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Partitionable graphs have been studied by a number of authors in conjunction with attempts 
at proving the Berge Strong Perfect Graph Conjecture (SPGC). We give some new properties 
of partitionable graphs which can be used to give a new proof that the SPGC holds for K,,&ree 
graphs, Finally, we will show that the SPGC also holds for the class of circle .graphs. 

1. -n 

Given a graph G, let cw(G) be the size of a maximum stable set, o(G) be the 
size of a maximum clique, x(G) be the size of a minimum stable set cover, i.e., a 
coloring, and e(O) be the size of a minimum clique cover. A graph G is perfect if 
every induced subgraph H of G satisfies o(H) =x(H). Lm~sz [12,13] gave the 
following important characterization of perfect graphs. 

Theorem 1 (The Perfect Graph Theorem, Lov5sz [12,13]). J’%e following are 
equivalent : 

(i) G is perfect. 
(ii) l%e complement of G is perfect. 

(iii) cw(H)o(H)a(H( for all induced subgraphs H of G. 

A graph G is p-ctiticai if it is minimally imperfect, that is, G itsel1.f is not perfect 
and yet every proper induced subgraph of G is perfect. The only known p-critical 
graphs are the odd chordless cycles of size a5 and their complements. Berge [l] 

has conjectured this to be the only case: 

The Strong Perfect Graph Con@We (WCC). A graph is p-critical if and only if 
it is an odd chordless cycle of size a5 or the complement of one. 
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An equivalent form which we will use is the following: 
A graph is imperfect if and only if it contains an odd chordiess cycle of size 35 

or the complement of one. 
The Berge SPGC has been shown to hold for a number of classes of graphs, 

including, planar graphs [19], circular arc graphs [ZO], K&ree graphs [16], 
3-chromatic graphs [21], toroidal graphs [ll], and (K.,-e)-free graphs [17]. 

Padberg [14. 151 demonstrated the following important properties of p-critical 
graphs. Let the term o-clique denote a clique of size o and ar-sta&e set a stable 
set of size CT. 

Theorem 2 (Padberg [14, IS]). Let cr = a(G), w = o(G) and n = \G\. If G is 
p-critical, then the following properties hold: 

(i’) n=crw+l. 
(ii) G contains exactly n w-cliques and n a-stable sets. 

(iii) Every vertex of G is contained in exactly w o-cliques and a a-stable sets. 
(iv) Each o-clique intersects all but one a-stable set, and vice wrsa. 

Bland, Huang, and Trotter [2] introduced a notion that is closely related to 
p-critical graphs. We give a seemingly weaker, but equivalent, formulation. A 
graph G having n vertices is partitionable if there exist integers (Y, o 3 2 such that 
n = aw + 1, and a 2 8(G -x) and w 2 x(G -x) for all vertices x. Buckingham [3] 
has shown that this definition implies that, for all vertices x, G-x can be 
partitioned into a w-cliques and also into o a-stable sets, which was the definition 
for partitionable graphs originally given in [2]. It is an immediate result of the 
Perfect Graph Theorem that every p-critical graph is partitionable where a = a(G) 
and w = o(G). Examples of graphs which are partitionable but no p-critical have 
been given in [2], [S], and 161. Bland, Huang, and Trotter showed that for 
partitionable graphs a(G) = a and o(G) = o, and, more importantly, that partition- 
able graphs also satisfy the properties stated in Theorem 2. (See also Gohunbic 
[lo. Ch. 33 and Buckingham [3].) From these properties one may deduce the 
folPowing four properties as given in [2], 133, and [21). 

Let B(G) denote a minimum clique cover of G and X(Gj denote a minimum 
stable set cover. Let Adj(x) be the set of vertices adjacent to x, and let N(x) 
diqote the neighborhood of a vertex x, that is, tjle union of x and Adj(x). If G is 
partitl&yable, then the following hold: 

Proyerty 1. O(G - x) and X(G - x) are unique for each vertex x. @(G - x) consists 
of a o-cliques, and X(G -x) consists of w a-staMe sets. 

Property 2. The a u-stable sets of G that have an empty intersection with one of the 
o-cliques of O(G -x) are precisely those a a-stable sets that contain x. Similarly, 
the o o-cliques af G that haue an empty intersecyion with one of the a-stabb set of 
X(G -x) are precisely those o w-cliques that contain x. 
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property 3. The induced swbgraph formed by the symmetric difference of,any’two 
a-stable sets of G is a connected gruph. In particular, the union of any two a-stable 
sets of X(G -x) induces a connected subgraph. 

