proof. X A, X A~, .... X ~ cannot be linearly independent in the residue 
classes modulo fo(X). Hence, there exist b(, .... b~' in GF(q ~) such that 

• bi 'X  Apa~ ~ 0 modfo(X), 
i = t  

where b e' 5~= 0 and 0 ~< l < s. Let j be the smallest nonnegative integer 
such that p~+~" -- I is divisible by n. Then, ~ w~p~+~ -- a w,A for 1 ~< i ~< s. 
Hence, 

Thus, 

X.4v~t'+~ ~ X A modf0(X ). 

~- b'~JX A + ~ 6 ' ~ J ~ P ° ' ~  0 modf0(X ). 

Since b 'v' @ O, the first case holds. Similarly, the other three cases can be 
proved. 

Let A~j with 0 ~< i ~ 1 and 0 ~< j ~< tt be nonnegative integers such that 
either 

A~, ~ - A i p  a~o with A i > O  and a~ > 0  for 0 ~<j~<t~,  

o r  

Ai  o -~- O, 

Ai~ = A i p  ~'(j-1) with A i > O  and a ~ > O  for 0 < j ~ t ~ .  

If Ao0 =/: O, then let Jo = 0 and, otherwise, let yo -- 1. 

A THEOREM I. Suppose that A o + ~ i ~  it 6 R and that except for jo - - ]o ,  
Jl = tl ..... j~ = tz, 

Atj *e R with 0 ~<jt ~< t~. 
z~0 

Then, 

l 

t ~ t ~ .  
~ 0  
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Proof. Assume that  t ~< ~2'i~o t , .  Then,  by Lemma 2 there exist bi~'s 
in GF(q ~) such that  

X A° =-- ~ bojX ~0' m o d ( X  - -  ~ o ~ ) . . . ( X  - -  ~%t0) 
2=0 

tz-- t  

X A", =--- ~ bi~X A~j m o d ( X  - -  c~ ~'I) ... (X  - -  c~"0 for 1 ~ / ~ 1, 
j=o 

where boT ° =- 0 and {ui5 [ 0 <~ i <~ l, 1 <~ j <~ t,} = {ui [ I <~ i <~ t}. Hence, 

0 V b . X - I  m o d f ( X ) .  - X " , -  ]=-o 
5=0 i=1 5=0 

Thus,  residue class XA,+zcz~=J-~ is a linear sum of residue classes XZ~o ,,~ 

with 0 ~ < j o ~ < t o ,  0 ~ < j l ~ < t l  .... , 0 ~ < j ~ t ~  except for J o = ~ o ,  
Jl  = tl ,..., J~ = t~. F rom Lemma 1 it follows that 

Ao + ~, Aui e R. 
i = 1  

t This  is a contradiction. Consequently, t > ~i=o i • 

Remark 1. Let  t 0 = 0 ,  t i =  1, A 0 0 =  1, Aio=O,  and A i l =  1 for 
1 ~< i ~< l. Then,  we have the BCH bound. 

Remark 2. Let  C be a binary cyclic code of length 2 ~ - -  I whose generator 
polynomial is g(X), and let c~ be a primitive element of GF(2~).  Suppose 
that  g (X) ' s  roots include cd for all e in the set 

I + 2 b+a, 1 + 2 b+2a ..... 1 -I- 2b+% 

where a is a positive integer relatively pr ime to m, b is a nonnegative integer, 
and u is a positive integer less than m. 

(1) I f  v ~ C is a code-word of weight ~< u, then v is also a code-word 
in the (m - -  3)rd-order cyclic Reed-Mul le r  code of length 2 ~ - -  1. 

(2) I f  g(~) = 0, u is even (or odd) and v ~ C is a code-word of weight 
u + 2 (or u + 1), then v is also a code-word in the (m - -  3)rd-order 

cyclic Reed-Mul le r  code of length 2 ~ - -  1. 

The  proof is similar to the one of Corollary 1. Remark 2 is a strengthened 
form of Berlekamp's Theorem (Berlekamp, 1970). In  (2) of Remark 2, let 
either a =  1, b = m - - t + l ,  u = 2 t - - 1  or a =  1, b = s ,  u = 2 t - -  1. 
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Then, we have Berlekamp's Theorem. His assumption that C is invariant 
under the translational group is removed. For even u, this remark gives a 
stronger result. 

Let  (a, b) denote the greatest common divisor of integers a and b. Let  2 

and if m/(m, j) is odd, let 

and if m/(m, j) is even, let 

u2(m, j) = ul(m , j) 

m 

For 1 ~ j  ~ m / 2  and 1 ~ u  ~ul (m, j ) ,  let ~ )  be the cyclic code of 
length 2 ~ - -  1 whose generator polynomial is 

u--1 

g(X) = I1 
/=0  

where M(*)(X) is the minimal polynomial of ~ and ~ is a primitive element 
in GF(2m). For 1 ~<j ~< rn/2 and 2 ~ u <~ u2(m,j) + 1, let N(") be the - - j  

cyclic code of length 2 TM --  1 whose generator polynomial is 

u- -2  

g(X) = Mm(X)  U Ma+2m"b(X) • 

For 1 ~ j . ~ m / 2  and 1 ~ u  ~ u z ( m  , j) ,  let _j.~-Iu) be the cyclic code of 
length 2 m - -  1 whose generator polynomial is 3 

g(X) = I I  • 

i=O 

For even m, 1 ~ j ~ m/2 and 1 ~ u <~ [m/(2(m, j))], let j/y~u) be the 
cyclic code of length 2 ~ - -  1 whose generator polynomial is 

u--1 

i=O 

2 [aJ denotes the greatest integer not greater than a, and [a] denotes the smallest 
integer not less than a. 

In general, ~-~) is not invariant under the affine group of permutations. 
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For even m, 1 ~ j  ~ m/2 and 1 <~u <~ [m/(2(m,j))], let ¢(u) be the o" j 
cyclic code of length 2 ~ -- 1 whose generator polynomial is 

4--1 

g(X)  = ~I Mn+2~/'- ' )(X) • 
i=O 

Then, the extended code of ~(1 ") is identical with ~( ' )  in (Berlekamp, 1970), 
(~) (or ~(~)) is identical and for odd m (or even m) the extended code of ~(,~-~1/~ 

with ~(~) in (Berlekamp, 1970). 
The duals of ~ ) ,  ~ ' ,  ~-~), ~4f~"', and J(:~) will be denoted by ~¢~), 

c~(u), ~ ( u )  _~(u) ,~ , _~ , and ,¢~), respectively. The duals of the even parts of -~(~) 
~',~), ~'~),  ~}~), and ~'~) wily be denoted by ~ ' ,  c~),  d~), #~)  and 
j ~ o ,  respectively.a For even m, A~ ~'/2+~ is the (0, 2)th-order Euclidean 
Geometry codes (Weldon (1967), Berlekamp (1968)). 

COROLLARY 1. 

(1) I f  v ~ 9~ ~) is a code-word of weight ~ 2u, then v is also a code-word 
O-A(ui(mo)) in ~. Im,j) • 

(2) I f  (m, j )  = (m, 2j), and if  v ~ ~ u ,  v ~'}") is a code-word of weight 

<. 2u, then v is also a code-word in ~ (~,j) . 

