
Discrete Mathematics 291 (2005) 99–113
www.elsevier.com/locate/disc

Indivisible homogeneous directed graphs and a
game for vertex partitions

Mohamed El-Zahara, N.W. Sauerb,1

aDepartment of Mathematics, Faculty of Science, Ain Shams University, Abbaseia, Cairo, Egypt
bDepartment of Mathematics and Statistics, Faculty of Science, University of Calgary, 2500 University Dr. NW.,

Calgary, Alberta, Canada, T2N1N4

Received 28 June 2000; received in revised form 19 June 2002; accepted 18 April 2004
Available online 12 January 2005

Abstract

Let T be a set of finite tournaments. We will give a necessary and sufficient condition for the
T-free homogeneous directed graphHT to bedivisible; that is, that there is a partition ofHT into
two sets neither of which contains an isomorphic copy ofHT.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

LetH beadirectedgraph.A local isomorphismofH is an isomorphismof a finite induced
subgraph ofH to a finite induced subgraph ofH . The directed graphH is homogeneous
if every local isomorphism ofH has an extension to an automorphism ofH ; see[3]. Let
aut(H) be the group of automorphisms ofH andH be homogeneous. IfF is a finite subset
of V (H), denote by autF (H) the subset of all automorphismsf of H so thatf (x) = x

for all x ∈ F . The relation onV (H) − F given by: the vertexx is related to the vertex
y if there isf ∈ autF (H) with f (x) = y, is an equivalence relation onV (H) − F . The
equivalence classes of this equivalence relation are called theorbitsof F. An orbit ofH is
an orbit ofF for some finite setF of vertices’s. The restriction ofH to an orbit ofH is again
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a homogeneous directed graph, see[2]. We identify the orbits with the restrictions ofH to
the orbits.
For every setT of finite tournaments there is a unique homogeneous countable directed

graphHT so that the finite induced subgraphs ofHT are all of the finite directed graphs into
which none of the tournaments ofT can be embedded; see[3]. The countable homogeneous
directedgraphsof typeHTmakeup thebulk of the countablehomogeneousdirectedgraphs;
see[1].
The directed graphD is indivisible if for every partition of the setV (D) of vertices’s of

D into red and blue vertices’s there is a copyD∗ of D in D so that all of the vertices’s of
D∗ are red or all of the vertices’s ofD∗ are blue. OtherwiseD is said to bedivisible.
Let T be a finite set of finite tournaments. The main result of[2] states thatHT is

indivisible if and only if for any two orbitsX andY of HT eitherX can be embedded into
Y orY can be embedded intoX. The proof of the necessity of the latter condition in[2] does
not rely on the assumption that the setT of constraints is finite; the proof of the sufficiency
on the other hand relies heavily on the finiteness of the chain of orbits under embedding.
There are examples to show that the chain of orbits under embedding can be any countable
order type, even the order type of the rationals; see[5]. In this paper we strengthen the result
of [2] and prove, see Theorem 6.2, that

Theorem 1.1. LetT be a possibly infinite set of finite tournaments. ThenHT is indivisible
if and only if for any two orbitsX andY ofH eitherX can be embedded intoY or Y can
be embedded intoX.

2. Preliminaries

If f is a function of a setS to a setT thenf [S] denotes the image off, that is, the set
{f (s)|s ∈ S}. The setS is countableif there is a bijection ofSto�. The setS − T consists
of the elements inSwhich are not inT. We consider every elementn ∈ � to be the set
of all smaller numbers and writex ∈ n for x ∈ � andx < n. If l ∈ � andSandT are
subsets of� we write l < S to mean that every element inS is larger thanl andS < T to
mean that every element ofT is larger than any of the elements inS. In particularl < ∅
for all l ∈ �.
A directed graphG is a binary anti reflexive and anti symmetric relation. We denote the

set of vertices’s ofG by V (G) and the set of edges ofG by E(G). The vertices’sa andb
areadjacentif either (a, b) ∈ E(G) or (b, a) ∈ E(G). The directed graphA is aninduced
subgraphofG if V (A) ⊆ V (G) andE(A)=(V (A)×V (A))∩E(G);A is aproper induced
subgraphof G if V (A) �= V (G). If A ⊆ V (G) then the subgraph ofG induced by Ais
the induced subgraphA of G with V (A) = A. If a is a vertex of the directed graphG then
G − a is the subgraph ofG induced by the setV (G) − {a}.
An embeddingof the directed graphA into the directed graphG is an injectionf of V (A)

into V (G) so that(a, b) ∈ E(A) if and only if (f (a), f (b)) ∈ E(G) for all vertices’s
a, b ∈ V (A). If f is also onto thenf is anisomorphism. Theimagef [A] of f is the subgraph
of G induced byf [V (A)]. A copyof the directed graphA in the directed graphG is an
induced subgraph ofG which is isomorphic toA. The directed graphG isA-freeif there is
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no copy ofA in G. A tournamentT is a directed graph so that any two different vertices’s
of T are adjacent.
Theskeletonof a directed graphG is the set of all finite induced subgraphs ofG and the

ageof G, age(G), is the set of all finite graphs which are isomorphic to an element of the
skeleton ofG. An isomorphism of the elementA in the skeleton of the directed graphG to
the elementB in the skeleton ofG is a local isomorphismof G.
The boundary of Gis the set of all finite directed graphsA which are not in the age

of G but every proper induced subgraph ofA is an element in the age ofG. We denote
by bound(G) the boundary ofG. The set Bound(G) is the set of all finite directed graphs
which are not in the age ofG. It follows that Bound(G) ∪ age(G) is the set of all finite
directed graphs and bound(G) is the set of minimal elements of Bound(G) with respect to
embedding.

