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Abstract

A smooth curve interpolation scheme for positive, monotonic, and convex data has been developed. This scheme
uses piecewise rational cubic functions. The two families of parameters, in the description of the rational interpolant,
have been constrained to preserve the shape of the data. The rational spline scheme has a unique representation.
The degree of smoothness attained is C1.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Interpolation is a fundamental process in scientific visualization. Smooth curve representation, to visu-
alize the scientific data, is of great significance in various areas of scientific research including scientific
visualization, computer graphics, geometric modeling, numerical analysis, approximation theory, etc.
Specially, when the data are arising from some complex function or from some scientific phenomena,
it becomes crucial to incorporate the inherited features of the data. It gives an insight and guide to un-
derstand some physical phenomenon pertaining to the data which one would otherwise only have partial
information about. It is an effective way of communication as it helps to reflect the numeric data to a
quickly understandable pictorial display.
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If smoothness is one of the very important requirements for pleasing visual display of the data on one
hand, the computational efficiency and accuracy are not less significant on the other hand. Ordinary spline
schemes, although smoother, are not helpful for the interpolation of the shaped data. Severely misguided
results, violating the inherited features of the data, are seen when undesired oscillations occur. Thus,
unwanted oscillations, which may completely destroy the data features must be controlled.

This paper examines the problem of shape preservation of data (xi, fi), i = 1, 2, . . . , n, where xi

represents the data site and fi the data value at site xi . Positivity, monotony and convexity are the basic
and fundamental shapes, which normally arise in everyday scientific phenomena. These shapes are the
targeted features here. As a first step, it is planned to generate some empirical model of the data to be
visualized. As a second step, a model curve will be constructed which matches the data values at the
location allowing no deviations. Afterwards, the model curve will be constrained to reflect a continuous
visual display of the data.

Various authors have worked in the area of shape preservation [1–18]. In this paper, the shape preserving
interpolation has been studied for positive, monotonic and convex data, using a rational cubic spline. The
motivation of this work is due to the past work of many authors, e.g. quadratic interpolation methodology
has been adopted in [11,10] for the shape preserving curves. Fritsch and Carlson [7] and Fritsch and
Butland [6] have discussed the piecewise cubic interpolation to monotonic data. Also, Passow and Roulier
[13] considered the piecewise polynomial interpolation to monotonic and convex data. In particular, an
algorithm for quadratic spline interpolation is given in [11]. An alternative to the use of polynomials for
the interpolation of monotonic and convex data is the application of piecewise rational quadratic and cubic
functions by Gregory [8]. Rational functions have been discussed by Sarfraz [14] in a parametric context.

The theory of methods, in this paper, has a number of advantageous features. It produces C1 interpolant.
No additional points (knots) are needed. In contrast, the quadratic spline methods of Schumaker [18] and
the cubic interpolation method of Brodlie and Butt [2] require the introduction of additional knots when
used as shape preserving methods. The interpolant is not concerned with an arbitrary degree as in [8]. It
is a rational cubic with cubic numerator and cubic denominator. The rational spline curve representation
is bounded and unique in its solution.

The paper begins with a definition of the rational function in Section 2 where the description of rational
cubic spline, which does not preserve the shape of positive and/or monotone data, is given. Although this
rational spline was discussed in [15], it was in the parametric context which was useful for the designing
applications. This section reviews it for the scalar representation so that it can be utilized to preserve
the scalar valued data. The positivity problem is discussed in Section 3 for the generation of a C1 spline
which can preserve the shape of a positive data. The sufficient constraints on the shape parameters have
been derived to preserve and control the positive interpolant. The monotonicity problem is discussed
in Section 4 for the generation of a C1 spline which can preserve the shape of a monotonic data. The
sufficient constraints, in this section, lead to a monotonic spline solution. Section 5 discusses the scheme
when a data set has convexity features. Section 6 concludes the paper.