(3) I f  (m, j )  @ (m, 2j), and if  v e o~f~ ") (or o¢~ u)) is a code word of weight 
~/(ui(m,3)) ~< 2u (o1" 2u -- 1), then v is also a code-word in ~(~,~) . 

(4) I f  (m, j )  @ (m, 2j), and if  v ~ N~ ~, (or ~,~")) is a codeword of weight 
• ~ ~ • r~(u2(mo)+l)  z ~oz-(u~(m,J))\ ~< 2u, then v is atso a coaewora zn ~(~,j)  (or ~ (~,j) ). 

(5) I f  ~ is e~en and (~ ,  j )  = (m, 2j), and if ~ e ~ ? )  (or / ~ ' )  is a 
• "~(u l (m'D+l)  (Or code-word of weight <~ 2u (or 2u -- 1) then v is also a co&word zn ~1~,~)/2 

az-(ul(m,ll). 
"~" ( r e , j ) / 2 ) "  

Proof. By definition, ~}~) has a 1+~', a 1+2a', .... a 1~2(:'-3)' as roots of the 
generator polynomial. Hence, 

O~2m-ql+2 ~) ___ o~l-t-2m-~ O~2r°-3J(1-[-233) ~ 0~1-[-2~"-3~,. ,., o~2m-(2u-3)3(l+2 (2u-a)i) - -  ~1+2 m-(2u-~)) 

are also roots of the generator polynomial• Let v (X)  be the polynomial 
corresponding to code-word v. Suppose that v(~ 1+2~t~*+1)) = 0 for all i with 
0 ~< i <~ m. It is shown easily that if (m, j) = (m, 2j), then 

{ j (2i+ 1) 1 0 ~ < i < m } = { ( m , j ) i L 0  < ~ i < m }  

T h e  s u b c o d e  of  C c o n s i s t i n g  of  a l l  t h e  even  w e i g h t  c o d e w o r d s  wi l l  b e  ca l l ed  t h e  

e v e n  p a r t  o f  C• 
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and otherwise,{j(2i @ 1) [ 0 ~< i < m} = {(m,j)(2i  + 1) I 0 ~< i < m}. Hence,  
..r.A u ~ ( ~ . J ) + l )  c, 

~(u~(m.j)) and otherwise,  v ~ ~ ( ~  j) . ~uppose  if  (m, j )  = (m, 2j), then  v c ~(m,~ ) 
tha t  there  is an i o ~> u - -  1 such tha t  v(a 1+2j(2~+~) = 0 for 0 ~< i < io,  and  
v(a 1+2~(2'°+~) 5£: 0. I f  the weight  of v is even, then  l e t p  = 2, l = 1, t o ~= 1, 

Aoo ~ 0 ,  Aol = 1, t 1 = u + i o ,  A l o - - 0 ,  A1 - 2  ~-(2~-a)j, and  a 1 = 2 j .  
Then ,  T h e o r e m  1 guarantees  tha t  the weight  of v is greater  than  t o @ t 1 = 
1 + i  o + u ~ > 2 u . I f t h e w e i g h t  o f v i s o d d ,  t h e n l e t p  - 2 , 1 =  1, t o = 0 ,  

Aoo = 1, q = u + io,  Alo = 0, A1 = 2 ~ - (~ -~ ) i  and G - -  2j. By T h e o r e m  1, 
the  weight  of v is greater  t han  2u - -  1. Thus ,  (2) of this  corol lary holds  for 
~ .~) .  Similar ly ,  the  other  cases can be proved.  

Wq(i) will denote  the sum of the  coefficients of the  radix-q fo rm of i. 
F o r  posi t ive integers t and  j ,  let K(I, j )  = {i > 0 I W2(i) > t} W {i I W2(i) -~ t 
and i >~ 2 t+2} u {i] i = 2 t+2 - -  2 h - -  2 h-zj - -  1, where  h and l are posi t ive 

integers such tha t  lj < h < t 4- 2}. Le t  ~ be a pr imi t ive  e lement  of GF(2~) .  

THEOREM 2. Let j be a positive integer which divides m -  r + 2. I f  
w < 2  ' ~ - r + 1 - 2  with 2 <~r ~ m - - 2  and i f  the roots of the generator 
polynomial of a binary cyclic code C of length 2 "~ - -  1 include all cJ for which 

1 < ~ i < ~ 2 w  
and 

i ¢ K(m --  r, j), 

then the extended code of C contains no code-words of weight w unless 
w = 2 ~- '+~ - -  2 z ' - t  for some l with l ~ l ~ (m --  r 4- 2)/j. The proof of 
this theorem is stated in Appendix' I I .  s 

COROLLARY 2. 

(1) I f  v ~ ~f~u, ~3 j~u), where m/(m, j )  is even or v ~.J~") ~3 ~. ~u, t_) ~}u), 
then the weight of v is of the form 

2 "*-1 4- E2 ~-1, 

where m/2 <~ i <~ m, i is divisible by (m, j )  and e is either O, 1, or - -  1. 

(2) I f  v ~ ~¢~ and v ~ O, then 

i <~ m/2 4- (u - -  1)j. 

(3) I f  v e ~I. ~ and v :;& 0, then 

i ~ m/2 4- (2u - -  3)j .  

5 Casual readers may skip the proof  since in this paper this theorem is used only for 
the case of r = 2, which is covered by Lemma  A1. 
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(4) I f  v e E~ ~) and v @ O, then 

i ~< m/2 + (2u --  1)j. 

(5) I f  v ~ fy}u) U ~ ~u~, v z/= O, and m/(m, j)  is even, then 

i ~ m/Z + ( u - -  1)j. 

Proof. (1) Since d( ,  ~,, c~., ,  e~.), f~u,, and o¢(u, are subcodes of the 
second-order cyclic Reed-Muller  code, the weight w must be of the form 

2 ~-1 ÷ E2 i-1, 

where m/2 ~ i ~ m and e is either 0, 1 or --1 (Kasami (1967)). I f w  < 2 m-1 
with m ) 5, then w < 2 ~-x --  2. By Theorem 2, i is divisible by rood(m, j).  
If  m ~ 4 and w = 2 ~-1 z~ 2, then i is divisible by (m, j).  Assume that 
w = 2 ~-1 + 2 i-1, with i > 2 and i is not divisible by (m, j).  Then,  since 
5ff~u), c~u), .C~u), f~u), and j~u )con ta in  the all one vector, the extended 
codes of ~ ) ,  c~ ) ,  ~(u), ~ju). and J ~ )  contain a code-word of weight 
2 m-1 --  2 i-1. This contradicts Theorem 2. (This part also follows immediately 
from Lemma A1.) 

(2) Since d ~  ~) is a subcode of the dual of the 1 + 2 t~-l)j-1 error 
correcting BCH code, the Carlitz-Uchiyama bound (Berlekamp (1970)) 
guarantees that its minimum weight d is bounded by 

d ~ 2 '~-1 --  2~/~+(~-I)J-L 

That  is, if v ~ ~¢~), then 

i <~ m/2 -+- (u --  l)j .  

Similarly, (3) and (4) can be proved. 