Frqmty 4. G -N(x) is connected for each vertex x. 

In Section 2 we show that the properties of Theorem 2 completely characterize 
partitionable graphs. In Section 3 we give two important new properties of 
partitionable graphs, and we utilize these new properties in Section 4 to give a 
simpler proof than that in 1161 of the Berge Strong Perfect Graph Conjecture for 
K&ree graphs. Recently, in [9], a different short proof has been given of the 
SPGC for a class of graphs which properly include all K,,-free graphs. Finally, in 
Section 5 we show that the SPGC holds for the class of circle graphs, (see also 

c3,4lL 

2. A chamcterfzdon of ptwtftionaMe graphs 

We now proceed to completely characterize partionable graphs. 

Theorem 3. Let a, o 2 2 be arbitrary integers and let G be a graph on n vertices. 
Then G is partitionable if and only if conditions (i)-(iv) of Theorem 2 are satisfied. 

Proof. (=$) Bland, Huang, and Trotter [2]. 
(e) We are given that a, w > 2 and by (i) n = ao + 1. So we must show that 

a 3 @(G -x) and 0) 2 x(G -x) for all vertices x. Construct two n-by-n (0, l)- 
matrices A and B whose rows are the characteristic vectors of the n w-cliques and 
n a-stable sets, respectively. By (iv) there is an arrangement of the rows of B such 
that ABT= Z-Z, where .Z is the n-by-n matrix of all ones and Z the n-by-n 
identity matrix. Conditions (ii) and (iii) imply 

AJ=JA=wJ and BJ= JB=arJ. 

Since J-Z is nonsingular, (J - I)-’ = [ l/(n - l)].Z- Z, we conclude that A and B 
are nonsingular. Therefore, 

ATB=B-‘BATB=B-‘(J-Z)B=Z-I. 

Choose a vertex x of G, and let e be the characteristic vector of G --x. Since e 
is a column of ATB, the same column of B designates 01 columns of AT whose 
vector sum is e. that is, the (Y o-cliques corresponding to these (Y columns cover 
G - x. Hence @(G - x) < cy. Similarly, e is also a row of ATB, and the correspond- 
ing for of AT designates o a-stable sets that cover G - x. Hence x(G - x) s o- •l 
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3. Additional proper&b of padiode graphs 

We now present an important new property of partitionable graphs that will be 
crucial in the following section. First, we establish a preliminary result. 

Lemma 4. 1’ x is a vertex of a partitionable graph G, then any o-clique of G that 
contains a vertex not adjacent to x consists of a vertex from each a-stable set of 
X(G -x), amd any u-stable set of G that contains a vertex adjacent to x consists of 
a vertex from each o-clique of Q(G - x). 

hf. Any w-clique C of G, that contains a vertex not adjacent to x, cannot 
contain x. Thus, the o-clique C is covered by the o a-stable sets of X(G -x). 
‘Therefore, C consists of a vertex from each a-stable set of X(G -x). 

Similarly, any a-stable set of G that contains a vertex adjacent to x consists of 
a vertex from each w-clique of @(G -x). Cl 

For simplicity we will say that a subset of vertices is connected (resp., bicon- 
netted) if it induces a connected (resp., biconnected) subgraph. Furthermore, we 
will refer to a subset of vertices and its induced subgraph interchangeably 
whenever no confusion would arise. 

We now present the main result of this section. 

Tkorem 5. Let x be a vertex of a partitionable graph G. If S1 and S2 are distinct 
sets of X(G -x), then S, U Sz U x is biconnected. 

Proof. Assume there is an S1, S2 and x such that S, US2 U x is not biconnected, 
and let :; be an articulation point. Hence (S, U !&Ux)-s can be partitioned into 
disjoint nonempty subgraphs G1 and G2. By Property 3, S, U S2 is connected; 
thus s is not x. Without loss of generality assume s in S1 and x is in G1. 

Observe @(G -s), which covers G1. Since no vertex of Gr is adjacent to x, by 
Lemma 4, each o-clique of Q(G -s) that contains a vertex of Gr contains one 
vertex of S1 and one of S2, and this within G,. Therefore, (S, nG,l= ]S2f7 Gt]. 