3. The homogeneous directed graphsHT

LetT be a set of finite tournaments which can pairwise not be embedded into each other.
We construct the graphHT as the limit of the graphs(Bi; i ∈ �) with V (B0) ⊆ V (B1) ⊆
V (B2) ⊆ · · · andE(B0) ⊆ E(B1) ⊆ E(B2) ⊆ · · ·. The graphB0 is the directed graph
having a single vertex. GivenBn andA, B two subsets ofV (Bn) with A ∩ B = ∅ denote
byCA,B the directed graph which consists of all of the vertices’s ofBn together with a new
vertexxA,B . The restriction ofCA,B toV (Bn) isBn and there is an edge fromxA,B to every
vertex ofB and an edge from every vertex ofA to xA,B andxA,B is not adjacent to any
vertex inV (Bn) − (A ∪ B). Let Sn be the set of vertices’sxA,B , for A andB two disjoint
subsets ofV (Bn), so that no element ofT has an embedding intoCA,B . ThenBn+1 is the
directed graph withV (Bn+1) = V (Bn) ∪ Sn and the restriction ofBn+1 toV (Bn) ∪ {xA,B}
isCA,B and no two of the vertices’s inSn are adjacent.
The directed graphHT so constructed is called thehomogeneous directedT-free graph.

It follows from the construction that it has the followingmapping extension property;
see[2]:
If A is an element of the age ofHT anda ∈ V (A) andf an embedding ofA − a into

HT then there is an extensionf ∗ of f to an embedding ofA intoHT.
Themapping extension property implies that a finite directed graphA is an element of the

age ofHT if and only if there is no embedding of any elementT ∈ T intoA and that every
countable directed graph into which none of the elements ofT have an embedding can
be embedded intoHT. Actually the following stronger version of the mapping extension
property follows directly from the construction ofHT:
If A is an element of the age ofHT anda ∈ V (A) andf is an embedding ofA − a into

HT then there are infinitely many different extensionsf ∗ of f to an embedding ofA into
HT. In particular, all orbits are infinite.
The mapping extension property implies, via a standard argument, that every local iso-

morphism has an extension to an automorphism, that is thatHT is homogeneous. There
is up to isomorphism only one countable homogeneous directed graph with boundaryT;
see[3].
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According to[4] there is an infinite set of tournaments which can pairwise not be em-
bedded into each other.

4. Orbits

LetT be a set of finite tournaments andHT theT-free homogeneous directed graph.
Let Jbe a finite subset ofV (HT) andA, B ⊆ J withA∩B =∅. Denote byOJ

A,B the set
of all elementsx ∈ V (HT)−J so that(a, x) ∈ E(HT) for all a ∈ A and(x, b) ∈ E(HT)

for all b ∈ B andx is not adjacent to any vertex inJ − (A ∪ B). If OJ
A,B is not empty

thenOJ
A,B is an orbit ofHT. Given an orbitX of HT there are setsA, B andJ so that

OJ
A,B = X. We define:F (X) = J , F1(X) = A, F2(X) = B, F∗(X) = F1(X) ∪ F2(X) and

F0(X) = J − F∗(X). Note thatF (X) ∩ X = ∅.
Let X be an orbit ofHT. We denote by bound(X) the boundary of the restriction of

HT toX and by Bound(X) the set of finite directed graphs which are not in the age of the
restriction ofHT to X. Then bound(X) is the set of minimal elements of Bound(X) with
respect to embedding. We write bound(X) ⊆ bound(Y ) if Bound(X) ⊆ Bound(Y ). Note
that bound(X) ⊆ bound(Y ) if and only if for everyB ∈ bound(X) there is aB ′ ∈ bound(Y )

which has an embedding intoB.We assume that ifT ∈ bound(X) thenV (T )∩V (HT)=∅.
We denote by age(X) the age of the restriction ofHT toX. Note that age(X) ⊆ age(Y )

if and only if bound(X) ⊇ bound(Y ) and if age(Z) = age(X) ∩ age(Y ) then Bound(Z) =
Bound(X) ∪ Bound(Y ). Similarly bound(X) = bound(Y ) if and only if age(X) = age(Y ).
We state for future reference Lemma 4.1, see[2], and Lemma 4.2 which is easy to prove.

Lemma 4.1. Every orbit X ofHT has the mapping extension property. That is ifA ∈
age(X) anda ∈ V (A) and f an embedding ofA − a into X then there is an extensionf ∗
of f to an embedding ofA into X.

Lemma 4.2. If X and Y are two orbits ofHT with F1(X) = F1(Y ) andF2(X) = F2(Y )

thenage(X) = age(Y ).

Let

B= B(HT) := {bound(X) | X is an orbit ofHT}.
In [2] an orbit of the formOA∪B

A,B is denoted byC(A, B) and(A, B)�(A′, B ′) is defined to
mean that there is an embedding ofC(A′, B ′) intoC(A, B). Also

F = {(A, B) | A, B are finite subsets ofV (HT) andA ∩ B = ∅}.
Then, Theorem 6 of[2] says that ifHT is indivisible then� is a total preorder onF. This
together with Lemma 4.2 gives the following theorem:

Theorem 4.1. LetT be a set of finite tournaments which can pairwise not be embedded
into each other. If the homogeneous directed graphHT is indivisible then the setB(HT)

of the boundaries of the orbits ofHT is a chain under⊆.
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LetXandYbe twoorbits ofHT. If I ⊆ F (X)wedenotebyX/I theorbitwithF (X/I)=I

andF1(X/I) = F1(X) ∩ I andF2(X/I) = F2(X) ∩ I . The orbitsX andYarecompatible
if X/(F (X) ∩ F (Y )) = Y/(F (X) ∩ F (Y )); that is, if

for all a ∈ F (X) ∩ F (Y ), x ∈ X andy ∈ Y,

(a, x) ∈ E(HT) if and only if (a, y) ∈ E(HT) and

(x, a) ∈ E(HT) if and only if (y, a) ∈ E(HT).

If XandYare compatible then themeetX∩Y isOJ
A,B with J =F (X)∪F (Y ),A=F1(X)∪

F1(Y ) andB = F2(X) ∪ F2(Y ), which is either empty or an orbit.
The orbitY is acontinuationof the orbitX if F (X) ⊆ F (Y ) and ifX = F (Y )/F (X).