(5) The  BCH bound guarantees that the minimum weight d of ~j~) 
or ~¢~) is bounded by 

d ~ 2 ~-1 --  2~/2+(~-1)~-L (1) 

This implies part (5), if m/(m, j) is even. 
For nonprimitive cases, the following corollary holds: 

COROLLARY 3. Let m be even, let 1 ~ Jl ~ m/2, and let j ~ (m, Jl). 

(1) l f  v ~ #~) ,  v ~ O, and m/j is even, then the weight of v is of the form 

2 ~-1 --  ( - - l ) ;  2 ~/2+~j-1, with 0 ~ i <~ (2u --  1)jl/j.  
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(2) I f  v ~ J  (u) ~1 ' v ~ 0 and m/j  is odd, then the weight of v is of the form 

2 ~-1 - -  ( - -1)~2 m/~+ij/2-1, with 0 ~< i ~< (2u - -  2)j~ff. 

d <u2~'~)) Since m/j is even, 2 m -  1 Proof. (1) g(~) is a subcode of = j  31 
is divisible by 2 j q- 1. Hence, the order of e¢ l+z' is (2 m - -  1)/(2 j q- 1). Since 

- ( u 2 ( r a , D )  . . 

2 ~(2~+x> q- 1 is divisible by  2 J if- 1, a codeword of g3 is derived from 
a eodeword of a code of length (2 ~ - -  1)/(2 j q- 1) by repeating (2 J q- 1)-times. 

• ( u 2 ( m j ) )  . . . .  j Hence, the weight of a codeword of ~ j  is divisible by 2 q- 1. Thus,  
by  Corollary 2, part  4, the weight w of a nonzero codeword of go(u) is either 5a 

W = 2 m - l - 2  i - l ,  

where m/2 <~ i ~ m/2 q- (2u - -  1)./'1 and (m -- i)/j  is even, or 

w ---- 2 ~-1 + 2 i-1, 

where m/2 <~ i <~ m/2 q- (2u - -  1)j 1 and (m -- i)/j  is odd. Since m is divisible 
by 2j, w is of the form 

2 ~-1 - -  ( - - 1 ) ' 2  m/2+~;-~, with 0 4 i ~< (2u - -  1)j~/j. 

(2) Since m is even and m/j is odd, j must  be even. By definition, 
~("=('~';/")) F rom the proof  of part  (1), w is of the form _~.9 "(~) is a subcode of ~ /2  

w = 2 '~-1 - -  ( - -1 )  i 2 '~/~+ij/~-l, 

where 0 ~ i ~ m/j. By the BCH bound (1) for g(~) a - j  , 

0 ~< i < 2(u - -  1)jx/j. 

2. SOME THEOREMS ON WEIGHT DISTRIBUTION 

In  this section, a large subset of the codes defined in Section 2 are shown 
to have the same weight enumerators.  

Let  C and C '  be q-ary linear codes of the same length n and the same 
dimension k, and let Ca and Ca' be the duals of C and C', respectively. 
Let  A w and A w' denote the number  of code-words of weight w in C and C', 
and let Bw and Bw' denote the number  of code-words of weight w in Ca 
and Ca', respectively. 

LEMMA 3. Let 0 ~ w t < "'" ~ w2u < n. Suppose that d~o = O for either 
0 ~ w ~ wa or w2, , ~ w ~ n, and that Aw' = Aw unless either 0 < w ~ w 1 , 
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w2~ < w < n or w ~- w, with 1 <~ i ~ 2u. I f  B~ ~- BU for 0 ~ w ~ 2u, 
then A~ ~= A~' for all w. 

Proof. If  w I = 1 and w2~ ~ n - -  1, then this lemma follows directly 
from the Pless Theorem (Pless (1963)). Assume that w2~ ~ < n - -  1. (In ease 
that w 1 > 1, almost the same argument holds.) Let w2~+1 ~ w2~ + 1 < n. 
By the Pless power-moment  identities (Pless (1963), Berlekamp (1968)) 
for C and C', we have that for t ~ 0, 

Z w~A~ ~_ qk Z B,F}')(n) --  A, - -  n~A, ,  (2) 
w z ~ w ~ W 2 u + i  *=0 

Wl--i n--I 

w A~ w A~ w ~ + Z  + ~ 
q731 ~iv ~IV2U+I ~)~i iv> %t'2U+l 

t 

= q~ Z B1T}O(n) --  A, - -  n~A~ ", (3) 
~=0 

where A o = l ,  A, = 0 for t ) 1 andF~i)(n) is dependent only on i, t, q, and n. 
Then,  we have that for 0 ~ t ~ 2u, 

2u+l WI--I n--I 

E t , ~ , w A w - w A i v +  ~ = 0 .  
~=1 w = l  iV> W2u+l 

Let 30 ,..., 3zu be the elements of the last row of the inverse matrix of 

1 1 ... 1 ] 
W 1 W 2 W 2 u + I  

W2 2 g~. 12 . W22u+l. " 

L(Wl) ~ (w ~2~I \ 2 u + l /  . J  

Then, 

2u F2U+I  Wl--1 n - 1  1 

/ V w qA' E 3 ~ , ~  , ,  iv-A,o,)+ E w~A~'+ Z w~& ' J t = 0  L i=1 w = l  w>W2u+l 

ivl--1 2u n--1 2u 
_ _  A t t I - iv,o+~+ y~ Aiv Z ~ / +  E Aiv Z3,- '  

iv=l  t=O w> W2u + l t = O  

~ 0 .  



2ND ORDER BINARY REED--MULLER CODES 379 

From the known property of van der Monde determinant, 

~, 8~w ~ > 0, for w < w~ or w > w~.  
~=0 

Hence, we have 

A~' = 0  for 0 < w  < w ~  

Thus, by (2) and (3) we have Lemma 3. 
Now, we have the following theorem: 

or w2u ~ w ~ n. 

THEOREra 3. Let  j be a factor o f  m such that m/ j  is odd and m ~/2 j .  For 

any positive integers Jl , J~ , and jz  such that (m, Jl) ~ (m, J2) ~ (m, Jz) ~ J, 
~4(,~) of(u) ~ . 4  f (u )  ~ ~(~)  ~ (u )  ~ . ~  ~-(u)~ weight enumerators , o~ , , , ,  ~ k~, ~,Jj , ~ j  , , , ,  ~. ~ ]have the same 

1 2 "3 1 2 3 
as ~4~ u~ (or 2~u)), where 1 <~ u <~ u~(m,j) .  

o/(u~(~"J)) there is no Proof. Since ¢£(~) c~(~) and d ~(~) are subcodes of ~ j  , 
J l  ~ J2 J3 

code-word of weight w unless w is of the form 

w = 2 '~-1 + ~2 ~-1, (4) 

where ~ = 0  or ~1 ,  m/2 ~ i ~ < m  and i is divisible by j (Corollary 2, 
part (1)). 

