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Abstract

Let 7 be a set of finite tournaments. We will give a necessary and sufficient condition for the
7 -free homogeneous directed grafiy- to bedivisible that is, that there is a partition & into
two sets neither of which contains an isomorphic copyiof.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let H be adirected graph. Alocalisomorphisn#is an isomorphism of a finite induced
subgraph ofAH to a finite induced subgraph &f. The directed grapli/ is homogeneous
if every local isomorphism off has an extension to an automorphismtfsee[3]. Let
aut(H) be the group of automorphisms BHfand H be homogeneous. K is a finite subset
of V(H), denote by ayt(H) the subset of all automorphismi®f H so thatf(x) = x
for all x € F. The relation onV (H) — F given by: the vertex is related to the vertex
yif there is f € autg(H) with f(x) = y, is an equivalence relation dn(H) — F. The
equivalence classes of this equivalence relation are calleatliits of F. An orbit of H is
an orbit ofF for some finite seff of vertices’s. The restriction aff to an orbit ofH is again
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a homogeneous directed graph, EdeWe identify the orbits with the restrictions &f to
the orbits.

For every set/ of finite tournaments there is a unique homogeneous countable directed
graphH 4 so that the finite induced subgraphdj- are all of the finite directed graphs into
which none of the tournaments.gf can be embedded; sg. The countable homogeneous
directed graphs of typH s make up the bulk of the countable homogeneous directed graphs;
se€[1].

The directed graptb is indivisibleif for every partition of the seV¥ (D) of vertices’s of
D into red and blue vertices’s there is a caPy of D in D so that all of the vertices’s of
D* are red or all of the vertices’s db* are blue. Otherwis® is said to balivisible

Let 7 be a finite set of finite tournaments. The main resul{2jfstates thatd s is
indivisible if and only if for any two orbitsX andY of H4 eitherX can be embedded into
Y orY can be embedded inf. The proof of the necessity of the latter conditiofi2hdoes
not rely on the assumption that the $€tof constraints is finite; the proof of the sufficiency
on the other hand relies heavily on the finiteness of the chain of orbits under embedding.
There are examples to show that the chain of orbits under embedding can be any countable
order type, even the order type of the rationals;[Sgdn this paper we strengthen the result
of [2] and prove, see Theorem 6.2, that

Theorem 1.1. Let.7 be a possibly infinite set of finite tournaments. Thenis indivisible
if and only if for any two orbitsX andY of H either X can be embedded ini6 or Y can
be embedded int¥.

2. Preliminaries

If fis a function of a seSto a setT then f[S] denotes the image df that is, the set
{f(s)|s € S}. The seSSis countablef there is a bijection o5to w. The setS — T consists
of the elements irs which are not inT. We consider every elemente o to be the set
of all smaller numbers and write € n for x € w andx <n. If I € w andSandT are
subsets ofo we write/ < S to mean that every element 8iis larger tharl andS < T to
mean that every element d@fis larger than any of the elements $In particular! < @
foralll € .

A directed graplG is a binary anti reflexive and anti symmetric relation. We denote the
set of vertices’s of5 by V(G) and the set of edges ¢f by E(G). The vertices'sa andb
areadjacentf either (a, b) € E(G) or (b, a) € E(G). The directed graph is aninduced
subgraphof G if V(A) C V(G) andE(A)=(V(A) x V(A))NE(G); Ais aproper induced
subgraphof G if V(A) # V(G). If A € V(G) then the subgraph aF induced by As
the induced subgraph of G with V(A) = A. If ais a vertex of the directed graph then
G — a is the subgraph of; induced by the se¥ (G) — {a}.

An embeddin@f the directed graph into the directed grapt is an injectiorf of V(A)
into V(G) so that(a, b) € E(A) if and only if (f(a), f(b)) € E(G) for all vertices's
a,b € V(A).If fis also onto thefis anisomorphismTheimage f[A] of f is the subgraph
of G induced byf[V (A)]. A copyof the directed grapi in the directed grapli is an
induced subgraph a which is isomorphic toA. The directed grapty is A-freeif there is
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no copy ofA in G. A tournamentT is a directed graph so that any two different vertices’s
of T are adjacent.

Theskeletorof a directed grapl& is the set of all finite induced subgraphs@find the
ageof G, ag€G), is the set of all finite graphs which are isomorphic to an element of the
skeleton ofG. An isomorphism of the elemeut in the skeleton of the directed graphto
the elemenB in the skeleton o€ is alocal isomorphisnof G.

The boundary of Gis the set of all finite directed graphs which are not in the age
of G but every proper induced subgraph 4fis an element in the age @f. We denote
by boundG) the boundary of5. The set Bound’) is the set of all finite directed graphs
which are not in the age af. It follows that BoundG) U ag&G) is the set of all finite
directed graphs and boug@) is the set of minimal elements of Bouf@) with respect to
embedding.