Choose b in S2nGI, and observe Q(G - b), which covers G1 - b. Since no 
verte?: of G, - b is adjacent to x, by Lemma 4, each o-clique of @(G-b) that 
c\~nta~ns a vertex of S, fl G1 contains a vertex (3f (S, h G,) - b. Therefore, (S, n 
G,(=.:, S2 n GJ - bl, a contradiction which prov.:!s the result. q 

The next lemma generalizes a result proved by Sachs [18] for p-critical graphs. 

Lemma 6. Zf G is partitionable, then 20 -- 2 4 ]Adj(x)] s n - 2cw + 1 for all vertices 
x, and these bounds are tight. 

. Choose a vertex x and a vertex y not adjacent to x, and choose SI, S2 in 
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X(G - y) such that x is in S,. Thus !!I1 n Adj(x) # 8. Choose z in S1 U Adj(x), .and 
observe 8(G - z). One of the o-cliques C of @(G-z) contains x. By Lemma 4, C 
contains a vertex of S1, but this must be different from z. Thus, x is adjacent to 
some other vertex in Si. Therefore, IS, f’? Adj(x)l 2 2. 

There are o - 1 distinct such S1’s in X(G - y) where x is not in S1. Thus, by the 
above, IAdj(x)l 2 2(0 - 1) = 2 o -2. The second inequality follows from the fact 
that the complement of G is partitionable for (Y and o reversed: 

To show that the bounds are tight consider the graph C,” having n vertices 

po, 01, . . . , v,,_.~ and edges (Us, zli) where Ii --iI < & (mod n) (see Fig. 1). If 01, o a 2 
are arbitrary integers, then Cziz is partitionable and IAdj(x)l= 2~ -2 for all 
vertices x. Also the complement of Cz;t, is partitionable with \Adj(x)l= 
n-2a+l for all vertices x. 0 

4. The SPGC d K&me graphs 

A graph is called k -l,,-free if it contains no vertex which is adjacent to a 
3-stable set. Using Theorem 5 we give a new proof that the SPGC holds for 
K1,3-free graphs. But Ifirst we give some preparatory lemmas. 

Lemma 7. If G is a partitionable K&ree graph, then /Adj(x)) = 20 -2 for all 
vertices x. 

Proof. Choose a vertex x and a vertex y not adjacent to x. Since G is K1,3-free, 
IS n Adj(x)( s 2 for each S in X(G - y). And since ti - 1 S’s of X(G - y) cover all 
of Adj(x), lAdj(x)) 620 - 2. By Lemma 6, \Adj(x)la2o -2. Therefore, 
IAdj(x)l = 20 - 2. 0 

An immediate consequence of Lemma 7 is the following. 

Fig. 1 The graph C$, for which CY = 3 and o = 3. 
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CoroUary 8. Zf G is a partitionable K,,-fnze graph, then for any uertex x, X(G -x) 
consists of the following: 

(i) two su-stable sets S1. S2 such that (S, f7 Adj(x)l = 1 nnd IS,fIAdj(x)( = 1, 
(ii) UJ - 2, a-stable sets Si (i = 3, . . . , O) SWC~ that lSi nAdj(x)i = 2. 

Furthermsre~ if y is a vertex @went to x, then X( G - x) contains 
(iii) one a-stable set Si, such that IS, t7 Adj(y)/ = 0, 
(iv) one a-stable set Si, such that ISi, fl Adj(y)[ = 1, and 
(v) w - 2 cu-stable sets Si, (i = 3, . . . , w) such that fs, f7 Adj(y)l = 2. 

Lemma 9. Zf S, and S2 are two stable sets of a KlS3-free graph such that St U S2 is 
connected, then S, U S2 is a chordless path or a chordless cycle. 

Proof. Since S, U S2 is K,.,-free and S, and S2 are stable sets, the degree of any 
vertex within S, U SZ is at most 2. Thus, for S, U S2 to be connected, it must be a 
chordless path or a chordless cycle. Cl 

We now give a new proof of the theorem. 

Tkorem 10 (Parthasarathy and Ravindra (161). Zf G is a partitionable K,,3-ftee 
graph, then G cormins an odd chordless cycle of size a5 or the complement of one. 

Proof, Every partitionable graph having o = 2 is a chordless cycle of size >S. 
And every partitionable graph having a! = 2 is the complement of a chordless 
cycle of size 25. Thus, assume OL, 0 3 3. 