By Corollary 2, part (2), there is no code-word of weight w in .J(~) unless - - 3  

w = 0, 2 r~'-I or some number  of the form w = 2 '~-1 :~ 2 i-1 with m/2 <~ i <~ 

m / 2 - ~  ( u -  1)1" and i ~ 0 (modj) .  Since m is not divisible by 2j, w is 
either 0, 2 ~-a or 

2 ~-I  J= 2/'~-J~/2+~J-1 with I ~< i ~< u - -  1. (5) 

By the assumption, (m, Jl) = (m, J2) ~ (m, jz) = j = (m, 2j) = (m, 2j~) --- 
(,n, 2j3). Since w,-~("), ~'h-°~(~)' ~J.~, and ~5~ ) are supercodes of ~.~('~'J 
Corollary 1, parts (1) and (2) imply that ~(u) a2(") @(u3 and .~(u) have 
the same number of code-words of weight w for 0 ~< w ~ 2u. Consequently, 
this theorem follows from Lemma 3. 

Remark  3. Consider ~(2) where m / ( m , j )  is odd. Then ~ 1+2~' - -  
cd 1+~'m-2~+~%, and a 1+~ and c~ ~+~ are primitive elements of GF(2"). 
Theorem 3 and weight restriction (5) imply that the cross-correlation between 
two maximal linear shift register sequences with recurrent polynomials 
M m ( X )  and M(a-~'+z~)(X) is a three-valued correlation. This was first 
proved by Welch (1969) by a different approach. 
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THEOREM 4. Let 1 <~ Jl <~ m/2 and let j = (m, Jl). For 1 ~ u <~ u2(m, j),  
~(u) and £(u) (or ~(u)  and (~) weight enumerators. h -J  31 o~j ) have the same 

Proof. I f  m/j is odd, then this theorem is covered by Theorem 3. Suppose 
that m/j is even. By Corollary 3, part  (1), the weight of a nonzero codeword 
in _j£(~' (or E~?') is of the form, 

2,--~ _ ( -  1) ~ 2"/2+~J-~, 

where 0 ~ i ~ < 2 u - -  1 (or 0 ~ < i ~ < ( 2 u - -  1)jl/j). Corollary 1, part (4) 
shows ~(u) that 5~ j and ~ -~)  have the same number  of code-words of weight w 
for 0 ~< w ~< 2u. Thus,  Theorem 4 follows from L e m m a  3. 

We use a version of the theorem due to McEIiece (1970). Let  C be a 
binary cyclic code of length n = 2 m - -  1 whose check polynomial 's roots are 
(ai[  i ~ Q}. Let So, S~ ,..., S,~_x be elements of GF(2 TM) such that 

S / =  0, unless i E Q, (6) 

S2i = S i  2, (7) 

where suffices are to be taken as modulo n. 

THEOREM (McEliece). Suppose that for all v < l and for all So, $1,... , S ,_  1 
satisfying conditions (6) and (7), 

Si~S~ "'" Si~ = O. 
i1+ i2+""  +i  v ~ 0  

Then, the weight of a code-word of C is divisible by 2 ~-1, and the number of 
codewords of C whose weight is divisible by 2 ~ is equal to the number of n-tuples 
(S o .... , S~_1) which satisfy the following condition besides (6) and (7): 

SilSi~ "" Sit = O. 
i 1 + i 2 + " ' i  t ~0( Inod  n) 

Let  l have the same meaning as in the McEliece Theorem, and let Q' 
be the set of those i's in Q for which there exist i 2 ..... iz in Q such that 

i + i2 + "'" + i t  -~ 0 m o d 2  ~ -  1. 

Le t  C' be a cyclic code of length 2 m - -  1 whose check polynomial 's roots are 
{c~ / I i ~ Q'}. Then,  the following simple corollary holds: 
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COROLLARY 4. C and C' have the same ratio of the number of code-words 
whose weight is divisible by 2 ~ to the total number of code-words. 

For example, if m is even, then i~  u) and j~u) have the same ratio of the 
number  of code-words with weight 2 m-1 ~ 2 '~/2-1 to the total number  of 
code-words. 

There  are some questions. For Jl  and J2 such that (m, Jl) = (m, J2) and 
m/(m, Jl) is even, do ~¢(u)51 and d (~)j~ (or if(u)~l and t (~)j2 ' or j(u)~l and J ~ ) )  
have the same weight distribution ? Are the codes stated in Theorems 3 or 4 
isomorphic to each other under some permutation of the coordinates ? 

Very little is known on the weight structure of subcodes of the 3rd or 
high order Reed-Muller  code (or supercodes of the ( m -  4)th or lower 
order Reed-Muller  code). The  following remark on the min imum weight 
code-words is a strengthened version of Theorem 11 in (Kasami -L in -  
Peterson (1968a)). 

Remark 4. Let  C be a p-ary  cyclic code of length p ~  - -  1 with generator 
polynomial g(X), let fl be a primitive element of GF(pmO and let 1 ~ c < m. 
I f  g(fiO ~ 0 for every i such that 

0 < i < 2(p (m-e)~ - -  1), 

l/V,(i) < ( m -  c)(p ~ -  1), 

then any code-word of min imum weight p(~,-c)s_ 1 is a scalar multiple 
of the incidence vector 6 of an (m - -  c)-flat through the origin in EG(m, PO" 

This  remark is proved by showing that the reciprocal of the locator 
polynomial of a code-word of weight p(~-c)~ _ 1 is an affine polynomial. 

3. WEIGHT ENUMERATORS 

In this section, weight enumerator formulas will be derived for gJ~) with 
all possible u and j, for e~/J u' and cg~u, with odd m/(m, j), for d J  ~'' and i~  ~'), 
where m is divisible by j and m/j is even, and for J ~ ) ,  where m is divisible 
by j .  By Theorems 3 and 4, we assume without loss of generality that m 
is divisible by j. Weight enumerator formulas for d [  ~) and c~[u) with odd m 
and for d [  u) and iCl u) with even m were derived by Berlekamp (1970). 
Except for these two cases, the following results are new. 

The component corresponding to the origin is deleted. 
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3.1 Weight Enumerators for d ~  ~), ~(~) "~(~)  ~ ;  , ana  ~ j  with Odd m/j  

Let j be a factor of m such that m/j is an odd integer greater than 1. By 
,, ..A(u) (,~(u) ~(u) Theorem ~, ~#j , ~ .  , and _j  have the same weight enumerators. Formulas 

for weight enumerators for ~_j-~(~) with 1 ~ u ~ ul(m, j )  will be derived 
below. A (u) and R (u) will denote the number of code-words of weight w in 

- - ~ / )  - - W  

,~u). and ~J~(u), respectively. ~j-~(~) is the even part of , ~ ) .  . Since ~ ' ~ )  is 
invariant under the affine group of permutations, the following equation 

due to Prange holds (Berlekamp, 1968): 

A(~) = A(,~) • (u) ,~ 2i). (8) 2i-1 2m2 i = 2~A2z/(2 - -  

"(~) 7 For 1 < ~ i ~ < u - - l ,  let Hence, it is sufficient to find ~(u) + A~, ,2  i ~ 2 i  

a (~) = 2-"~,A (~) A(~) i t ~..-~-2(=-,)/'+',-~ + 2m-'+~ (~'-')/'+"-~)" (9) 