3. The homogeneous directed graphsl o~

Let.7 be a set of finite tournaments which can pairwise not be embedded into each other.
We construct the grapH s as the limit of the graph&B;; i € w) with V(Bg) € V(B1) €
V(B2) C ---andE(Bg) € E(B1) C E(B2) C ---. The graphBy is the directed graph
having a single vertex. GiveB, andA, B two subsets o¥/ (B,) with A N B = () denote
by C 4. p the directed graph which consists of all of the vertices'8,pfogether with a new
vertexx 4, g. The restriction o4 g to V(B,) is B, and there is an edge from g to every
vertex of B and an edge from every vertex Afto x4 g andx,_ g is not adjacent to any
vertex inV(B,) — (A U B). Let S, be the set of vertices’s4 g, for A andB two disjoint
subsets oV (B,), so that no element &f has an embedding intG4_ 5. ThenB, 1 is the
directed graph witlV (B, +1) = V(B,) U S, and the restriction oB,,+1 to V(B,) U {x4 g}
is C4.p and no two of the vertices’s if}, are adjacent.

The directed grapli/ s~ so constructed is called themogeneous directed -free graph
It follows from the construction that it has the followingapping extension property
se€e[2]:

If A is an element of the age éfs anda € V(A) and f an embedding ofA — a into
H g then there is an extensiofi of f to an embedding o into H4 .

The mapping extension property implies that a finite directed gaaigltan element of the
age ofH if and only if there is no embedding of any elem&ht .7 into A and that every
countable directed graph into which none of the elementg dfave an embedding can
be embedded inté/. Actually the following stronger version of the mapping extension
property follows directly from the construction é&f:

If Aisan element of the age éf; anda € V(A) andf is an embedding o — a into
H then there are infinitely many different extensigfisof f to an embedding oAl into
H . In particular, all orbits are infinite.

The mapping extension property implies, via a standard argument, that every local iso-
morphism has an extension to an automorphism, that isHais homogeneous. There
is up to isomorphism only one countable homogeneous directed graph with boundary
see[3].
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According to[4] there is an infinite set of tournaments which can pairwise not be em-
bedded into each other.

4. Orbits

Let 7 be a set of finite tournaments akt, the 7 -free homogeneous directed graph.

LetJbe afinite subset df (Hs) andA, B C J with AN B =¢. Denote byOf(’B the set
ofall elements € V(Hy)— J sothat(a, x) € E(Hy)foralla € Aand(x, b) € E(Hy)
for all » € B andx is not adjacent to any vertex ih — (A U B). If Oj’B is not empty
then 0/{,3 is an orbit of H5. Given an orbitX of Hs there are seté, B andJ so that
0/{’3 = X.We definelF(X) =J, F1(X) = A, F2(X) = B, F,.(X) = F1(X) U F»(X) and
Fo(X) = J — F.(X). Note thatF (X) N X = #.

Let X be an orbit ofH5. We denote by boun&) the boundary of the restriction of
Hz to X and by BoundX) the set of finite directed graphs which are not in the age of the
restriction of H4 to X. Then boundX) is the set of minimal elements of Bougd) with
respect to embedding. We write boxd < boundY) if Bound(X) € BoundY). Note
that boundX) € boundY) if and only if for everyB € bound X) thereis aB’ € boundY)
which has an embedding inB) We assume that if € bound X) thenV (T)NV (Hs)=40.

We denote by age&X) the age of the restriction d 5 to X. Note that ageX) C ageY)
if and only if boundX) 2 boundY) and if ag€Z) = agg X) N aggY) then BoundZ) =
Bound X) U BoundY). Similarly boundX) = boundY) if and only if aggX) = age«Y).

We state for future reference Lemma 4.1, geand Lemma 4.2 which is easy to prove.

Lemma 4.1. Every orbit X of H7 has the mapping extension property. That itife
age(X) anda € V(A) and f an embedding of — a into X then there is an extensigff
of f to an embedding of into X

Lemma 4.2. If X and Y are two orbits of{s with F1(X) = F1(Y) and F>(X) = F»(Y)
thenage(X) = age(Y).

Let
B =B(Hy) := {boundX) | X is an orbit of Hs}.

In [2] an orbit of the fornvg‘}j_f is denoted by6 (A, B) and(A, B)<(A’, B') is defined to
mean that there is an embeddingd&fA’, B') into (A, B). Also

ZF ={(A, B)| A, B are finite subsets oV (Hs) and AN B = (}}.

Then, Theorem 6 d&] says that iff # is indivisible then< is a total preorder o . This
together with Lemma 4.2 gives the following theorem:

Theorem 4.1. Let.7 be a set of finite tournaments which can pairwise not be embedded
into each other. If the homogeneous directed gr&ph is indivisible then the sé8(H )
of the boundaries of the orbits &f s is a chain undercC.
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LetXandYbe two orbitsoff . If I C F(X)we denote by /I the orbitwithF (X /I)=1
andF1(X/I) = Fi(X) NI and F>(X /1) = F2(X) N I. The orbitsX andY arecompatible
if X/(F(X)NFY))=Y/(F(X)N F(Y));thatis, if

forallae F(X)NF(Y), xe€ X andy €Y,
(a,x) € E(Hy) if and only if (a, y) € E(Hz) and
(x,a) € E(Hy) if and only if (y,a) € E(H7).

If XandY are compatible then threeetX NY is OZ\,B with / =F(X)UF(Y),A=F1(X)U
F1(Y) andB = F2(X) U F»(Y), which is either empty or an orbit.
The orbitY is a continuationof the orbitX if F(X) C F(Y) andifX = F(Y)/F(X).
Hence ifl C F(Y) thenY is a continuation of (Y)/I and ifY is a continuation oK then
bound X) C boundY). The meet of two compatible orbits, if nonempty, is a continuation
of both orbits. IfYis a continuation oK thenX andY are compatible an& NY =Y. The orbit
Y is arefinemenbf the orbitX if Yis a continuation oX and boundY) = bound X). Note
that a continuation of a continuation is a continuation and that a refinement of a refinement
is a refinement.