Hence ifI ⊆ F (Y ) thenY is a continuation ofF (Y )/I and ifY is a continuation ofX then
bound(X) ⊆ bound(Y ). The meet of two compatible orbits, if nonempty, is a continuation
of both orbits. IfYis a continuation ofX thenXandYare compatible andX∩Y =Y . The orbit
Y is arefinementof the orbitX if Y is a continuation ofX and bound(Y ) = bound(X). Note
that a continuation of a continuation is a continuation and that a refinement of a refinement
is a refinement.

Lemma 4.3. Let R and S be compatible orbits ofHT. If no vertex inF∗(R) − F (S) is
adjacent to a vertex ofF∗(S) − F (R) thenage(R ∩ S) = age(R) ∩ age(S).

Proof. Clearly age(R ∩ S) ⊆ age(R) ∩ age(S).
Conversely, ifA is in age(R) ∩ age(S) letG be an extension of the restriction ofHT to

F (R) ∪ F (S) by a copy ofA so that the restrictionGR of G toF (R) ∪ V (A) embeds into
HT by an embedding which is the identity onF (R) and mapsA intoRand the restriction
GS of G toF (S) ∪ V (A) embeds intoHT by an embedding which is the identity onF (S)

and mapsA into S. By our hypothesis, any tournament embedding inG embeds inGR or
in GS , hence inHT. Thus,G is in the age ofHT andA is in the age ofR ∩ S. �

Lemma 4.4. Let X be an orbit ofHT and b ∈ B = B(HT) with bound(X) ⊆ b and
L a finite subset ofV (HT). Then there is a continuation Z of X withbound(Z) = b and
F (Z) ∩ L = F (X) ∩ L.

Proof. There is an orbitY with bound(Y ) = b. Let A be a directed graph withV (A) ∩
V (HT) = ∅ so that there is an isomorphismf of the restriction ofHT toF (Y ) toA. LetB
be the directed graph withV (B) = F (X) ∪ V (A) ∪ L and the restriction ofB toF (X) ∪ L

is the restriction ofHT to F (X) ∪ L and the restriction ofB to V (A) is A. No vertex in
V (A) is adjacent to a vertex inF (X) ∪ L. The graphB is in the age ofHT and hence there
is an extensiong of the identity map onF (X) ∪ L to an embedding ofB intoHT.
Let Y ′ be the orbit withF (Y ′) = g ◦ f [F (Y )] andF1(Y

′) = g ◦ f [F1(Y )] andF2(Y
′) =

g ◦ f [F2(Y )]. It follows that bound(Y ′) = b. The orbitsX andY ′ are compatible because
F (X) ∩ F (Y ) =∅. LetZbe the meet of the orbitsXandY ′. Because no element inF (X) is
adjacent to any element inF (Y ′) it follows from Lemma 4.3 that bound(Z) = bound(X) ∪
bound(Y ′) = bound(X) ∪ b= b. �
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Lemma 4.5. Let X and Q be two compatible orbits so that Q is a refinement ofX/(F (X)∩
F (Q)). If every vertexx ∈ F (X)−F (Q)which is adjacent to an element inF∗(Q)−F (X)

is an element in Q, thenX ∩ Q is a refinement of X.

Proof. We have to prove that age(X) ⊆ age(X ∩ Q). Let A ∈ age(X) with V (A) ⊆ X.
ThenV (A) ⊆ X/(F (X) ∩ F (Q)). Let S be the set of all elementsx ∈ F (X) − F (Q)

which are adjacent to an element inF∗(Q) − F (X). ThenS ⊆ Q and becauseX andQ are
compatibleS ⊆ X/(F (X) ∩ F (Q)).
LetB be the restriction ofHT to S ∪ V (A). ThenV (B) ⊆ X/(F (X) ∩ F (Q)).
ThenB ∈ age(Q) becauseQ is a refinement ofX/(F (X) ∩ F (Q)). The identity map

onShas an extensionf to an embedding ofB intoQ becauseQ has the mapping extension
property. The embeddingf mapsA into (X ∩ Q)/(F (Q) ∪ S) due to the definition ofB.
Hence(X ∩ Q)/(F (Q) ∪ S) is a refinement ofX. It follows from Lemma 4.3 thatX ∩ Q

is a refinement ofX. �

Let X be an orbit ofHT. The sequence(Qi; i ∈ [n + 1] ∈ �) of orbits withDi+1 :=
F∗(Qi+1) − (F (Qi) ∪ F (X)) for all i ∈ n is a refinement sequenceof X if for all i ∈ n,
j ∈ [n + 1]:

(i) Q0 = V (HT).
(ii) Qi+1 is a continuation ofQi .
(iii) Qj is a refinement ofX/(F (X) ∩ F (Qj )).
(iv) If x ∈ F (X) − F (Qj ) is adjacent to an element inDj , thenx ∈ Qj .

Lemma 4.6. Let (Qi; i ∈ [n + 1] ∈ �) be a refinement sequence of the orbit X ofHT.
ThenX ∩ Qn is a refinement of X.

Proof. Note that ifn=1 then Lemma 4.6 follows directly from Lemma 4.5.We proceed by
induction. It follows from (iii) that the orbitsXandQn are compatible. The orbitsX∩Qn−1
andQn are compatible becauseQn is a continuation ofQn−1. Because

bound(Qn) ⊇ bound((X ∩ Qn−1)/(F (X ∩ Qn−1) ∩ F (Qn)))

⊇ bound(X/(F (X) ∩ F (Qn))) = bound(Qn),

it follows that the orbitQn is a refinement of the orbit

(X ∩ Qn−1)/(F (X ∩ Qn−1) ∩ F (Qn)).