(Refer to (5).) By the Pless translated power moment identities with center 
2 ~-1 (Pless (1963), Berlekamp (1968)), we have that for 1 ~ u < u~(m, j )  

and t >/ 1, 

2~..-~u + 2(m+ui]-i)~a (u) = ~ B(")F")tg? ~ -  I), (10) 
- -  i i - 2 ~ x - -  

/ = 1  i = 0  

2~-~(~+1) + 2(m+ziJ-J)~a(u+l) = ~ B("+l)F(i)¢gm-- 1). 
i i 2~ x - -  

i = 1  i = 0  

(11) 

By Corollary 1, B~ ~) = B~ ~+1) for 0 ~ i ~ 2u. Hence, for 1 ~ t ~ u we have 

i 2i# i 2 (a i{8+1) - -  a(U)) = 2(m+J)t-mu(1 - -  2-m). (12) 
z = l  

By solving simultaneous equations above and using the formula for van der 

Monde determinant, we have 

(2~+~ - -  22~) .. ~ (2 ~+j - -  2 2~) r~ 
("' 2 . . . .  (2'-1';(2'~ - -  1) 14 ~ = a ( . ~ t + l )  _ at : I I  22~5) 

z _ t = i + l  

: ( - - 1 )  u - i  2 . . . .  (~-~-1"+(~-i+1)("-i'(2~ - -  1) 

i-1 1 - -  2 m+~-2# i-z[ a 1 - -  2 m - ( 2 i + 2 * - 1 ) j  

~=I ~=i 

: Since E~ A(") = 2 ~", (,) A2m-1 is found from other A(")'s. 
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For the convenience of notation, let 

[/] = i~ 1--2~'(z+1-~) 
h j t=, 1 - - 2  ~j~ ' for h > 0 ,  

= 1 ,  for h = O ,  

where 2l and h are nonnegative integers. Then, for 0 ~< h < ul(m , j )  --  i, 

a~ i+h+l) __ a~ *+k) 

: ( - -1 )"2  -~i-(2*-a)~-(~-(a+l)')t' ( 2 " - -  1)[(m --j)/(2j)] [(m i ] 
i -  1 1j h J~" 

(13) 
Since ~a) = 0, we have u i 

2~(*+~)a (i+l)i = 2~-(21-1)J( 2~ --  1) [(m[ i--J)/(2J)]-- 1 Jj" (14) 

For j : 1, this formula was derived by Berlekamp (1970) in a different way. 
By (13), we have that for 1 ~ i ~ ul (m, j  ) and 0 <~ h < u,(m,j)  --  i, 

[(m --  j)/(2j)] 
a(i+l~+l)i - -  2-mi-(2i-1)J(  2`m - -  1) t i -  1 J~ 

× 1 - /  Z (--2) -~t2t(t+l)' ( m - - j ) / ( 2 j ) -  i . (15) 
t = l  t a 

A compact form of the last factor of (15) is unknown except for u = ul(m , j )  
(refer to Theorem AI). 

3.2 Weight Enumerators for Nonprimitive Cases 

L e t j b e a f a c t o r o f m s u c h t h a t m / j = 2 m o d 4 .  R Im F I~) 1 (ul a n d l  (~) 
will denote the number of code-words of weight w in ffJ~), ~ ) ,  ff(~?), and 
J ( " )  respectively. Referring to Corollary 3, let 2/" , 

a ~ U ) :  2-/CEgU)_l (_lp2m/a+,,_ 1 

for 1 ~ u  ~ [m/(4j)] and 0 ~ < i ~ 2 u - -  1, where k = m u  for 1 ~<u < 
[m/(4j)] and k = m(u --  1/2) for u = [m/(4j)], and let 

b (U) ,~-m(u-1/2)r(u) 
Z = "& 12m--l--(--1)i2m/2+~--I 

for 1 ~ u ~ [m/(4j)] and 0 ~ i ~ 2 u -  2. From Corollary 1, parts (4) 
and (5), it follows that 

F(w ~ ) =  J(w ~) for 0 ~<w < ~ 2 u -  1. 

643/I8/4-6 
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Use the Pless translated power moment identities with center 2 m-1. Then, 
for 1 ~< u < m/(4j),  

2~ 

(--2)iJt(b~ ~+1) - -  a~ u)) = 2~/~-~(u+1/2)(2'~/~ - -  1) for 0 ~< t ~< 2u, 
i = 0  

(16) 
2u 

Z (--2)i~t(b~ ~+~) - -  b~ ~)) = 2~t/~-~(u+l/'~)( 2~ --  1) for 0 ~< t ~ 2u - -  1, 
i = 0  

(17) 

where ~(~) I,(~) b I~) = 0. By solving (16), b~ ~+1) ~(~) can be found. U 2 u  ~ ~ 2 u  ~ 2u--1 - -  u~ 

Since _(u) = O, ~(u+l} %,, ~2u can be found. Substitute this value for ~2u/'(u+l) in (17), 
and solve (17). By a similar way to the one used in Section 3.1, each b~ ~) 
can be found. Then, a~ ~) with 1 ~< u < m/(4j)  can be determined. For 
u = [m/(4j)], a~ ~) = b~ u' by definition. Thus, formulas for a~ ~) and b~ ~) can 
be derived. 

3.3 Weight Enumerators for  ~(j~) and f~u) with E~en m/ j  

A(u) G(U~ Let j be a factor of m such that m/j  is even. --w and will denote 
the number of code-words of weight w in d ] u )  and f~u), respectively. Refer 
to Corollary 2, parts (2) and (5). For 1 <~ u <~ m/(2j)  and 0 <~ i ~ u, let 

(~,) ,~-mut A (u) ~- A (u) a i ~ /~ ~ 2m-1_2m/2+w-1 ~ 2m-1+2 /2+~g-1), 

b~ u, = 2-ra(u+l/2'(G~U)_l_2rM,a+~,_l ~ -  G~Um)_l+2m/2+H_l).  

By definition, a~l+'~/(2~)1 = b~'n/(2J)). Let ai = a~ 1+~/(~)~. Then, the following 
equations are derived by a similar way to the one used for (12): 

~--2 

Z 22"*(a~ ~) - -  a~ ~-1)) = 2 ~ ' - ~ (  2~ - -  1) - -  22("-1)'ta~_)~ 
i = 0  

for 2 ~ u ~ m/(2j)  and 1 ~< t < u, (18) 

U--1 
2i~t (u) 2 (b  - -  a(U))i = 2"~-"(~+t/2)( 2'~/2 - -  1) 

i = 0  

for 1 ~ u ~ m/(2j) and 1 ~< t ~< u, (19) 

u - 1  re / (2~') 

Z 2zi"(a~ u) - -  ai) = --2"u-~n'~ q- ~ 2ei'ta, 
i = 0  i=u 

for 1 ~ u ~ m/(2j) and 1 ~ t ~ u. (20) 
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We first derive a formula for a~_ 1(~} from (20) and Theorem A1. Then,  a 
^(~) and (18). -{~) will be derived by using the formula for u~_ 1 formula for ai 

By solving Eq. (20), we have 

a(U) 2_20+m(l_u)+(u_~)(u_i_l)  , [m / (2 j ) ]  [ / n / ( 2 j ) -  1 - - i  
i - - a , = -  ( - -1)  ~-i t i J j t  u - - l - - i  ], 

@ (--1)  u- l - i  2-2i~+(u-i)(u-i-1)J 

For i = u - -  1, 

a!i*l) = _2-(,,~+~,}i [m/(2J) l 
a k i J3 

: _2_(.~+2,> * [m/(2j)] 
k i J, 

m / (2J) 
a t . 