Lemma 4.3. Let R and S be compatible orbits &f;. If no vertex inF,(R) — F(S) is
adjacent to a vertex af,(S) — F(R) thenage(RN S) = age(R) Nage(S).

Proof. Clearly ag€R N S) C aggR) N agegs).

Conversely, ifA is in ag€R) N aggS) let G be an extension of the restriction Bf; to
F(R) U F(S) by a copy ofA so that the restrictiow g of G to F(R) U V(A) embeds into
H s by an embedding which is the identity ¢f(R) and map® into R and the restriction
Gs of G to F(S) U V(A) embeds intdds by an embedding which is the identity @f(S)
and map® into S. By our hypothesis, any tournament embedding;iembeds inG g or
in Gs, hence inHs. Thus,G is in the age ofH7 andAisintheageoR N S. O

Lemma 4.4. Let X be an orbit ofHs andb € B = B(Hz) with bound(X) < b and
L a finite subset o’ (H4). Then there is a continuation Z of X witltound(Z) = b and
F(ZYNL=FX)NL.

Proof. There is an orbiY with boundY) = b. Let A be a directed graph witl (A) N
V(Hz) = so that there is an isomorphidrof the restriction ofH4 to F(Y) to A. Let B
be the directed graph withi(B) = F(X) U V(A) U L and the restriction oB to F(X) U L
is the restriction of{ s+ to F(X) U L and the restriction o to V(A) is A. No vertex in
V(A) is adjacent to a vertex if(X) U L. The graphB is in the age off ;- and hence there
is an extensiog of the identity map o' (X) U L to an embedding oB into H.

Let Y’ be the orbit withF(Y') = g o f[F(Y)]andFy(Y') = g o f[F1(Y)] andFa(Y') =
g o f[F2(Y)]. It follows that boundY’) = b. The orbitsX andY’ are compatible because
F(X)NF(Y)=4¢. LetZbe the meet of the orbitsandY’. Because no element in(X) is
adjacent to any element if(Y’) it follows from Lemma 4.3 that bouri@) = bound X) U
boundY’) =boundX)Ub=b. O
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Lemma 4.5. Let X and Q be two compatible orbits so that Q is a refinemeit/of (X) N
F(Q)).Ifeveryvertex € F(X)— F(Q) whichis adjacentto an elementi(Q) — F(X)
is an element in @henX N Q is a refinement of X

Proof. We have to prove that ag€) < aggX N Q). Let A € aggX) with V(A) C X.
ThenV(A) C X/(F(X) N F(Q)). Let Sbe the set of all elements € F(X) — F(Q)
which are adjacent to an elementi(Q) — F(X). ThenS € Q and becaus¥ andQ are
compatibleS € X/(F(X) N F(Q)).

Let B be the restriction oH4 to SU V(A). ThenV(B) C X/(F(X) N F(Q)).

ThenB € age(Q) becausd) is a refinement of/(F(X) N F(Q)). The identity map
on Shas an extensiointo an embedding oB into Q becaus&) has the mapping extension
property. The embeddinigmapsA into (X N Q)/(F(Q) U S) due to the definition of3.
Hence(X N Q)/(F(Q) U S) is a refinement oK. It follows from Lemma 4.3 thak N Q
is arefinement oK. [J

Let X be an orbit ofH4. The sequenceQ;;i € [n + 1] € w) of orbits with D; 1 :=
F(Qi+1) — (F(Q;) U F(X)) for all i € nis arefinement sequenaé X if for all i € n,
jen+1:

() Qo=V(Hy).
(i) Qi+1is a continuation of);.
(i) Q;isarefinement ok /(F(X) N F(Q;)).
(iv) If x € F(X) — F(Q;) is adjacent to an element D, thenx € Q;.

Lemma 4.6. Let (Q;;i € [n + 1] € w) be a refinement sequence of the orbit Xrbf .
ThenX N Q, is a refinement of X

Proof. Note thatifn =1 then Lemma 4.6 follows directly from Lemma 4.5. We proceed by
induction. It follows from (iii) that the orbitX andQ,, are compatible. The orbit§ N Q,,_1
and Q,, are compatible becaugg, is a continuation ofD,,_1. Because

bound Q,) 2 bound(X N Q,—1)/(F(X N Qn—1) N F(Qx)))
D boundX/(F(X) N F(Qy))) =boundQ,),

it follows that the orbitQ,, is a refinement of the orbit

(XN Q0n-1)/(F(XNQn-1) NF(Qn)).