If

x ∈ F (X ∩ Qn−1) − F (Qn) = (F (X) ∪ F (Qn−1)) − F (Qn) = F (X) − F (Qn)

is adjacent to a vertex in

F∗(Qn) − F (X ∩ Qn−1) = F∗(Qn) − (F (X) ∪ F (Qn−1)) = Dn,

thenx ∈ Qn according to condition (iv).
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We apply Lemma 4.5 to the orbitsX ∩ Qn−1 for X andQn for Q. Hence(X ∩ Qn−1) ∩
Qn = X ∩ Qn is a refinement ofX ∩ Qn−1. The sequence(Qi; i ∈ n) is a refinement
sequence ofX and the orbitX ∩ Qn−1 is a refinement ofX by induction. HenceX ∩ Qn is
a refinement ofX. �

The pair(X;RX = (Qi; i ∈ [n+1])) consisting of an orbitXand a refinement sequence
RX of X is branchedwith the pair(Y ;RY = (Pi; i ∈ m + 1)) consisting of an orbitYand
a refinement sequenceRY ofY if:

(a) n = m andF (X) = F (Y ).
(b) There is� ∈ [n + 1] so thatQj = Pj for all j ��.
(c) (F∗(Qn) − (F (Q�) ∪ F (X))) ∩ (F∗(Pn) − (F (Q�) ∪ F (X))) = ∅.
The number� is thebranching numberof the branched pair(X;RX = (Qi; i ∈ [n + 1]))
and(Y ;RY = (Pi; i ∈ [n + 1])). It follows that(X;RX = (Qi; i ∈ [n + 1])) is branched
with (X;RX = (Qi; i ∈ [n + 1])) with branching numbern.
LetX be an orbit anda ∈ V (HT) a vertex not inF (X). We denote by continue(X, a, k)

for k ∈ 3 the continuation ofX so thatF (continue(X, a, k)) = F (X) ∪ {a} and a ∈
Fk(continue(X, a, k)).
LetXbe an orbit with refinement sequence(Qi; i ∈ [n +1]) anda ∈ X ∩ Qn andk ∈ 3.

It follows that(Qi; i ∈ [n + 1]) is a refinement sequence of continue(X, a, k). Conditions
(i)–(iii) are trivially satisfied. Becausea ∈ X ∩ Qn we geta ∈ Qn and hencea ∈ Qi for
all i ∈ [n + 1].

Lemma 4.7. Let the pair(X;RX = (Qi; i ∈ [n + 1])) and(Y ;RY = (Pi; i ∈ [n + 1]))
be branched with branching number� anda ∈ X ∩ Qn so that it is not inF (Y ∩ Pn) and
not adjacent to any element inF∗(Pn) − (F (Q�) ∪ F (Y )).Then(Pi; i ∈ n) is a refinement
sequence ofcontinue(Y, a, k) for everyk ∈ 3.

Proof. Conditions (i)–(iii) are trivially satisfied.We have to argue condition (iv) forx = a.
If a is adjacent to an element inF∗(Pi) − (F (Pi−1) ∪ F (Y )) theni �� and henceQi = Pi .
Becausea ∈ X ∩ Qn andX ∩ Qn is a continuation ofQi it follows thata ∈ Qi = Pi . �

Lemma 4.8. Let k, l ∈ 3. Let the pair(X;RX = (Qi; i ∈ n)) and(Y ;RY = (Pi; i ∈ n))

be branched with branching number� and the vertexa /∈ F (X ∩ Qn−1) ∪ F (Y ∩ Pn−1) so
thatRX is a refinement sequence ofcontinue(X, a, k) andRY is a refinement sequence of
continue(Y, a, l).Then(Qi; i ∈ [n+1]) withQn = continue(X, a, k)∩Qn−1 is a refine-
ment sequenceofcontinue(X, a, k)and(Pi; i ∈ [n+1])withPn=continue(Y, a, l)∩Pn−1
is a refinement sequence ofcontinue(Y, a, l).Also(continue(X, a, k); (Qi; i ∈ [n + 1]))
is branched with(continue(Y, a, l); (Pi; i ∈ [n + 1])) with branching number�.

Proof. TheorbitQn=continue(X, a, k)∩Qn−1 isa refinementof theorbit continue(X, a, k)

according to Lemma 4.6, affirming condition (iii).
There are no elements inF (continue(X, a, k)) − F (Qn) and condition (iv) follows.

Hence(Qi; i ∈ [n + 1]) with Qn = continue(X, a, k) ∩ Qn−1 is a refinement sequence of
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continue(X, a, k) and similarly(Pi; i ∈ [n + 1]) with Pn = continue(Y, a, l) ∩ Pn−1 is a
refinement sequence of continue(Y, a, l).
Using the same branching number� we obtain conditions (a) and (b) for

(continue(X, a, k); (Qi; i ∈ [n + 1])) being branched with(continue(Y, a, l); (Pi; i ∈
[n + 1])). Condition (c) follows becausea ∈ F (continue(X, a, k)). �

Lemma 4.9. Let the pair(X;RX = (Qi; i ∈ [n + 1])) and(Y ;RY = (Pi; i ∈ [n + 1]))
be branched with branching number� and F (Y ) ⊆ F (Pn). Let R be a refinement of
Pn so that(F∗(R) − F (Pn)) ∩ F (Qn) = ∅. Let P ′

i = Pi for i ∈ n and P ′
n = R. Then

R′
X = (P ′

i ; i ∈ [n + 1]) is a refinement sequence of Y and(X;RX) and (Y ;R′
Y ) are

branched with branching number�.