2. Rational cubic spline with shape control

Let (xi, fi), i = 1, 2, . . . , n, be a given set of data points, where x1 < x2 < · · · < xn. Let

hi = xi+1 − xi, �i = fi+1 − fi

hi

, i = 1, 2, . . . , n − 1. (2.1)
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Consider the following piecewise rational cubic function:

s(x) ≡ si(x) = Ui(1 − �)3 + viVi�(1 − �)2 + wiWi�
2(1 − �) + Zi�

3

(1 − �)3 + vi�(1 − �)2 + wi�2(1 − �) + �3
, (2.2)

where

� = x − xi

hi

. (2.3)

To make the rational function (2.2) C1, one needs to impose the following interpolatory properties:

s(xi) = fi, s(xi+1) = fi+1,

s(1)(xi) = di, s(1)(xi+1) = di+1, (2.4)

which provide the following manipulations:

Ui = fi, Zi = fi+1,

Vi = fi + hidi

vi

, Wi = fi+1 − hidi+1

wi

, (2.5)

where s(1) denotes the derivative with respect to x and di denotes derivative value given at knot xi. This
leads the piecewise rational cubic (2.2) to the following piecewise Hermite interpolant s ∈ C1[x1, xn]:

s(x) ≡ si(x) = Pi(�)

Qi(�)
, (2.6)

where

Pi(�) = fi(1 − �)3 + viVi�(1 − �)2 + wiWi�
2(1 − �) + fi+1�

3,

Qi(�) = (1 − �)3 + vi�(1 − �)2 + wi�
2(1 − �) + �3.

One can note that when vi =wi = 3, the rational function obviously becomes the standard cubic Hermite
polynomial. Variations for the values of vi’s and wi’s control (tighten or loosen) the curve in different
pieces of the curve. This behaviour can be seen in the following subsection.

2.1. Shape control analysis

The parameters vi’s and wi’s can be utilized properly to modify the shape of the curve according
to the desire of the user. Their effectiveness, for the shape control at knot points, can be seen that if
vi ,wi−1 → ∞, then the curve is pulled towards the point (xi, fi) in the neighbourhood of the knot
position xi. This shape behaviour can be observed by looking at si(x) in Eq. (2.6). This form is similar
to that of a Bernstein–Bezier formulation. One can observe that when vi ,wi−1 → ∞, then Vi and
Wi−1 → fi .

The interval shape control behaviour can be observed by rewriting si(x) in Eq. (2.6) in the following
simplified form:

s(x) = fi(1 − �) + fi+1�

+ [(1 − �)(di − �i) + �(�i − di+1) + �(1 − �)�i(wi − vi)]hi�(1 − �)

Qi(�)
. (2.7)
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When both vi and wi → ∞, it is simple to see the convergence to the following linear interpolant:

s(x) = fi(1 − �) + fi+1�. (2.8)

It should be noted that the shape control analysis is valid only if the bounded derivative values are assumed.
A description of appropriate choices for such derivative values is made in the following subsection.

2.2. Determination of derivatives

In most applications, the derivative parameters {di} are not given and hence must be determined either
from the given data (xi, fi), i=1, 2, . . . , n, or by some other means. In this article, they are computed from
the given data in such a way that the C1 smoothness of the interpolant (2.6) is maintained. These methods
are the approximations based on various mathematical theories. The descriptions of such approximations
are as follows:

2.2.1. Arithmetic mean method

• This is the three-point difference approximation with

di =
{

0 if �i−1 = 0 or �i = 0,

(hi�i−1 + hi−1�i)/(hi + hi−1) otherwise, i = 2, 3, . . . , n − 1,
(2.9)

and the end conditions are given as

d1 =
{

0 if �1 = 0 or sgn(d∗
1 ) �= sgn(�1),

d∗
1 = �1 + (�1 − �2)h1/(h1 + h2) otherwise.