X € F(XNQyp-1) — F(Qy)=(FX)UF(Qn-1) — F(Qn) = F(X) — F(Qn)
is adjacent to a vertex in
Fu(Qn) — F(X N Qp—1) = Fiu(Qn) — (F(X) U F(Qn-1)) = D,

thenx € Q, according to condition (iv).
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We apply Lemma 4.5 to the orbits N Q,,_1 for XandQ,, for Q. Hence(X N Q,,—1) N

»= XN Q, is arefinement o N Q,,_1. The sequencéQ;;i < n) is a refinement
sequence oK and the orbitX N Q,_1 is a refinement oK by induction. Henc& N Q,, is
arefinement oK. [

The pair(X; Zx = (Q;; i € [n+1])) consisting of an orbiX and a refinement sequence
Ry of Xis branchedwith the pair(Y; Zy = (P;; i € m + 1)) consisting of an orbi¥ and
a refinement sequend®, of Yif:

(@ n=mandF(X)=F().
(b) Thereisp € [n + 1] sothatQ; = P; forall j <p.
(€) (Fi(Qn) — (F(Qp) U F(X)) N (Fu(Py) — (F(Qp) U F(X))) =0.

The numbeyp is thebranching numbeof the branched paitX; Zx = (Q;;i € [n + 1]))
and(Y; Zy = (P;;i € [n + 1])). It follows that(X; Zx = (Q;; i € [n + 1])) is branched
with (X; Zx = (Q;; i € [n + 1])) with branching numben.

Let X be an orbitand € V(H4) a vertex not inF (X). We denote by contini&, a, k)
for k € 3 the continuation oX so thatF(continué€X, a, k)) = F(X) U {a} anda €
Fr(continugX, a, k)).

Let X be an orbit with refinement sequen@®;; i € [n + 1]) anda € XN Q, andk € 3.
It follows that(Q;; i € [n + 1]) is a refinement sequence of contiiiea, k). Conditions
()—(iii) are trivially satisfied. Because € X N Q,, we geta € Q,, and hence: € Q; for
alli € [n+1].

Lemma 4.7. Let the pair(X; Zx = (Q;;i € [n+ 1)) and(Y; Zy = (P;;i € [n + 1]))
be branched with branching numbgranda € X N Q,, so thatitis notinF (Y N P,) and
not adjacent to any element in.(P,) — (F(Qp) U F(Y)). Then(P;; i € n) is arefinement
sequence ofontinue(Y, a, k) for everyk € 3.

Proof. Conditions (i)—(iii) are trivially satisfied. We have to argue condition (iv).fet a.
If ais adjacent to an element .(P;) — (F(P;—1) U F(Y)) theni <ff and henc&d; = P;.
Becauser € X N Q,, andX N Q,, is a continuation of; it follows thata € Q; = P;. O

Lemma 4.8. Letk, [ € 3. Letthe pair(X; Zx = (Q;;i € n)) and(Y; Zy = (P;; i € n))
be branched with branching numbgiand the vertex ¢ F(X N Q,—1) U F(Y N P,_1) SO
thatZy is a refinement sequencewhrinue(X, a, k) andZy is a refinement sequence of
continue(Y,a,l). Then(Q;; i € [n+1]) with Q,, =continue(X, a, k) N Q,_1 is arefine-
mentsequence obntinue(X, a, k) and(P;; i € [n+1]) with P,=continue(Y, a, )NP,_1

is a refinement sequence@fitinue(Y, a,l). Also(continue(X, a, k); (Q;;i € [n + 1]))

is branched with(continue(Y, a,l); (P;; i € [n + 1])) with branching numbegp.

Proof. The orbitQ,,=continug€X, a, k)NQ, _1isarefinementofthe orbitcontin(g, a, k)
according to Lemma 4.6, affirming condition (iii).

There are no elements iA(continugX, a, k)) — F(Q,) and condition (iv) follows.
Hence(Q;; i € [n + 1]) with Q,, = continu€X, a, k) N 0, —1 is a refinement sequence of
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continuéX, a, k) and similarly(P;; i € [n + 1]) with P, = continu€Y,a,l) N P,_1is a
refinement sequence of contiriliea, [).

Using the same branching numbgt we obtain conditions (a) and (b) for
(continu€X, a, k); (Q;;i € [n + 1])) being branched witlicontinugY, a, [); (P;;i €
[n + 1])). Condition (c) follows because € F(continug€X, a, k)). O

Lemma 4.9. Let the pair(X; Zx = (Q;;i € [n+ 1])) and(Y; Zy = (P;;i € [n + 1]))
be branched with branching numbgrand F(Y) € F(P,). Let R be a refinement of
P, so that(Fy(R) — F(P,)) N F(Q,) =¥. Let P/ = P, for i € n and P, = R. Then
Ay = (P/;i € [n + 1)) is a refinement sequence of Y afxi; Zx) and (Y; %) are
branched with branching numbét

Proof. The only condition which is not trivially satisfied is condition (c). Condition (c) is
satisfied by assumption for all vertices’sBf which are inP,, and satisfied for all vertices’s
in F.(R) — F(P,) becauséF,(R) — F(P,)) N F(Q,) =0. O

5. The game

Let.7 be a set of finite tournaments which can pairwise not be embedded into each other
andH 7 the homogeneou® -free directed graph. We assume th&i ) = w, used in the
proof of Lemma 5.1, and th@B(H 4 ); C) is a chain.

Let X be an orbit ofH7 andb € B = B(H4) so that boun@dX) < b. A b-restriction
of X'is a continuatior¥ of X with boundY) = b. It follows from Lemma 4.4 that such a
b-restriction exists for everlg € B with bound X) C b.