Proof. The only condition which is not trivially satisfied is condition (c). Condition (c) is
satisfied by assumption for all vertices’s ofP ′

n which are inPn and satisfied for all vertices’s
in F∗(R) − F (Pn) because(F∗(R) − F (Pn)) ∩ F (Qn) = ∅. �

5. The game

LetT be a set of finite tournaments which can pairwise not be embedded into each other
andHT the homogeneousT-free directed graph.We assume thatV (HT)=�, used in the
proof of Lemma 5.1, and that(B(HT); ⊆) is a chain.
Let X be an orbit ofHT andb ∈ B = B(HT) so that bound(X) ⊆ b. A b-restriction

of X is a continuationY of X with bound(Y ) = b. It follows from Lemma 4.4 that such a
b-restriction exists for everyb ∈ B with bound(X) ⊆ b.
Let �blue and�red be two unary relations on the set of orbits ofHT. We denote by

formula (1) the following statement:

For all b ∈ B with bound(X) ⊆ b
there exists a refinementYof Xwith F (X) < F∗(Y ) − F (X)

so that for all refinementsZ of Y with F (Y ) < F∗(Z) − F (Y )

there exists ab-restrictionR of Z with F (Z) < F∗(R) − F (Z)

so that�blue(R). (1)

Formula (5.1) is nearly identical to formula (1) except that�blue(R) is replaced by�red(R).

Theorem 5.1. LetT be a set of finite tournaments which can pairwise not be embedded
into each other andHT theT-free homogeneous directed graphwithV (HT)=�.Suppose
that the setB(HT) = B is a chain under⊆. Let (Blue, Red)be a partition of� into blue
and red elements.
Then there are unary relations�blueand�redon the set of orbits ofHT so that for every

orbit X ofHT exactly one of�blue(X) and�red(X). If �blue(X) then X contains infinitely
many blue vertices’s and formula(1) holds. If�red(X), then X contains infinitely many red
vertices’s and formula(5.1)holds.



M. El-Zahar, N.W. Sauer / Discrete Mathematics 291 (2005) 99–113 107

Proof. Let the conditions of Theorem 5.1 be given.
In order to prove theTheoremwe have for every orbitXofHT to decidewhether�red(X)

or �blue(X) and then prove that the so defined relations�red and�blue have the required
properties. Because of the condition that if�red(X) thenX contains infinitely many red
vertices’s we are forced to have�blue(X) if X contains only finitely many red vertices’s.
Note that ifX contains only finitely many red vertices’s then formula (1) holds. Similarly
if X contains only finitely many blue vertices’s then we let�red(X). We use the following
game to define the relations�red and�blue for all orbits ofHT.
The game�red(X) starts in state(X,0) with playerI to move.

0. If the game is in state(U,0) for some orbitU of HT then it is the turn of playerI
to move. PlayerI selectsb ∈ B with bound(U) ⊆ b and the game moves into state
(U,b,1).

1. If the game is in state(U,b,1) then it is the turn of playerII to move. PlayerII selects a
refinementV of U with F (U) < F∗(V ) − F (U) and the game moves to state(V ,b,2).

2. If the game is in state(V ,b,2) then it is the turn of playerI to move. PlayerI selects a
refinementWof V with F (V ) < F∗(W) − F (V ). The game moves to state(W,b,3).

3. If the game is in state(W,b,3) then it is the turn of playerII to move. PlayerII selects
ab-restrictionRofWwith F (W) < F∗(R)−F (W) and the gamemoves to state(R,0).
Then it is again the turn of playerI to move.

The game ends with a win of playerI if it is in a state of the form(Y,0) for an orbitY
which contains only finitely many blue elements.
We will write �blue(X) if player I does not have a winning strategy in the game�red(X).

It follows that if �blue(X) then there are infinitely many blue elements inX. Note that if
player I does not have a winning strategy in the game�red(X), that is if�blue(X), then
formula (1) holds. We will say playerI has a winat a state of the game if playerI has a
winning strategy when the game is at this state.
The orbits of the formU, V, W, R in the states of the game�red(X) are all continuations

and therefore subsets of the orbitX. Hence if playerI has a win in the game�red(X) then
there is an orbitY ⊆ X with only finitely many blue vertices’s. This implies that if playerI
has a win in the game�red(X) thenX contains infinitely many red elements. We will write
�red(X) if player I has a winning strategy in the game�red(X). Note that either�red(X) or
�blue(X).
In the following Lemma 5.1, which completes the proof of Theorem 5.1, we will make

use of the fact that ifX0, X1, X2, X3, . . . , Xi, . . . , Xn is a sequence of orbits ofHT so that
for everyi ∈ n Xi+1 is a continuation ofXi and

F (Xi) < F∗(Xi+1) − F (Xi),

then

F (X0) < F∗(Xn) − F (X0). �

Lemma 5.1. If �red(X) then formula(5.1)holds.



108 M. El-Zahar, N.W. Sauer / Discrete Mathematics 291 (2005) 99–113

Proof. Let�red(X). Then playerI has a winning strategy in the game�red(X).We use this
strategy and start the game in state(X,0) which is a winning state for PlayerI .
We begin at line one of formula (5.1) and letb ∈ B with bound(X) ⊆ b be given. Letb′

be the element ofB chosen by playerI . The game moves to state(X,b′,1) with a win for
playerI .
We will construct a refinementYof Xwith F (X) < F∗(Y ) − F (X) and so that(Y,b′,3)

is a winning state for playerI . This orbitYwill be used to satisfy the second line of formula
(5.1).
We as playerII selectX, moving the game to state(X,b′,2). LetYbe the refinement ofX

chosen by playerI when given the state(X,b′,2) moving the game to state(Y,b′,3) with
a win for playerI . Because playerI has made a legal move, we getF (X) < F∗(Y )− F (X).
Let Z be a refinement ofY with F (Y ) < F∗(Z) − F (Y ); accounting for line three of

formula (5.1). In order to validate formula (5.1) we have to prove that there exists ab-
restrictionRof Zwith F (Z) < F∗(R)−F (Z) so that(R,0) is a winning position for player
I . This will validate lines four and five of formula (5.1).
Because(Y,b′,3) is a winning state for playerI , playerI has a win at position(R,0)

for all b′-restrictionsR of Ywith F (Y ) < F∗(R) − F (Y ). BecauseZ is a refinement ofY
with F (Y ) < F∗(Z) − F (Y ) we obtain that(R,0) is a winning position for playerI for all
b′-restrictionsRof Zwith F (Z) < F∗(R) − F (Z). This implies that(Z,b′,3) is a winning
state for playerI .
If b ⊆ b′ let R be anyb-restriction ofZ with F (Z) < F∗(R) − F (Z); as bound(Z) =