(2.10)

dn =
{0 if �n−1 = 0 or sgn(d∗

n) �= sgn(�n−1),

d∗
n = �n−1 + (�n−1 − �n−2)hn−1/

(hn−1 + hn−2) otherwise.
(2.11)

2.2.2. Geometric mean method

• These are the non-linear approximations which are defined as follows:

di =
{

0 if �i−1 = 0 or �i = 0,

�
hi/(hi−1+hi)

i−1 �
hi−1/(hi−1+hi)

i otherwise, i = 2, 3, . . . , n − 1,
(2.12)

and the end conditions are given as

d1 =
{

0 if �1 = 0 or �3,1 = 0,

�1{�1/�3,1}h1/h2 otherwise.
(2.13)

dn =
{

0 if �n−1 = 0 or �n,n−2 = 0,

�n−1{�n−1/�n,n−2}hn−1/hn−2 otherwise,
(2.14)
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where

�3,1 = (f3 − f1)/(x3 − x1),

�n,n−2 = (fn − fn−2)/(xn − xn−2). (2.15)

For given bounded data, the derivative approximations in Sections 2.2.1 and 2.2.2 are bounded. Hence,
for bounded values of the appropriate shape parameters,

vi, wi, i = 1, 2, . . . , n − 1, (2.16)

the interpolant is bounded and unique. Therefore, we can conclude the above discussion in the following:

Theorem 1. For bounded vi, wi, ∀i and the derivative approximations in Sections 2.2.1 and 2.2.2, the
spline solution of the interpolant (2.6) exists and is unique.

3. Positive spline interpolation

The rational spline method, described in the previous section, has deficiencies as far as positivity
preserving issue is concerned. For example, the rational cubic in Section 2 does not guarantee to preserve
the shape of the positive data. It is required to assign appropriate values to the shape parameters so that it
generates a data preserved shape. Thus, some further treatment is required to achieve a shape preserving
spline for positive data.

One way to achieve the positivity preserving interpolant for the above spline method is to change
the values of shape parameters vi’s and wi’s, on a trial-and-error basis, in those regions of the curve
where the shape violations are found. This strategy may result in a required interpolant but this is not
a comfortable and accurate way to manipulate the desired shape preserving curve. Another way, which
is more effective, useful and is the objective of this article, is the automated generation of positivity
preserving curve. This requires an automated computation of suitable shape parameters and derivative
values. To proceed with this strategy, some mathematical treatment is required which will be explained
in the following paragraphs.

For simplicity of presentation, let us assume the data set to be positive:

(x1, f1), (x2, f2), . . . , (xn, fn),

so that

x1 < x2 < · · · < xn, (3.17)

and

f1 > 0, f2 > 0, . . . , fn > 0. (3.18)

In this paper we shall develop sufficient conditions on piecewise rational cubics under which C1 positive
interpolation is preserved. The key idea, to preserve positivity using s(x), is to assign suitable automated
values to vi, wi in each interval.
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As vi, wi > 0 guarantee strictly positive denominator Qi(�), initial conditions on vi, wi are

vi > 0, wi > 0 i = 1, 2, . . . , n − 1. (3.19)

Since Qi(�) > 0 for all vi, wi > 0, the positivity of the interpolant (2.6) depends on the positivity of cubic
polynomial Pi(�). Thus, the problem reduces to the determination of appropriate values of vi, wi for
which the polynomial Pi(�) is positive. Now, Pi(�) can be expressed as follows:

Pi(t) = �i�
3 + �i�

2 + �i� + �i , (3.20)

where

�i = (1 − wi)fi+1 − (1 − vi)fi + (di+1 + di)hi,

�i = wifi+1 − (3 − 2vi)fi − (di+1 + di)hi,

�i = dihi − (3 − vi)fi,

�i = fi.

⎫⎪⎬
⎪⎭ (3.21)

For the strict inequality (for positive data) in (2.6), according to Butt and Brodlie [3], Pi(�) > 0 if and
only if

(P ′
i (0), P ′

i (1)) ∈ R1UR2, (3.22)

where

R1 =
{
(a, b) : a >

−3fi

hi

, b <
3fi+1

hi

}
, (3.23)

R2 = {(a, b) : 36fifi+1(a
2 + b2 + ab − 3�i(a + b) + 3�2

i )

+ 3(fi+1a − fib)(2hiab − 3fi+1a + 3fib)

+ 4hi(fi+1a
3 − fib

3) − h2
i a

2b2 > 0}. (3.24)

We have

P ′
i (0) = fi

hi

(vi − 3) + di ,

P ′
i (1) = di+1 − fi+1

hi

(wi − 3).