Let ¢pue and ¢oq be two unary relations on the set of orbits Bf-. We denote by
formula (1) the following statement:

For all b € B with boundX) C b

there exists a refinementof Xwith F(X) < F.(Y) — F(X)

so that for all refinementg of Y with F(Y) < F.(Z) — F(Y)

there exists @-restrictionR of Z with F(Z) < F.(R) — F(Z)

so thatgpe(R). 1)

Formula (5.1) is nearly identical to formula (1) except thgf,(R) is replaced byp,o4(R).

Theorem 5.1. Let 7 be a set of finite tournaments which can pairwise not be embedded
into each other and{ s the.7 -free homogeneous directed graph withH - ) =w. Suppose
that the seB(H4) = B is a chain undeiC. Let (Blue, Red)be a partition ofw into blue
and red elements

Then there are unary relationg, . and¢,.4 0N the set of orbits aff +~ so that for every
orbit X of Hy exactly one ofhy;,o(X) and ¢eq(X). If dpue(X) then X contains infinitely
many blue verticés and formulg(1) holds. If¢,e4(X), then X contains infinitely many red
verticess and formulg5.1) holds
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Proof. Let the conditions of Theorem 5.1 be given.

In order to prove the Theorem we have for every oxwf H 4 to decide whethep,o4(X)
or ¢pue(X) and then prove that the so defined relatigng; and ¢y, have the required
properties. Because of the condition thatjf.q(X) thenX contains infinitely many red
vertices’s we are forced to havg,,«(X) if X contains only finitely many red vertices'’s.
Note that if X contains only finitely many red vertices’s then formula (1) holds. Similarly
if X contains only finitely many blue vertices’s then we gt (X). We use the following
game to define the relations.q and ¢y, for all orbits of H.

The gamd ¢q(X) starts in staté X, 0) with playerl to move.

0. If the game is in statéU, 0) for some orbitU of H4 then it is the turn of playef
to move. Playet selectsh € B with boundU) C b and the game moves into state
(U,b, 1).

1. Ifthe gameisin statd/, b, 1) thenitis the turn of playdit to move. Playel selects a
refinementV of U with F(U) < F,.(V) — F(U) and the game moves to st&lé, b, 2).

2. Ifthe game is in statéV, b, 2) then it is the turn of playelr to move. Playel selects a
refinementVof V with F(V) < F,(W) — F(V). The game moves to stat@, b, 3).

3. Ifthe gameis in statéW, b, 3) then it is the turn of playelt to move. Playell selects
ab-restrictionRof Wwith F(W) < F,(R) — F (W) and the game moves to st&f®, 0).
Then it is again the turn of play¢ito move.

The game ends with a win of playekif it is in a state of the form(Y, 0) for an orbitY
which contains only finitely many blue elements.

We will write ¢, ,o(X) if player| does not have a winning strategy in the gafig(X).

It follows that if ¢p,,e(X) then there are infinitely many blue elementsdinNote that if
player| does not have a winning strategy in the gamey(X), that is if ¢p,,o(X), then
formula (1) holds. We will say playdrhas a winat a state of the game if playehas a
winning strategy when the game is at this state.

The orbits of the forn/, V, W, R in the states of the ganfgeq(X) are all continuations
and therefore subsets of the orKitHence if playelt has a win in the gamg&¢q(X) then
there is an orbit’ € X with only finitely many blue vertices’s. This implies that if playler
has a win in the gamE,¢q(X) thenX contains infinitely many red elements. We will write
dreq(X) if player| has a winning strategy in the gamigg(X). Note that eithet,oq(X) or
Dpiue(X).

In the following Lemma 5.1, which completes the proof of Theorem 5.1, we will make
use of the factthat iKo, X1, X2, X3, ..., X;, ..., X, isasequence of orbits &f s so that
for everyi € n X;,1 is a continuation of(; and

F(X;) < Fi(Xi11) — F(X)),
then
F(Xo) < Fx(Xn) — F(Xo). U

Lemma 5.1. If ¢,¢q(X) then formula(5.1) holds
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Proof. Let ¢,q(X). Then playet has a winning strategy in the gamgq(X). We use this
strategy and start the game in stéke 0) which is a winning state for Playér

We begin at line one of formula (5.1) and ket B with bound X) < b be given. Let’
be the element dB chosen by player. The game moves to stat&, b’, 1) with a win for
playerl.

We will construct a refinemeitof X with F(X) < F.(Y) — F(X) and so thatY, b’, 3)
is a winning state for playér. This orbitY will be used to satisfy the second line of formula
(5.1).

We as playell selectX, moving the game to staté(, b’, 2). LetY be the refinement of
chosen by player when given the stateX, b’, 2) moving the game to statg, b’, 3) with
awin for player . Because playdrhas made a legal move, we getX) < F.(Y) — F(X).

Let Z be a refinement of with F(Y) < F,(Z) — F(Y); accounting for line three of
formula (5.1). In order to validate formula (5.1) we have to prove that there exists a
restrictionRof Zwith F(Z) < Fx(R) — F(Z) so that(R, 0) is a winning position for player
I. This will validate lines four and five of formula (5.1).

BecausdY, b/, 3) is a winning state for playdr, playerl has a win at positiofiR, 0)
for all b’-restrictionsR of Y with F(Y) < F,(R) — F(Y). Because is a refinement oY
with F(Y) < F.(Z) — F(Y) we obtain thatR, 0) is a winning position for playelr for all
b’-restrictionsR of Zwith F(Z) < F.(R) — F(Z). This implies tha{Z, b/, 3) is a winning
state for playef.