Choose a vertex x in G. By Corollary 8, there exist S1, S2 in X(G -x) such that 
IS, nAdj(x)l = IS,nAdj(x)( = 1. By Property 3, S, U S2 is connected. Hence, F)y 
Lemma 9, there are two cases to be considered for S, US2. 

Case (i): S, US* is 11 chordless path. By Theorem 5, S1 US2 Ux is biconnected, 
hence x must be adjacent to the endpoints of the path. Since I($ US,) n Adj(x)( = 
2. these are the only adjacencies of x in S, U SZ Ux. Thus, S, U S2 Ux is an odd 
chordless cycle of size 2a! + 1, which is 37. Therefore, G contains an odd 
chordless cycle of size 25 

Case (ii): S, US? is a chordless cycle. The vertices of this cycle alternate 
betb Ten S1 and S2. Let (~0 = S, U Adj(x) and { :P) = S2 n Adj(x). If u and TV are not 
adj:3cent. thcll in the cycle either path connecting u and II together with x would 
form an odd chordless cycle of size 2’5, since u and L, are of opposite parity. 

Assume u and u are adjacent. By Theorem 14, there exists a unique o-clique C1 
such that CI f1 S, = @ Thus., u is not in C, and C, n S, # 4. By Property 2, x is in 
C,, thus C, n SZ = {u}, since u is the only adjacency of x in SZ. Choose zl in C1 
not adjacent to u (z, exists otherwise C1 U u would be a clique of size w + li. 
Thus, z1 is adjacent to x and u, but not to u (see Fig. 2). 

Since G is K,_,-free and zl is not adjacent to u, 1(x U S,)nAdj(r,)ls2. But 
IS, 7 Adj(z,)( a 1 since .zl is not in S,, and thus IS, nAdj(z,)l = 1. Therefore, by 
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0 V 

Fig. 2. The adjacencies between x, u, u, and q. 

Corollary 8(iii)-(v), IS, f7 Adj(zl)l = 2. Let {ul} = S1 n Adj(r,) and (u, v,} = 

S, n Adj(z,). 
If u and u1 are not adjacent, then in the cycle there is a path from u to u1 

avoiding ul, which joined with zl would form an odd chordless cycle of size H. 
Similarly, if u1 and u1 are not adjacent, then the cycle contains a path from u1 to 
u1 avoiding U, which joined with z1 would form an odd chordless cycle of size 35. 
Therefore, we may assume that v and u1 are adjacent, and also that u1 and o1 are 
adjacent as shown in Fig. 3. 

In similar manner, there exists a unique w-clique C, such that C, f7 Sz = p), and 
a vertex z2 in Cz which is not adjacent to 2). Hence, z2 and z1 are distinct. Denote 
the remaining adjacencies of z2 by u2 in S1 and u2 in S,. The analogous arcgument 

holds, and either an odd chordless cycle has already been located or we have the 
graph shown in Fig. 4, where u2, ti2, u, U, ul, and TV are distinct (since (Y 23), and 
u2 and Q are adjacent if and only if (Y = 3. Moreover, zl and z2 are not adjacent 
since uzlJ u U z1 is a 3-stable set and G is K&ree. 

Finally, the path in S1 U S2 from u1 to u2 avoiding u together with z2, x, and z1 
forms an odd chordless cycle of size 2cu - 1, which is 25. Therefore, G contains 
an odd chordless cycle of size 25 or the complement of one. El 

Fig. 3. S, US, U{x, tt}. 
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Fig. 4. S, US,U{x, zg, z,}. 

Thus, the Berge Strong 
K , V3-free graphs. 

Perfect Graph Conjecture holds for the class of 

5.TbeSPGCandcirdegraphs 

In this section we show that the SPGC holds for the class of circle graphs. A 
circle graph is a graph derived from the intersecting chords of a circle: each vertex 
corresponds to a chord and each edge corresponds to two chords intersecting. Fig. 
5 shows a circle graph and a collection of intersecting chords which represents it. 

Circle graphs are equivalent to the union graphs of Even and Itai [7] and to the 
overlap graphs of Gavril [8]. For a more extended study see Go1umbic [lo. Ch. 
1 I] and Buckingham [3]. 

Lemma 11. If G is a partitionable circle graph, then no cixb with chords that 
represents G contains three parallel chords (see Fig. 6). 

7 6 

5 3 

2 @ 

4 

1 

5 
6 

Fig. 5. A circle graph G and a collection of intessecting chords which represent it. 
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Fig. 6. TI%n-ee parallel chords. 