(21) 

m/(2a) 

t=i+l i 3 
a~ 

m/(23)--i--1 
+ 2m-2w 2 

t=O 

2-~,t[m/(2j)--t] a,~/(2,)_~. 

From Theorem A1 in Appendix I, 

2~.,.,~+,)/{2,)a,,,/(z,)_t = 2 . t+ , , ; (_ l )~  [m/(2j)] [(m - -  j)/(2j)] 
t t J~ t Jj 

where [t]j = 1-I~=1 (1 - -  2 "~U) if t > 0 and [0]~ = 1. Hence, 

~/(2A-,-I [m/(2j)--t] 
2 rn-gzl ~ 2 -2at am/(2~)_ t 

t=0 3 

[t]j, (22) 

m / (23)-~-1 
= 2,,,-2,,-m(,,,+A,'(2,) ~ ( - - 1 ) t 2  t(t-lb 

t=O 

r,,/(>] t ¢  
L t J~ t Ja 

By an identity due to Berlekamp (1970), this equals to 

k 1 Jj 

Thus,  we have 

a (~+1' = 2-{~+2J)i(2 ~j - 1) r/tg;~l/m,,_,fl (23) 
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For j = 1, this formula was derived by Berlekamp (1970). By solving (18), 

a ( i + h + l )  _ _  a ! i + h )  

= ( - 1 )  h 2 ( - ( 2  1)[m/(2j)] 
t i Jj 

• [m/(2j) -- i--1 1 ] j +  (2 ('+~'' - - 1 ) [ i + i h ] ,  rml(2j)] ] 
- -  Li + h J /  

= (_l)a2 -(~,+~,),-(~-(h+,)Dh t[m/(2J)]i JJ [m/(2j) ~ i - - 1  1j.] 

(_(2 ~-2i~ -- 1)(2 (i+~m -- 1) 
2 TM - -  1 - -  (2~ -- 1).) i 

Hence, for 1 <~ h <~ m/(2j)  - -  i and 0 ~< i < m/(2j), 

2 h--1 _(i+h) = 2-(m+~Di [m/(2j)] i, _ 1 + 2 (--1)* 2 -('~-(t+l)j)* 
u i  k i J 2 

t=1  

×[ml(2j)--i--1 ((2'~-2iJ -- 1)(2"+m -- 1) 
- -1  ] j  " (2~'*--1) --2'~-I-1)).  (24) 

By (19), we have 

b~ ~+h) - a "+h, ~-- (--1)h+12-<~+2J)i+~/2-('~-(~+l)J)h(2m/2 - 1)[m/(2j)] 
• i L i J~ 

. [ml(2J)h --i--1] 
- - 1  2 1 

for 1 < ~ h < ~ m / ( 2 j ) - - i  and O~<i<m/ (2 j ) .  (25) 

A formula for _~h (i+m follows from (24) and (25). 

3.4 Weight Enumerators for  J ~ )  with Even m/ j  

Suppose that m/j  is even. By Corollary 2, part (5), the weight of a code- 
word in ~#~) • j~u) is of the form, 

2 ~-1 + E2 ~/2+~-1, 

where e is either 0, 1 or --1 and 0 ~< i ~< u -- I. Let Gw (or I~) denote 
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the number of code-words of f#~) (or J~>)) of weight w, and for 0 ~< i ~ u -- 1 
let 

a = 2-m~-m12(G2,._~+2,.l,+,j_ ~ + G2,~_~_2,.I~+._~) , 

ai '  = 2 . . . . .  12(G,,,,_,+2,./,+,,_, - -  G,, , ,_,_z, . / ,+._,) ,  

bi = 2- '* '+' / ' ( I=,~_1+, , , / ,+,_,  + I , , ,_ ,_v~/ ,+,_ , )  , 

bi' = 2-~u+~/2(Iv~-~+2"/"+"-~ - -  I2~-*-2"/'+"-1)" 

By Corollary 1, part (3), the dual codes of ~}~) and J ~ )  have the same 
number of codewords of weight w for 0 ~ w ~ 2u -- 1. Hence, by sub- 
tracting the Pless translated power moment identities with center 2 ~-1 for 
J ~ )  from those for ~}~), we have that 

u--1 

2 z " - m u ( 2  -~'/~ - -  2 ~/2) + £ 2(m+2~')t(ai - -  hi) = 0 ,  
i=0  

for 1 ~ t ~ u - - 1 ,  

U--1 

--2z~t+~-m~(2 -~/~ -- T "/2) + ~ 2(m/2+iJ)(2t+l)(ai' - -  bi ')  = 0, 
i=o  

for O ~ t ~ u - - 1 .  

By Corollary 4, we have 

a 0 ~ -  b 0 . 

Since the coefficient matrices are nonsingular, a i -  b~ and a i ' - - b  i' are 
determined uniquely by the linear equations above. Since ai is found in 
Section 3.3 and a~' is derived from ai by using the Prange Symmetry relation, 
bi and bi' can be found. 

. c f f (%(m,J ) )  APPENDIX I: WEmHT ENUMERATORS FOR __j 

,5//'(ul(m'l)) e v e n  1 is the ,part of the 2nd-order cyclic Reed-Muller codes, 
o¢%(~'2)~is the (0, 2)th-order Euclidean Geometry codes. and for even m, ~ 

Theorem A1 is an extension of the results by Berlekamp and Sloane (1970). 
Let j be a factor of m and j =7(= m. Let m / j  = ~ .  By definition, ~1~ is a root .@(%(m,~)) of the generator polynomial of __j. if and only if 

rain Wv(j2 9 < 3. 
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. @ ( u l ( * n ,  J))  
This implies that __~. is a polynomial code, that is, the binary subfield 
subcode of (~(2 ~ -- 1) -- 3)rd-order generalized Reed-Muller code of length 
2 ~ -- 1 over GF(20 (Kasami-Lin-Peterson (1968b)). Therefore, the extended 
code of ~r]~ ~(rn'j)), denoted by ~ . ,  can be-characterized as follows. Let Pm 
be the set of polynomials of variables X 1 ,..., X m of degree less than 3 over 
GF(2J). For f ( X  1 ,..., Xm) ~ Pro, let v ( f )  be the binary vector of length 2 "~ 
whose first component is f (0  ..... 0) andwhose i-th component with 1 ~< i < 2 m 

m 
is f ( a a ,  a,~ ,..., aim), where fl~-i = ~2t~=1 aihfi h-x with ai~ ~ GF(20 and fl is a 
primitive element of GF((2 j)).m For f ~  P-,m v( f )  is orthogonal to every 

( U l ( m , j ) )  . . code-word of the extended code o f ~ j  , (Kasaml-Lm-Peterson (1968b)). 
,Tr(f))Hence is orthogonal to every code-word of the extended code of 

~j~(~'~)( where T r ( f )  f + f2  + ... + f2 '-~. That is 

~< D_ {v(Tr(f)) ] f e  pro}. 