Now (3.22) is true when

(P ′
i (0), P ′

i (1)) ∈ R1,

P ′
i (0) >

−3fi

hi

, P ′
i (1) <

3fi+1

hi

.

This leads to the following constraints:

vi > mi, wi > Mi , (3.25)
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where

mi = Max

{
0,

−hidi

fi

}
, Mi = Max

{
0,

hidi+1

fi+1

}
. (3.26)

Further,

(P ′
i (0), P ′

i (1)) ∈ R2

if

36fifi+1[�2
1(ri, ui) + �2

2(wi) + �1(vi)�2(wi) − 3�i(�1(vi) + �2(wi)) + 3�2
i ]

+ 3[fi+1�1(vi) − yi�2(wi)][2hi�1(vi)�2(wi) − 3fi+1�1(vi) + 3fi�2(wi)]
+ 4hi[fi+1�

3
1(vi) − yi�

3
2(wi)] − h2

i �
2
1(vi)�

2
2(wi) > 0, (3.27)

where

�1(vi) = P ′
i (0),

�2(wi) = P ′
i (1). (3.28)

This leads to the following:

Theorem 2. For a strictly positive data, the rational cubic interpolant (2.6) preserves positivity if and
only if either (3.25) or (3.27) is satisfied.

Remark 1. The constraints (3.26) can be further modified to incorporate both shape preserving and shape
control features. Without loss of generality, one can find parameters ri and qi satisfying

ri, qi �1, (3.29)

such that the constraints (3.25) and (3.26) lead to the following sufficient conditions for the freedom over
the choice of ri and qi :

vi = (1 + mi)ri, wi = (1 + Mi)qi . (3.30)

One can make the choice of ri and qi to be the greatest lower bound as follows:

ri = 1, qi = 1. (3.31)

This choice satisfies (3.25) and will be considered as a default choice. Some more practical sufficient
conditions, which satisfy (3.25) too, are the following:

vi = wi = 1 + max(miri, Miqi). (3.32)

Remark 2. vi and wi satisfying (3.27) can be determined but it requires a lot of computations. Hence,
the alternate choice, in Remark 1, can be considered for practical results.

Remark 3. This curve approximation method can be used in both cases when either di’s are particularly
specified or estimated by some method like in Section 2.2.
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4. Monotone spline interpolation

The rational cubic in Section 2 does not preserve the shape of the monotonic data. Thus, it looks as if
ordinary spline schemes do not provide the desired shape features and hence some further treatment is
required to achieve a shape preserving spline for monotonic data. This requires an automated computation
of suitable shape parameters and derivative values. To proceed with this strategy, some mathematical
treatment is required which will be explained in the following paragraphs.

For simplicity of presentation, let us assume a monotonic increasing set of data so that

f1 �f2 � · · · �fn, (4.33)

or equivalently

�i �0, i = 1, 2, . . . , n − 1. (4.34)

(In a similar fashion one can deal with a monotonic decreasing data.) For a monotonic interpolant s(x),
it is then necessary that the derivative parameters follow:

di �0 (di �0, for monotonic decreasing data), i = 1, 2, . . . , n. (4.35)

Now s(x) is monotonic increasing if and only if

s(1)(x)�0 (4.36)

for all x ∈ [x1, xn]. For x ∈ [xi, xi+1] it can be shown, after some simplification, that

s(1)(x) =
6∑

j=1

Aj,i�
j−1(1 − �)6−j

[Qi(x)]2 , (4.37)

where

A1,i =di,

A2,i =2wi

(
�i − 1

wi
di+1

)
+ di,

A3,i =3�i + 2wi

(
�i − 1

wi
di+1

)
+ viwi

(
�i − 1

vi
di − 1

wi
di+1

)
,

A4,i =3�i + 2vi

(
�i − 1

vi
di

)
+ viwi

(
�i − 1

vi
di − 1

wi
di+1

)
,

A5,i =2vi

(
�i − 1

vi
di

)
+ di+1,

A6,i =di+1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.38)