bound(X) ⊆ b this is possible. Because playerI has a win in state(Z,b′,3) playerI has
a win in all states(R′,0) whereR′ is anyb′-restriction ofZwith F (Z) < F∗(R′) − F (Z).
In particular playerI has a win in all states(R′,0) whereR′ is anyb′-restriction ofR
with F (R) < F∗(R′) − F (R). Hence, if the game continues in state(R,0) and playerI
chooses the elementb′ in B, the game will move to a winning state(R′,0) for playerI with
bound(R′)=b′ and a win for playerI independent of the legal moves of playerI and player
II . It follows that playerI has a win if the game is in state(R,0).
If b′ ⊂ b we watch the winning game of playerI starting at the state(Z,b′,3). We as

playerII choose ab′-restrictionR0 of Z with F (Z) < F∗(R0) − F (Z). The game moves
into state(R0,0) with a win for playerI and playerI to move. The game will move through
winning states

(R0,0), (R0,b0,1), (V0,b0,2), (W0,b0,3),

(R1,0), (R1,b1,1), (V1,b1,2), (W1,b1,3),

(R2,0), (R2,b2,1), (V2,b2,2), (W2,b2,3),

(R3,0), (R3,b3,1), (V3,b3,2), (W3,b3,3),

. . . . . . . . . . . .

(Ri,0), (Ri,bi ,1), (Vi,bi ,2), (Wi,bi ,3),

(Ri+1,0), (Ri+1,bi+1,1), (Vi+1,bi+1,2), (Wi+1,bi+1,3),

. . . . . . . . . . . .

of playerI where we as playerII will make some arbitrary legal moves when called upon.
Note that for alli bound(Ri+1) = bi .
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Becauseb′ ⊆ b0 ⊆ b1 ⊆ b2... there is either a numberi so thatbi ⊂ b ⊆ bi+1 or,
because playerI has a winning strategy at state(X,0), the game ends after finitely many
rounds with a win of playerI in some state(Rn,0) with bound(Rn) = bn−1 ⊂ b and only
finitely many blue vertices’s inRn.
If bi ⊂ b ⊆ bi+1 for somei ∈ � then because(Wi+1,bi+1,3) is a winning po-

sition of playerI every state of the form(S,0) with S a bi+1-restriction ofWi+1 with
F (Wi+1) < F∗(S) − F (Wi+1) is a winning position of playerI . This implies as before
that if R is a b-restriction ofWi+1 with F (Wi+1) < F∗(R) − F (Wi+1) then (R,0) is a
winning position of playerI . Let R be such ab-restriction ofWi+1. The orbitWi+1 is
a continuation of the orbitZ. HenceR is a b-restriction ofZ with (R,0) a winning po-
sition of playerI . Making use of the fact mentioned before Lemma 5.1 it follows that
F (Z) < F∗(R) − F (Z).
If the game ends after finitely many rounds with a win of playerI in a state(Rn,0)

andbn−1 ⊂ b then the orbitRn contains only finitely many blue vertices’s. LetR be
a b-restriction ofRn with F (Rn) < F∗(R) − F (Rn). The orbitR contains only finitely
many blue elements. It follows thatR is a b-restriction ofZ and (R,0) is a winning
position of player I . Again, by the fact mentioned before Lemma 5.1 we get
F (Z) < F∗(R) − F (Z). �

Let (Blue, Red) be a partition of� into blue and red elements and�blue and�red the
unary relations on the set of orbits ofHT given by Theorem 5.1.
Wewrite�blue(Y ) for the orbitYofHT if every refinementV ofYwith F (Y ) < F∗(V )−

F (Y ) has for everyl ∈ � a refinementRwith l < F∗(R) − F (V ) and with�blue(R).

Lemma 5.2. Every orbit X ofHT with�blue(X) has a refinementY withF (X) < F∗(Y ) −
F (X) and with�blue(Y ).

Proof. We use formula (1) for the orbitX in the instanceb := bound(X). Formula (1)
returns a refinementYof Xwith F (X) < F∗(Y ) − F (X). We will prove that�blue(Y ).
Let V be a refinement ofYwith F (Y ) < F∗(V ) − F (Y ) and letl be a number. We have

to prove thatV has a refinementRwith l < F∗(R) − F (V ) and with�blue(R). LetZ be the
refinement ofV with F (Z) = F (V ) ∪ {l} andF1(Z) = F1(V ) andF2(Z) = F2(V ). Note
thatZ is a refinement ofYwith F (Y ) < F∗(Z) − F (Y ). Hence we can useZ as an instance
in line three of formula (1). Formula (1) returns ab-restrictionRof Zwith F (Z) < F∗(R)−
F (Z) and with�blue(R). The orbitR is a continuation ofV and hence a refinement ofV

because bound(R) = b= bound(X) = bound(Y ′) = bound(Y ) = bound(V ). The condition
l < F∗(R) − F (V ) follows becausel ∈ F (Z) < F∗(R) − F (Z) = F∗(R) − F (V ). �

Lemma 5.3. If X is an orbit ofHT with�blue(X) then�blue(X).

Proof. Let�blue(X). Letb ∈ B with bound(X) ⊆ b andl ∈ �.
To satisfy line twoof formula (1)we letY =X. Then, in line three,we letZ bea refinement

of Y = X with F (X) < F∗(Z) − F (X).
Because�blue(X) andZ is a refinement ofX with F (X) < F∗(Z) − F (X), there is a

refinementWof Zwith F (Z) < F∗(W) − F (Z) and�blue(W). Using formula (1) forW in
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the instanceb, we obtain ab-restrictionRofWwith F (W) < F∗(R)−F (W) and�blue(R).
This orbitR is ab-restriction ofZwith F (Z) < F∗(R) − F (Z). �

Lemma 5.4. Let X be an orbit ofHT with�blue(X). Then X contains infinitely many blue
elements and�blue(Y ) holds for every refinement Y of X withF (X) < F∗(Y ) − F (X). For
everyl ∈ � and everyb ∈ B with bound(X) ⊆ b there is ab-restriction R of X with
l < F∗(R) − F (X) and�blue(R).