Let /5  m be the set of those polynomials in Pr~ which are of the form 

Co + Z ~,xi + E ~i~xix~, 
i i < h  

where c o ~ GF(2), ci e GF(20 and cih ~ GF(20. Since Tr(cX 2) = Tr(c'X) 
with c = c '2 and Tr(c) ~ GF(2) for c ~ GF(20, 

{ v ( T r ( f ) ) l f E  Pro} = {v (Tr ( f ) )Ef t  pro}. 

If f l  c Pr~, fz ~ Pm and fl  @f2 ,  then Tr(fl)=fi  Tr(f2) and, therefore, 
v(Tr(fl) ) =/: v(Tr(fz) ). Since the dimension of {v(Tr(f))[f@_Pm} is 
1 + ~ (~  @ 1)j/2, ~ = {v(Tr(f ) ) I f~Pm}.  Let Yi = bio @ 2hm~b~hX~ 
with 1 ~ i ~ m/j and bih_~ GF(20 be an invertible affine transformation. 

m m 
F o r f e  Pro, g = f(blo + 2h=~ blhXh , beo + 3~h=~ b2r~Xh ,...) ~ Pm and v(Tr(g)) 
has the same weight as v(Tr(f)) .  It follows from Corollary 16.351 (Berlekamp 
(1968)) that any polynomial in Pm can be reduced by an invertible affine 
transformation of its variables and by substituting X i and Tr(co) for X~ 2 
and constant term c o , respectively, to one of the canonical forms: 

x~x~ + x~x~ + ... + x~i_lX~, 0 ~< i ~< ~/2, (A1) 

X~X~ + X~X~ + ... + X~_~X~i + X~+~, 0 ~ i < ~/2, (12) 

X~X2 + X3X4 + "" -]- X2i_~X~i q- 1, 0 ~ i ~ ~/2. (A3) 

, p(2) and (a) Let P~,½ -m,~, Pm,i denote the sets of those polynomials in P,~ which 
can be reduced to the forms (A1), (A2), and (A3), respectively, by an 
invertible affine transformation of its variables and by substituting Xi  for 
Xi  2 and Tr(c0) for a constant term c o . Then, the following lemma holds: 
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LEMMA A1. The weight of 

v(Tr(f ) )  2 m~-I 2 m~-i~-I for fe / ) (1)  - - -  ~ r ~ ,  i 

- -  2 '~-1 for f ~  P(~) - -  - - f f t , i  

- -  2 m~-I 3- 2 m~-i~-a for ( e  p(a) - -  d ~ , i '  

Proof. By induction on i, this lemma will be proved• The  number of 
(X1, X2) such that Tr(X1X2) = 1 (or 0) with X 1 ~ GF(2~) and X~ ~ GF(2 0 
is 2J-1(2 J - -  1) (or 2 2j-1 + 2~-1). By the induction hypothesis, the number 
of (X~,X~ .... ,Xm) such that T r (XsX 4 + N a X  6 + ' ' ' + X 2 i _ l X e ~  ) = 1 
(or 0) is 2 '~j-2~-1 - -  2 m~-~'-/3-1 (or 2 mj-~j-1 + 2mJ-J-/~-l). Since 

Tr(X1X2 + XzX4 3- .-. @ X2~-lX2~) 

= Tr(X~X2) 3- Tr(X3X 4 3- '•" 3- X2~_lX2~), 

the number of (X 1 ,..., X,~) such that T r ( X I X  2 3- ... + X2i_lX~i ) = 1 is 

(22,-1 _ 2,-1)(2~J-2,-1 + 2'~J-;-iJ -1) + (22'-1 + 2J-1)(2 ~'-2J-1 _ 2,aJ-,-~J-1) 

= 2mJ-1 _ 2 f f ~ y - i 3 - 1 .  

The other cases can be proved similarly. 
Now let 

f = XaX2 + "'" 3- X2,-IXzi  3- Co 3- qX 1  3- "'" 3- cmXm, 

where c o ~ GF(2) and ch ~ GF(20. Then, f E P  m (or p(al~ if and only if 
c~ = 0 for 2i < h ~ N and Tr(c o 3- Qc~ 3- "'" 3- cei_lcei ) -~  0 (or 1), s and 

f _  n ( 2 )  e rm, i ,  if and only if c~ @ 0 for some h with 2i < h ~< N. In  case that 
f l  - - f 2  is a polynomial of degree less that 2, then let f l  ~'~ f~- Relation "~--~" 
is a congruence relation• For each ¢ ~ ~(~1 there are 2~'~f~'s in p(1)/such 

• " " Pg)  I2-2i~ blocks, p m  is partitioned into l -m, ,  that f l  ~"~f~ By relation ~ , _m,i 
p(1) where ] S I denotes the number  of elements in set S. Let [ _m,~ [ = 0 for 

i > 2~. For each f 6  P(~,)~, there is exactly one block whose members have 
relation "~-~" with f. For a representative f of each block, there are 
22z~+1(2 mj-~ij - -  1) polynomials in p(2) which have relation " ~ "  with f. r~ , i  

Consequently, we have that 

p(~)  2(2~J-~i; p(a) [ - - ~ , i  ] = - -  l )  ] - - ~ , i  I- ( A 4 )  

Obviously, 
p(~) p~). 

I--m.i I = I--~,~ I. (A5) 

s U s e  X~X~ + c~X~ + c~X~ = (X~ 4- c~)(Xe 4- cx) + c~c~. 
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( i) Let f ~  Pm+l , i  , and let 

f = fo + Xm+~fx, 

where f0 6 P,~ and f t  ~ Pm are independent of Xm+~. I f  f = fo + Xm+~f~, 
X ' f '  = f0' + m+~f~ and f0 =~ f0 ,  then f =7~ f ' .  We proceed to count the 

number  of polynomials in o a )  Without loss of generality, let - - ~ + 1 , /  " 

f = fo + Ax~+~ 

= C O "4- X l X  2 ~- X 3 X  4 + .. .  ~_ X2h_lX2h + ClX2/~+I 

+ (b o + b~X~ + bzX~ + ... + bmXm)Xm+~, 

where c o e GF(2), c~ ~ GF(2), Cog 1 = O, bg ~ GF(20, 0 ~ h ~ N/2, and if 
q = 1, then 2h + 1 ~ ~.  For a fixedfo ~ Pm different choices of bo, b~ .... ,bm 
give different f ' s  in _Pm+x. 

(1) Suppose that c, = 0. I f  bz :/= 0 for some l with 2h < l ~< ~,  then 
f e  p m  to p¢a) if and only if h i 1. The  number  of these cases is 

2(zi-~)~+1(2 m~-z(*-l)~" - -  1) I P (I)m,~_~ I. (a6)  

I f  bz = 0 for every l with 2h < l ~< r~, then 

Replace 
and b o + btbz + ". + b2~_~bzi = O. The  number  of these cases is 

= ( &  + b~X~+0(& + b~X~+~) 

@ .-. @ (X2~-1 @ b2hXm+l)(X2t~ @ b2h-iXm+l) 

+ (bib2 + ... + b2h-lb2t~) X 2 ~+1 + boX~+l + Co. 