If b C b’ let R be anyb-restriction ofZ with F(Z) < F.(R) — F(Z); as boundz) =
bound X) C b this is possible. Because playlehas a win in statéZ, b’, 3) player| has
awin in all stategR’, 0) whereR’ is anyb’-restriction ofZ with F(Z) < F.(R') — F(Z).
In particular played has a win in all state¢R’, 0) where R’ is anyb’-restriction ofR
with F(R) < F,(R") — F(R). Hence, if the game continues in st&#®, 0) and player
chooses the elemehbtin B, the game will move to a winning stat&’, 0) for playerl with
bound R") =b’ and a win for playel independent of the legal moves of playemnd player
II'. It follows that playell has a win if the game is in staf{®, 0).

If b* C b we watch the winning game of playkistarting at the statéZ, b’, 3). We as
playerll choose &'-restrictionRg of Z with F(Z) < F.(Ro) — F(Z). The game moves
into state(Rg, 0) with a win for playerl and playet to move. The game will move through
winning states

(Ro,0), (Ro, bo, 1), (Vo,bo,?2), (Wo,bo,3),

(R1,0), (R1,b1,1), (V1,b1,2), (W1,by,3),

(R2,0), (R2,b2,1), (V2,b2,2), (W2,by,3),

(R3,0), (R3,b3,1), (V3,b3,2), (W3, b3, 3),

(Ri,0), (Ri,b;, 1), (Vi,b;,2), (W;,b;,3),

(Ri+1,0), (Rit1,bi11, D), (Vig1,0i41,2), (Wit1,bi11,3),

of playerl where we as playdt will make some arbitrary legal moves when called upon.
Note that for alli bound R; 1) = b;.
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Becauséh’ € by € by C by... there is either a numbeérso thatb; ¢ b € b, or,
because playdrhas a winning strategy at stat¥, 0), the game ends after finitely many
rounds with a win of playel in some statér,, 0) with boundR,) =b,_1 C b and only
finitely many blue vertices’s iR,,.

If b; ¢ b € b;;1 for somei € o then becauséW; 1, b;;1,3) is a winning po-
sition of playerl every state of the forngS, 0) with S a b;-restriction of W; 1 with
F(W;11) < Fu(S) — F(W;11) is a winning position of playet. This implies as before
that if R is a b-restriction of W;;.1 with F(W; 1) < Fx(R) — F(W;4+1) then(R,0) is a
winning position of playel. Let R be such &b-restriction of W; 1. The orbit W;; is
a continuation of the orbiZ. HenceR is a b-restriction ofZ with (R, 0) a winning po-
sition of playerl. Making use of the fact mentioned before Lemma 5.1 it follows that
F(Z) < F.(R) — F(2).

If the game ends after finitely many rounds with a win of playén a state(R,, 0)
andb,_1 C b then the orbitR, contains only finitely many blue vertices’s. LBtbe
a b-restriction of R, with F(R,) < F,(R) — F(R,). The orbitR contains only finitely
many blue elements. It follows th& is a b-restriction of Z and (R, 0) is a winning
position of playerl. Again, by the fact mentioned before Lemma 5.1 we get
F(Z)<F.(R)— F(2Z). O

Let (Blue, Red) be a partition ab into blue and red elements awg,,e and ¢4 the
unary relations on the set of orbits Hf; given by Theorem 5.1.

We writey,,(Y) for the orbitY of H if every refinemenv of Ywith F(Y) < F.(V) —
F(Y) has for every € o arefinemenRwith I < F.(R) — F(V) and with¢ o(R).

Lemma 5.2. Every orbit X ofH with ¢y,,o(X) has a refinementY with (X) < F.(Y) —
F(X) and withiyp,,o(Y).

Proof. We use formula (1) for the orbiX in the instancé := bound X). Formula (1)
returns a refinementof X with F(X) < F.(Y) — F(X). We will prove that), «(Y).

Let V be a refinement of with F(Y) < F,.(V) — F(Y) and letl be a number. We have
to prove that has a refinememwith [ < F.(R) — F(V) and with¢y,,e(R). LetZ be the
refinement ofV with F(Z) = F(V) U {l} andF1(Z) = F1(V) and F2(Z) = F»>(V). Note
thatZ is a refinement of with F(Y) < F.(Z) — F(Y). Hence we can usgas an instance
in line three of formula (1). Formula (1) returngaestrictionR of Zwith F(Z) < F.(R) —
F(Z) and with¢ye(R). The orbitR is a continuation o and hence a refinement &f
because bour®) = b = bound X) = boundY’) = boundY) = bound V). The condition
[ < F.(R) — F(V) follows becausé € F(Z) < F.(R) — F(Z) = F.(R) — F(V). O

Lemma 5.3. If X is an orbit of H with yp,,e(X) thengp, ,o(X).

Proof. Let i ,e(X). Letb € B with boundX) € b and/ € w.

To satisfy line two of formula (1) we lét=X. Then, in line three, we |&f be arefinement
of Y = X with F(X) < F.(Z) — F(X).