The term three parafbl chords srmply means three nonintersecting chords with 
one sandwiched between the other two, but not necessarily parallel in the 

Euclidean sense. 

Proof. Assume G is partitionable and there is a circle with chords representing G 
that contains three parallel chords. Removing the center chord of the three 
parallel chords, and all chords intersecting it, results in a circle with chords that 
represents G -N(x), where x corresponds to the center chord. Furthermore, the 
two vertices corresponding to the other two parallel chords will be in different 
connected components of G -N(xj. However, by Property 4, G -N(x) must be 
connected, a contradiction. 0 

Theorem 12. If G is a partitionable cmle graph, then G contains an odd chordless 
cycle of size 25 or the complement of one. 

Proof. By Lemma 11, G must be K &ree since containing such a subgraph 
would imply that every circle with chords that represents G must contain three 
parallel chords. Therefore, by Theorem 10, G contains an odd chordless cycle of 
size 25 or the complement of one. D 

Thus, the Berge Strong Perfect Graph Conjecture holds for the class of circle 
graphs. 

References 

[l] C. Berge, F&bung von Graphen, deren siimtliche bzw. deren ungerade Kreise Starr sind 
(Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (1961) 
114-11s. 

[2] R.G. Bland, H.C. Huang and L.E. Trotter, Jr., Graphical properties related to minimal 
imperfection, Discrete Math. 27 (1979) 11-22. 

[3] M.A. Buckingham, Circle graphs. Ph.D. Thesis, New York University, 1981. (Also available as: 
Courant Computer Science Report No. 21, Courant Institute of Mathematical Sciences, New York 
University, New York, October 1980). 



54. M.A. Buckingham. M.C. Golumbic 

[4] M.A. Buckingham and MC. Golumbic, Recent results on the strong perfect graph conjecture, 
Annals Discrete Math., to appear. 

[5] V. Chvltal. On the strong perfect graph amjecture. J. Combin. Theory (B) 20 (1976) 139-141. 
[6] V. Chvtital. R.L. Graham, A.F. Perold and S.H. Whitsides. Combinatorial designs related to the 

strong perfect graph conjecture. Discrete Math. 26 (1979) 83-92. 
[73 S. Even and A. Itai, Queues, Stacks and Graphs, in: Z. Kohavi and A. Paz, eds., Theory of 

Machines and Computations (Academic Press, New York, 1971) 71-86. 
[S] F. Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph, 

Networks 3 (1973) 261-273. 
191 R. Giles, L.E. Trotter. and A. Tucker. The strong perfect graph theorem for a class of 

partitionable graphs, Cornell University Technical Report No. 481, September 1980. 
[lOI M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 

1980). 
[l l] C.M. Grinstead, The strong perfect graph conjecture for toroidal graphs, J. Combin. Theory (B) 

30 (19811 70-74. 
1121 L. LovSsz. Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 

253-267. 
[I31 L. LovBsz. A characterization of perfect graphs, J. Combin. Theory (B) 13 (1972) 95-98. 
[I41 M.W. Padberg. Perfect zero-one matrices, Math. Programming 6 (1974) 180-196. 
[IS] M.W Padberg, Almost integral polyhedra related to certain combinatorial optimization prob- 

lems, Linear Algebra Appl. 15 (1976) 69-88. 
[16] K.R. Parthasarathy and G. Ravindra. Tbe strong perfect graph-conecture is true for K,*,-free 

graph:;, J. Combin. Theory (B) 21 (1976) 212-223. 
[17J K.R. Euthasarathy and G. Ravindra, The validity of the strong perfect graph conjecture for 

(K,-e)-free graphs, J. Combin. Theory (B) 26 (1979) 98-100. 
IIS] H. Sachs, On the Berge conjecture concerning perfect graphs, in: R. Guy et al., eds., Com- 

binatorial Structures and Their Applications (Gordon and Breach, New York, 1970) 377-384. 
I I91 A. Tucker. The strong perfect graph conjecture for planar graphs, Can. J. Math. 25 (1973) 

103-l 14. 
f2fjl A. Tucker. Coloring a family of circular arcs. SlAM J. Appl. Math. 29 (1975) 493-502. 
[21j A. Tucker. Critical perfect graphs and perfect 3-chromatic graphs, J. Combin. Theory (B) 23 

(1977) l-13-149. 