2 X~+ 1 by X~+x Then,  ¢ = o a )  uP¢a)  if and only if h = i  • J ~ - - ~ + 1 , i  ~ + 1 , /  

22~J+~ I P~!~ I. (A7) 

(2) Suppose that q = 1. I f  b z =7~ 0 for some l with 2h -1- 1 < l ~ ~, 
then f a  P(~) and f ~ a )  to p(a) I f  b~ = 0 for every l with --~+1,£+1 --~+1 ,'i --r~+l, ~ • 
2h < 1 <~ ~,  then ,t(~ ~TN+l.t~D(2) and f ~  P~n+l,i(1) to p(a)~+l,i . I f  b~ = 0 for 
2h + 1 < l ~< g /and  b2t~+ 1 =/= 0, then 

f = (X~ + b~Xm+~)(X 2 + b~X,~+~) 

+ ... + (x~,~_~ + b~X~+~)(X~ + b~_~X~+~) 

+ (bib2 + + b~h-lb~h) "'" X ~ +  1 -~- X2h+l  -~- (b 0 @- b2A+lX2lt+l) X ~ + I .  
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2 Replace X~+ 1 by Xm+ 1 and use 

b2h+lX2h+lXm+ 1 ~- X2h+l j -  (b o + bib2 + ... + b2h-lb2t~) Xm+I 

. . . .  (b~h+lX2h+ 1 + bo + blb~ + + b~h_lb2h)(X~+l + b2h+l)-i 

+ b~l+l(bo + bib2 + ... + b2h-lb2~). 

Then, ¢--D(1) UP(Sl if and o n l y i f h  = i - -  1. The number of these J ~" "t ~ + 1 , /  ~ + 1 , i  
cases is 

2 (24 1)J( 2j -- 1)] P(2)m,i-1 [ 

__ 2(2~-a)3+~(2J _ l)(2m3-z(z-x)J _ 1) [p(1)m,i_l 1. (A8) 

By (AS)-(AS), 

~,(~) 22i~ p~). 22~s(2,~J-2(~-~)~" /)(1) [ - - ~ + 1 , i  [ = [ m,z ] "q- - -  1)] ~m,i-1 [. (a9) 

Now, we have the following theorem: 

THEOREM A1. (1) [O(1) --,~,o [ l; (2) For 0 < i <~ ~/2, 

2i--1 
p(1) 2~(~+1)J (2(,~-t)J / (22jr ]-r~.i [ = ~I -- 1) -- 1). 

t=0 /=1 

Proof. Obviously, [pa)  -m,0  ] = I. B y  (A9) ,  

p(1) 2~J(2 j I ~ , 1 1  = - 1 ) .  

Thus, Lemma A2 holds for r~ 2. Assume that the lemma holds for ~ ~ l. 
Consider the case of m = 1 + 1. If  2i ~ 1, then it follows from (A9) that 

~ / + 1 ,  i (2~--1 - -  - -  ) )  [ D(1) ] =  2 ih+l)~ ,t__I-[1 (2 (~+l-t)j 1)/t=llJI ( 22't 1 

× {22"(2 (z-2i+l)j -- 1) + 22~ --  1} 

2i-1 i ) 
= 2 z(z+l)j \t=~ ° (2 (t+l-t)j -- l ) / ~  (2 2 ' t -  1) .  
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I f  2i = l + 1, then from (A9), we have 

i -1  
[ P~*]I,i ] = 2/(/+1/~ (2[__~] ( 2('-tb - 1)/,1~I1 (2=J r -  1))(  2(z-2/+2)~ - 1) 

- -  (2i--1 i 
-- :*(i+l" \,~=o (2('+i-tn --1)/t~=l (22't --1) ). 

Since 

]p(i) A%(.~,J))  A%(.~,J)) = A(~(.~,3)) + A(~I(~.~)) , 
~ , i  ] = 2m_l_2m_~_ 1 -~  2m_l_2m_~3_l_ 1 2m_l_2m_w_ ~ 2 m _ l + 2 m _ i j _  1 

formula (22) follows from Theorem A1. 

A P P E N D I X  II:  PRoo~ oF THEOREM 2 

We follow the proof by Berlekamp-Sloane (1969) and use the same nota- 
tions as those in Berlekamp-Sloane (1969) except for P(% In  this proof, 
P(") will denote a power series of the form 

p(,) = y, akz ~, 
k e K ( s , • )  

where j divides n + 2. For P(") in this meaning, Lemma 1 of Berlekamp- 
Sloane (1969) still holds, which is proved as follows: 

I f  k,+ 1 ~< 2 "+1 - -  2 n-" --  1 with 0 ~ ~r ~< n is in K(n, j), then k~+ 1 is of 
the form 

2 "+2 --  2 h --  2 J~-l~ --  1. 

Xp~r+l t v 
2~Zi oA~ ~< M. Hence, rr + 1 is divisible by j. Suppose that L ~< z~,=0 = 

(We use t~ instead of k~ in (16) of Berlekamp-Sloane (1969).) In  order to 
prove the new version of Lemma 1, it is sufficient to consider the case in which 
~ + o  ~ 2~ Z ~ o  A~ is 2~r + 4. For this case, since 2 ~+2 - -  Z ~ o  A, - -  1 ~ K(n, j) 
and the weight of ~. "~ z..i=o x~t~ A, is 2, 2 ~ ~2~0 Ai is of the form 

2 °. + U , ,  

where 0 ~< rv < p~ ~< n + 2 + ~r and pv - -  % is divisible by j. Since the 
• ~r+l t v . 

weight of Y.~=0 2~ Y.i=o At is 2rr + 4, O~ and r v with 0 ~< v ~< 7r + 1 are 
~r+l v tv  all different. On the other hand, ~ 0 2 Y~i o A is of the form 

n+2+rr 
2 0 + U +  ~ 2 i, 

i=n+l--cr 
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when  0 ~<~ < p  ~ < n - - T r .  Then ,  the set of 2 7 r + 4  dist inct  number s  

{Po ,..., P~+l, r0 .... , %+1} is identical  wi th  {7, p, n q- 1 - -  ~r, n + 2 - -  ~r,..., 

n + 2 q- 7r}. Consider  polynomial  over  GF(2), 

~Z+l 
. f ( x )  = ( x  + = x o + x • + E x ' (  + 

7, i = n + l - ~ r  

S i n c e X  °~ + X ~ = X * v ( X  ° ' - ~  + 1) ~ 0 m o d ( X  ) + 1, 2 ) a n d X  ~+~ + 1 ~ 0 

m o d ( X  ~ + 1, 2), 

X "  + X "  ---- X ~ ( X  ~-* + 1) --= 0 m o d ( X ;  + 1, 2). 

Hence ,  p - -  r is divisible by j .  Since (n - -  ~r - -  1) + 2 is divisible by j ,  

the  modif ied vers ion of  L e m m a  1 holds. Now,  the  p roof  of this t heo rem 

proceeds in the  same way as the one by Berlekamp and Sloane, which  holds 

still for w ~< 2 .~1 - -  4. By induct ion,  n i + 2 and rr~ + 1 are divisible by j 

and 0 i - -  1 ~ K ( n l  , j ) .  I t  is conc luded  that  

W = 2 m-r+l - -  2 nz-~rz+I : 2 m-r+1 - -  2 n~+2-6rt+l+l)-l. 
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