Proof. The relation�blue(X) implies�blue(X) by Lemma 5.3. HenceX contains infinitely
many blue elements.
LetY be a refinement ofX with F (X) < F∗(Y ) − F (X). If V is a refinement ofYwith

F (Y ) < F∗(V ) − F (Y ) thenV is a refinement ofX with F (X) < F (V ) − F∗(X). Hence
there is for everyl ∈ � a refinementRof V with l < F∗(R) − F (V ) and with�blue(R).
Let l ∈ � andb ∈ B with bound(X) ⊆ b. Let X′ the refinement ofX with F (X′) =

F (X) ∪ {l} andF1(X
′) = F1(X) andF2(X

′) = F2(X). Then�blue(X
′) by the first part of

this Lemma and�blue(X
′) by Lemma 5.3.

Using formula (1) forX′ in the instanceb we obtain ab-restrictionV of X′ with
F (X′) < F∗(V ) − F (X′) and�blue(V ). By Lemma 5.2 there is a refinementR of V with
F (V ) < F∗(R)−F (V ) and�blue(R). It follows thatl ∈ F (X′) < F∗(R)−F (X′)=F∗(R)−
F (X) and hencel < F∗(R) − F (X). �

6. The construction

Theorem 6.1. LetT be a set of finite tournaments andHT theT-free homogeneous di-
rected graph. Suppose that for any two orbits X andY ofHT eitherbound(X) ⊆ bound(Y )

or bound(Y ) ⊆ bound(X). ThenHT is indivisible.

Proof. Let � be the base ofHT and (Blue, Red) a partition of�. (� is the orbit with
F (�) = F∗(�) =∅.) Let�blue and�red be the unary relations given by Theorem 5.1. Then,
by Theorem 5.1, either�blue(�) or �red(�). We assume�blue(�). (The case�red(�) is
dual, just replace blue by red throughout.) There exists, by Lemma 5.2, a refinementU of
� with �blue(U). (Note that bound(U) = T.)
For v ∈ � let Iv be the restriction ofHT to v. The subsetJ of � havingv elements is

an initial segment of lengthv if the order preserving map fromv to J is an isomorphism of
Iv. The initial segmentJ ′ of lengthu is anextensionof the initial segmentJ of lengthv if
v < u and every element ofJ is smaller than every element ofJ ′ − J .
Let J be an initial segment of lengthv. LetP be the set of pairs(A, B) with A ∪ B ⊆ J

andA ∩ B = ∅ andOJ
A,B not empty. (Remember thatOJ

A,B is the orbit withF (OJ
A,B) = J

andF1(O
J
A,B) = A andF2(O

J
A,B) = B.) The initial segmentJ iswell chosenif:

1. Every element inJ is blue.
2. For every pair(A, B) ∈ P there is a refinement sequence(QJ

A,B(i); i ∈ v + 1) of the

orbitOJ
A,B .
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3. The pair(OJ
A,B; (QJ

A,B(i); i ∈ v + 1)) is branched with(OJ
C,D; (QJ

C,D(i); i ∈ v + 1))

for every two elements(A, B), (C, D) ∈ P.
4. J = F (OJ

A,B) ⊆ F (QJ
A,B(v)) for every pair(A, B) ∈ P.

5. �blue(Q
J
A,B(v)) for every element(A, B) ∈ P.

Note thatQJ
A,B(v) is a refinement ofOJ

A,B according to condition 4 and condition (iii).

We denote by�(A, B; C, D) the branching number of(OJ
A,B; (QJ

A,B(i); i ∈ v + 1)) and

(OJ
C,D; (QJ

C,D(i); i ∈ v + 1)).

If v = 0 thenP = {(∅, ∅)} andJ = ∅ is well chosen withOJ
∅,∅ = V (HT) = � and the

refinement sequence(U). LetJbe a well chosen initial segment of lengthv.We will extend
J to a well chosen initial segment of lengthv + 1.
BecauseHT has the mapping extension property there is an extensionf of the order map

from Iv to J to an embedding ofIv+1. LetM be the set of elementsx of J with an edge
from x to f (v) andN be the set of elementsy of J with an edge fromf (v) to y. Then the
orbitOJ

M,N is not empty because it contains the elementf (v)which also implies that every

element ofOJ
M,N and hence every element ofQJ

M,N (v) together withJ forms an extension

of J to an initial segment of lengthv+1.Wewill find an appropriatea ∈ QJ
M,N (v) ⊆ OJ

M,N

and refinement sequences so thatJ ∪ {a} is well chosen.
Given(A, B) ∈ P let

c(A, B,0) := bound(OJ∪{f (v)}
A,B ) = bound(continue(OJ

A,B, f (v),0)),

c(A, B,1) := bound(OJ∪{f (v)}
A∪{f (v)},B) = bound(continue(OJ

A,B, f (v),1)),

c(A, B,2) := bound(OJ∪{f (v)}
A,B∪{f (v)}) = bound(continue(OJ

A,B, f (v),2)).

For each of the orbitsQJ
A,B(v) with (A, B) ∈ P relation�blue holds. Hence ifb ∈ B with

bound(QJ
A,B(v)) ⊆ b andl ∈ � there is, using Lemma 5.4, a continuationRof QJ

A,B(v)

with bound(R) = b andl < F∗(R) − F (QJ
A,B(v)) and�blue(R). Hence there is for every

k ∈ 3 andl ∈ � a continuation[R, k]JA,B ofQJ
A,B(v) so that bound([R, k]JA,B)=c(A, B, k)

andl < F∗([R, k]JA,B) − F (QJ
A,B(v)) and�blue([R, k]JA,B).