The denominator in (4.37), being a squared quantity, is positive; therefore the sufficient conditions for
monotonicity on [xi, xi+1] are

Aj,i �0, j = 1, 2, . . . , 6, (4.39)
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where the necessary conditions

di �0 and di+1 �0 (4.40)

are assumed. If �i > 0 (strict inequality), then the following are sufficient conditions for (4.39):

�i − 1

vi

di �0,

�i − 1

wi

di+1 �0,

�i − 1

vi

di − 1

wi

di+1 �0, (4.41)

which lead to the following constraints:

vi = lidi

�i

, wi = kidi+1

�i

, (4.42)

where li and ki are positive quantities satisfying

1

li
+ 1

ki

�1. (4.43)

This, together with (4.42), leads to the following sufficient conditions for the freedom over the choice of
li and ki :

li �1 + di+1

di

, ki �1 + di

di+1
. (4.44)

One can make the choice of li and ki to be the greatest lower bound as follows:

li = 1 + di+1

di

, ki = 1 + di

di+1
. (4.45)

This choice satisfies (4.43). Further simplification of (4.42) and (4.45) leads to the following sufficient
conditions for monotonicity:

vi = di + di+1

�i

, wi = di + di+1

�i

. (4.46)

This choice satisfies (4.39) and it also provides acceptable results. It should be noted that if �i = 0, then
it is necessary to set di = di+1 = 0, and thus

s(x) = fi = fi+1 (4.47)

is a constant on [xi, xi+1]. Hence the interpolant (2.6) is monotonic increasing together with conditions
(4.40) and (4.46). For the case where the data are monotonic but not strictly monotonic (i.e., when some
�i = 0) it would be necessary to divide the data into strictly monotonic parts. If we set di = di+1 = 0
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whenever �i = 0, then the resulting interpolant will be C0 at break points. The above discussion can be
summarized as:

Theorem 3. Given conditions (4.35) on the derivative parameters, the conditions for monotonicity in
(4.46) are the sufficient conditions for the interpolant (2.6) to be monotonic increasing.

5. Convex spline interpolation

The rational cubic, in Section 2, does not preserve the shape of the convex data. Thus, it looks as if
ordinary spline schemes do not provide the desired shape features and hence some further treatment is
required to achieve a shape preserving spline for convex data. This requires an automated computation
of suitable shape parameters and derivative values. To proceed with this strategy, some mathematical
treatment is required which will be explained in the following paragraphs.

For simplicity of presentation, let us assume a strictly convex set of data so that

�1 < �2 < · · · < �n−1. (5.48)

In a similar fashion, one can deal with a concave data so that

�1 > �2 > · · · > �n−1. (5.49)

For a convex interpolant s(x), it is then necessary that the derivative parameters should be such that

d1 < �1 < · · · �i−1 < di < �i · · · < �n−1 < dn, (5.50)

and

(d1 > �1 > · · · �i−1 > di > �i · · · > �n−1 > dn, for concave data).

Now s(x) is convex if and only if

s(2)(x)�0, (5.51)

for all x ∈ [x1, xn]. This can be achieved by differentiating (4.37) as follows:

s(2)(x) =
8∑

j=1

Bj,i�
j−1(1 − �)8−j

hi[Qi(x)]3 , (5.52)

where

B1,i = A2,i − A1,i(2vi − 1),

B2,i = 2A3,i − A2,i(vi − 2) − A1,i(vi + 4wi),

B3,i = 3A4,i + 3A3,i − 3wiA2,i − 3A1,i(wi + 2),

B4,i = 4A5,i + 4A4,i(vi + 1) + A3,i(vi − 2wi) − A2,i(2wi + 5) − 5A1,i ,

B5,i = 5A6,i + A5,i(2vi + 5) + A4,i(2vi − wi) − A3,i(wi − 4) − 4A2,i ,

B6,i = 3A6,i(vi + 2) + 3viA5,i − 3A4,i − 3A3,i ,

B7,i = A6,i(4vi + wi) + A5,i(wi − 2) − 2A4,i ,

B8,i = A6,i(2wi − 1) − A5,i .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.53)
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Since the denominator in (5.52), for the selection of vi, wi > 0, is positive, the sufficient conditions for
convexity on [xi, xi+1] are

vi, wi > 0, Bj,i �0, j = 1, 2, . . . , 8, (5.54)

where the necessary conditions

�i − di �0 and di+1 − �i �0 (5.55)

are assumed. After some simplifications, one can rewrite the first and the last equations, from (5.53), as
follows:

B1,i = 2{(wi − vi)�i + vi(�i − di) − (di+1 − di)},
B8,i = 2{(wi − vi)�i + wi(di+1 − �i) − (di+1 − di)}. (5.56)

If �i −di > 0 and di+1 −�i > 0 (strict inequalities), then the following are sufficient conditions for (5.56):

vi = wi ,

vi(�i − di) − (di+1 − di)�0,

wi(di+1 − �i) − (di+1 − di)�0. (5.57)

These are equivalent to the following constraints:

vi = wi = qi + max

(
di+1 − di

�i − di

,
di+1 − di

di+1 − �i

)
, (5.58)

where qi are non-negative quantities satisfying

qi �0. (5.59)

After some manipulations, it is trivial to show that the sufficient conditions (5.58), for (5.56), are also
sufficient for (5.54).

Since

di+1 − �i

�i − di

+ �i − di

di+1 − �i

� max

(
di+1 − di

�i − di

,
di+1 − di

di+1 − �i

)
, (5.60)

therefore, the sufficient conditions (5.58) for convexity take the following form:

vi = wi = qi + di+1 − �i

�i − di

+ �i − di

di+1 − �i

, qi �0. (5.61)

However, the following choice of parameters

vi = wi = qi + max

(
di+1 − di

�i − di

,
di+1 − di

di+1 − �i

)
, qi = 0, (5.62)

will be considered for practical implementation of default curve design. This choice satisfies (5.58) and
it also provides acceptable results.
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Remark 4. The default value of the parameters qi, being taken as zero, provides visually pleasing results
and produces automated curve interpolation. Further modification is achieved by taking other positive
values in various intervals.

Remark 5. It should be noted that if �i −di =0 or di+1 −�i =0, then it is necessary to set di =di+1 =�i .

The interpolant then will be linear in that region, i.e.,

s(x) = (1 − �)fi + �fi+1. (5.63)

It should be also noted that if �i = 0, then it is necessary to set di = di+1 = 0, and thus

s(x) = fi = fi+1 (5.64)

is a constant on [xi, xi+1]. Hence the interpolant (2.6) is convex together with conditions (5.61). For the
case, where the data are convex but not strictly convex, it would be necessary to divide the data into
strictly convex parts. If we set di = di+1 = 0 whenever �i = 0, then the resulting interpolant will be C0

at break points.

The above discussion can be summarized as follows:

Theorem 4. Given conditions (5.50) on the derivative parameters and the data, the constraints (5.61)
are the sufficient conditions for the interpolant (2.6) to be convex.

6. Concluding remarks

A rational cubic interpolant, with two families of shape parameters, has been utilized to obtain C1

positivity, monotonicity, and convexity preserving interpolatory spline curves. The shape constraints are
restricted on shape parameters to assure the shape preservation of the data. For the C1 interpolant, the
choices on the derivative parameters have been defined. The solution to the shape preserving spline exists
and provides a unique solution. The scheme is automatic and the user does not have to worry about
struggling and looking for some appropriate choice of parameters as in the case of ordinary rational
spline.

Accuracy and computational efficiency are very important and the presented interpolation scheme
is computationally efficient. However, more computational saving can be pursued. The rational spline
scheme could have been implemented and it would have demonstrated nice looking visually pleasant
results. This work is left due to the fear of the length of the paper. The authors intend to do it in a
subsequent paper.

The work done, in this paper, can be extended for the data type having dual features of shape. The
authors are in the process of completing it as a future work. A possible extension of this work, for future,
may also be to act on the parameterization and relax the continuity conditions from C1 to G1. One can
also think of generalizing the curve case to surface case as a future work; this research is also in progress
with the authors.
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