Becausa), (X) andZ is a refinement oK with F(X) < F.(Z) — F(X), there is a
refinementV of Z with F(Z) < F.(W) — F(Z) and¢y,,o(W). Using formula (1) foWin
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the instancé, we obtain &-restrictionR of Wwith F(W) < F.(R) — F (W) and¢p,e(R).
This orbitRis ab-restriction ofZ with F(Z) < F.(R) — F(Z). [

Lemma 5.4. Let X be an orbit o7 7 with i,,o(X). Then X contains infinitely many blue
elements ang,o(Y) holds for every refinement Y of X with X) < F,(Y) — F(X). For
everyl € w and everyb € B with bound(X) C b there is ab-restriction R of X with

I < Fx(R) — F(X) andyy,e(R).

Proof. The relation), o(X) implies ¢y,,«(X) by Lemma 5.3. Henc¥ contains infinitely
many blue elements.

LetY be a refinement oK with F(X) < F,.(Y) — F(X). If V is a refinement of with
F(Y) < F,(V) — F(Y) thenV is a refinement oK with F(X) < F(V) — F.(X). Hence
there is for every € w a refinemenR of V with [ < F,(R) — F(V) and with¢p,e(R).

Let/ € w andb € B with boundX) C b. Let X’ the refinement oKX with F(X’) =
F(X)U{l} andF1(X") = F1(X) and F2(X") = F2(X). Theny,,(X") by the first part of
this Lemma andpy,,o(X’) by Lemma 5.3.

Using formula (1) forX’ in the instanceb we obtain ab-restriction V of X’ with
F(X') < F(V) — F(X) and ¢ ,e(V). By Lemma 5.2 there is a refinemeRiof V with
F(V) < Fu(R)— F (V) andyrp,e(R). It follows thatl € F(X') < Fx(R)— F(X')=F.(R)—
F(X)and hencé < F,(R) — F(X). O

6. The construction

Theorem 6.1. Let.7 be a set of finite tournaments aiitl, the .7 -free homogeneous di-
rected graph. Suppose that for any two orbits X and ¥ gfeitherbound (X) C bound(Y)
or bound(Y) C bound(X). ThenH is indivisible

Proof. Let w be the base ot/ and (Blue, Red) a partition ab. (o is the orbit with
F(w) = Fi(w) =0.) Let ¢y, ande,q be the unary relations given by Theorem 5.1. Then,
by Theorem 5.1, eithepy (@) OF ¢ oq(®). We assumed, o(w). (The casep,eq(w) is
dual, just replace blue by red throughout.) There exists, by Lemma 5.2, a refingroént
o With Y,e(U). (Note that bountUV) = .7.)

Forv € w let I, be the restriction oH s to v. The subsed of w havingv elements is
aninitial segment of length if the order preserving map fromto Jis an isomorphism of
I,,. The initial segmenf’ of lengthu is anextensiorof the initial segmend of lengthu if
v < u and every element afis smaller than every element #f — J.

LetJbe an initial segment of length Let 2 be the set of pairéA, By with AUB C J
andA N B = andOj , not empty. (Remember that; , is the orbit withF (0] ;) =J

andFl(Of{’B) =A ansz(OiB) = B.) The initial segmend is well choserif:

1. Every elementid is blue.
2. For every pailA, B) € # there is a refinement sequer(@iB(i); i € v+ 1) ofthe

orbit O 4.
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3. The palr(OA B (QA g();i € v+1))is branched WItI‘(OC Di (Qé,D(i);i ev+1))
for every two elementgA, B),(C,D) € 2.

4. J = F(O[{’B) c F(QI{LB(U)) for every pair(A, B) € 2.

5. ‘//blue(Q,{x,B(U)) for every elementA, B) € 2.

Note thatQA 5 (v) is arefinement oD AB according to condition 4 and condition (iii).
We denote b)ﬁ(A B; C, D) the branching number QDA B (Qf"B(i); i €ev+1)and
(OC,D, (QC’D(z),z ev+1)).

If v=0then? = {(@, ¥)} andJ = @ is well chosen WItf‘O pp=VWHr)=0ow and the
refinement sequenc®). LetJ be a well chosen initial segment of lengthwe will extend
Jto a well chosen initial segment of lengtht 1.

Becaused s has the mapping extension property there is an extefisiftthe order map
from I, to J to an embedding of,;1. Let M be the set of elementsof J with an edge
from x to f(v) andN be the set of elemenisof J with an edge fromf (v) toy. Then the
orbit 0,{“, is not empty because it contains the elemgnt) which also implies that every

element ofO,{LN and hence every eIementh;@,N(u) together withJ forms an extension
of Jto an initial segment of lengtin- 1. We will find an appropriate Q/Jw,/v(”) - 0/{4,/\/

and refinement sequences so that {a} is well chosen.
Given(A, B) € 2 let

c(A, B,0) := bounc[OA Bf(“)}) boundcontinug 0} . f(v), 0)),

Cc(A,B,1) := bouno[Oﬁ“;gg} )= boundcontlnue{OA g f(v), 1),

c(A, B,2) := bounc{Oiuéﬁ?(}v)}) = boundcontlnue{OA,B, f (), 2)).
For each of the orbitQ/JLB(v) with (A, B) € 2 relationy,e holds. Hence ib € B with
boundeLB(v)) C b and!/ € w there is, using Lemma 5.4, a continuati@rof Ql\,B(v)
with boundR) = b and/ < F.(R) — F(Qj’B(v)) andyr,,e(R). Hence there is for every
k € 3and € wacontinuationR, k]i’B of Qfx,B(v) sothatboundR, k]f"B):c(A, B, k)

and! < F,([R, k]j1 5) — F(Qj1 5 () andy o (R, k]f‘ B)-
Because we can choogR, k]A g SothatF, ([R, k]A B)— F(QA p(v))>Iforanyl €
we can also obtain that{fA, B) # (C, D) ork # j and(A B) € P and(C, D) € Zthen

(FL([R, k14 p) — F(Q% 5())) N (Fe([R. j1.p) =0

Let

¢ > max (U U F.([R, k]th)) .

ke3 (A,B)e?