Because we can choose[R, k]JA,B so thatF∗([R, k]JA,B)−F (QJ
A,B(v)) > l for anyl ∈ �

we can also obtain that if(A, B) �= (C, D) or k �= j and(A, B) ∈ P and(C, D) ∈ P then

(F∗([R, k]JA,B) − F (QJ
A,B(v))) ∩ (F∗([R, j ]JC,D)) = ∅.

Let

5 >max


⋃

k∈3

⋃
(A,B)∈P

F∗([R, k]JA,B)


 .

LetX be the refinement ofQJ
M,N (v) so that

F (X) = 5 and F0(X) = 5 − F (QJ
M,N (v)) ∪ F0(Q

J
M,N (v)).
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The relation�blue(X) follows from�blue(Q
J
M,N (v)) by Lemma 5.4. The orbitX contains

therefore infinitely many blue vertices’s. Leta be such a blue vertex.
Let Ja := J ∪ {a} and for allk ∈ 3 letOJa,k

A,B := continue(OJ
A,B, a, k). Becausea and

f (v) are in the same orbitOJ
M,N of J it follows that

bound(OJa,k
A,B ) = c(A, B, k) = bound([R, k]JA,B). (2)

The vertexa is an element ofQJ
M,N (v) = OJ

M,N ∩ QJ
M,N (v) becauseQJ

M,N (v) is a

refinement ofOJ
M,N . The vertexa is not adjacent to any element inF∗(QJ

A,B(v)) −
(F (QJ

M,N (�(A, B, M, N))) ∪ J ) becausea is not adjacent to any element smaller than

5 which is not inF (QJ
M,N (v)) and because of condition (c) for branched pairs. Hence we

can apply Lemma 4.7 and obtain that(QJ
A,B(i); i ∈ v + 1) is a refinement sequence of

O
Ja,k
A,B for anyk ∈ 3 and(A, B) ∈ P.

Let Q
Ja,k
A,B(v + 1) := O

Ja,k
A,B ∩ QJ

A,B(v). It follows from Lemma 4.6 thatQJa,k
A,B(v + 1)

is a refinement ofOJa,k
A,B . It follows, by Lemma 4.8, that if we letQJa,k

A,B(i) := QJ
A,B

for all i ∈ v + 1 then(Q
Ja,k
A,B(i), i ∈ v + 2) is a refinement sequence ofO

Ja,k
A,B . Also

(O
Ja,k
A,B ; (Q

Ja,k
A,B(i); i ∈ v + 2)) is branched with(OJa,h

C,D ; (Q
Ja,h
C,D(i); i ∈ v + 2)) for every

two elements(A, B), (C, D) ∈ P and every pair of numbersk, j ∈ 3.
We obtain from (2) and Lemma 4.6 that

bound([R, k]JA,B) = bound(OJa,k
A,B ) = bound(QJa,k

A,B(v + 1)). (3)

Both orbits[R, k]JA,B andQ
Ja,k
A,B(v +1) are continuations of the orbitQJ

A,B(v) andF (Q
Ja,k
A,B

(v+1))−F ([R, k]JA,B)={a}.According to the choiceofaandF∗([R, k]JA,B)−F (QJ
A,B(v))

the vertexa is not adjacent to any vertex inF∗([R, k]JA,B) − F (QJ
A,B(v)).

UsingLemma4.3and (3) it follows that theorbitR
Ja,k
A,B (v+1) := [R, k]JA,B ∩Q

Ja,k
A,B(v+1)

is a refinement of the orbitQJa,k
A,B(v + 1) and a refinement of the orbit[R, k]JA,B and hence

�blue(R
Ja,k
A,B (v + 1)). (Note thata > F ([R, k]JA,B).)

Again, according to the choice of the setsF∗([R, k]JA,B)−F (QJ
A,B(v)) to be on different

levels, for different pairs(A, B) or different valuesk ∈ 3, we can apply Lemma 4.9.
For every pair(A, B) ∈ P andk ∈ 3 let R

Ja,k
A,B (i) = QJ

A,B(i) for i ∈ v + 1. It follows

from Lemma 4.9 that(RJa,k
A,B (i); i ∈ v + 2) is a refinement sequence of the orbitO

Ja,k
A,B

and(O
Ja,k
A,B ; (R

Ja,k
A,B (i); i ∈ v + 2)) is branched with(OJa,j

C,D ; (R
Ja,j
C,D(i); i ∈ v + 2)) for all

(A, B), (C, D) ∈ P andk, j ∈ 3.
It follows that the orbitsOJa,k

A,B together with the refinement sequences(R
Ja,k
A,B (i); i ∈

v + 2) satisfy conditions 1–5.
We are now in the following position: given a well chosen initial segmentJ of lengthv

there is a unique isomorphism, sayfJ , from HT restricted tov to J. Every element ofJ
is blue. The empty set is well chosen. If the initial segmentJ of lengthv is well chosen
then there is an extensionJa of J to a well chosen initial segment of lengthv + 1. That is,
fJ ⊂ fJa . We construct successively the well chosen initial segmentsJ0 = ∅, J1, J2, . . .
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of ever increasing lengths so thatJi+1 is an extension ofJi . Thenf := ⋃
i∈� fJi

is an
embedding ofHT intoHT with every vertex in the image off being blue. �

Theorem 6.2. LetT be a possibly infinite set of finite tournaments. ThenHT is indivisible
if and only if for any two orbits X and Y ofHT either X can be embedded into Y or Y can
be embedded into X.

Proof. An orbit of HT is a homogeneous structure; see[2]. Hence ifX andY are two
orbits ofHT and age(X) ⊆ age(Y ) thenX can be embedded intoY . On the other hand if
X can be embedded intoY then the age ofX is a subset of the age ofY . HenceX can be
embedded intoY or Y can be embedded intoX if and only if bound(Y ) ⊆ bound(X) or
bound(X) ⊆ bound(Y ).
Hence the necessary part of Theorem 6.2 follows from Theorem 4.1 and the sufficient

part of Theorem 6.2 follows from Theorem 6.1.�
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