Let X be the refinement OQ{W’N(v) so that

F(X)=¢ and Fo(X)=¢— F(Qy y®)U Fo(Qy, y)).
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The relationy,,o(X) follows from 'Pblue(szu,N(U)) by Lemma 5.4. The orbiX contains
therefore infinitely many blue vertices’s. L&be such a blue vertex.

Let J, := J U {a} and for allk € 3 let OA B = contlnue{OA 5» @, k). Becausa and
f(v) are in the same orbi®;, ,, of Jit follows that

bound 0}*;) = c(A, B, k) = bound([R, kI, 4). )

The vertexa is an element ofQy, ,(v) = Oj; v N Qj; y(v) becauseQ;, \(v) is a
refinement ofol{“\,. The vertexa is not adjacent to any element iﬂ(Qf"B(v)) —
(F(QZ{LN(B(A, B, M, N))) U J) because is not adjacent to any element smaller than
¢ which is not inF(Qj{LN(v)) and because of condition (c) for branched pairs. Hence we
can apply Lemma 4.7 and obtain tr(@fw(i); i € v+ 1) is a refinement sequence of
0l for anyk €3 and(A B) € 2.
Let Q (v +1) = O ﬂ QA 5 (V). It follows from Lemma 4.6 thaQJ“’k(v +1
is a reflnement ofOf]‘"é‘ It foIIows by Lemma 4.8, that if we IeQJ“ k(z) = QA B
for aII iev+1 then(Q (z) iev+2isa refmement sequence a‘j‘lé‘ Also
(0451 QUi € v+ 2)) is branched wuth(oc B (QE )@)€ v+ 2)) for every

two eIementsA B), (C, D) € 2 and every pair of numbeks j €3
We obtain from (2) and Lemma 4.6 that

bound[R, k1% 5) = bound 0}) = bound Qs (v + 1. 3)

Both orbits[R. k] , andQ’*; (v+ 1) are continuations of the orbi?’, ;(v) andF(Q’"4
(v+1)—F([R, kI} z)={a}.According tothe choice @fandF.([R, kI z)—F(Q% 5(v))
the vertexa is not adjacent to any vertex ifi.([R, k1 ) — F(Q} 5(v)).

Using Lemma4.3 and (3) it follows that the orﬁif,“’k(erl) = [R, k]’ BﬁQJ“’k(v+1)
is a refinement of the orb@"’ k(v + 1) and a refinement of the orlir, k]A 5 and hence
z//b|ue(RA’B (v + 1)). (Note thata > F([R, k]| p).)

Again, according to the choice of the s&g[R, k]f"B) — F(QfLB (v)) to be on different
levels, for different pairgA, B) or different valuesk € 3, we can apply Lemma 4.9.
For every pair(A, B) € 2 andk € 3 let Ry (i) = Q% ,(i) fori € v + 1. It follows
from Lemma 4.9 tha(Rj“’g(i)' i € v+ 2) is arefinement sequence of the orbig"’g
and(Of(f’g; (R (z) i € v+ 2))is branched Wltr(Oé"g, J" J(z) i € v+ 2)) forall
(A, B),(C,D) € 9 andk, j € 3.

It follows that the orbits0;; together with the refinement sequen¢@“; (i): i €
v + 2) satisfy conditions 1-5.

We are now in the following position: given a well chosen initial segndeuitlengthv
there is a unique isomorphism, sgy, from H4 restricted tov to J. Every element of
is blue. The empty set is well chosen. If the initial segmenf lengthv is well chosen

then there is an extensiofy of Jto a well chosen initial segment of lengtht+ 1. That is,
f1 C f1,. We construct successively the well chosen initial segmésts 9, Jq, Jo, . ..
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of ever increasing lengths so that,, is an extension of;. Then f := ;. f IS an
embedding ofH s into H5 with every vertex in the image dfbeing blue. O

Theorem 6.2. Let.7 be a possibly infinite set of finite tournaments. Thenis indivisible
if and only if for any two orbits X and Y df s either X can be embedded into Y orY can
be embedded into.X

Proof. An orbit of H5 is a homogeneous structure; 8¢ Hence ifX andY are two
orbits of H7 and agéX) C ag€gY) thenX can be embedded into. On the other hand if
X can be embedded infid then the age oK is a subset of the age &f. HenceX can be
embedded intd or Y can be embedded int® if and only if boundY) C bound X) or
bound X) C boundY).

Hence the necessary part of Theorem 6.2 follows from Theorem 4.1 and the sufficient
part of Theorem 6.2 follows from Theorem 6.1
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