Properties of Certain Algebras between L^{∞} and H^{∞}

RAHMAN YOUNIS*.⁺

Department of Mathematics, University of Wisconsin, Milwaukee, Wisconsin 53201

Communicated by Peter D. Lax

Received April 16, 1981

The main result of this paper is that if F is a closed subset of the unit circle, then $(H^{\infty} + L^{\infty}_F)/H^{\infty}$ is an *M*-ideal of L^{∞}/H^{∞} . Consequently, if $f \in L^{\infty}$ then f has a closest element in $H^{\infty} + L_F^{\infty}$. Furthermore, if $|F| > 0$ then $L^{\infty}/(H^{\infty} + L_F^{\infty})$ is not the dual of any Banach space.

1. INTRODUCTION

Let L^{∞} denote the usual Lebesgue space of functions on the unit circle. Let H^{∞} denote the subalgebra of boundary values of bounded analytic functions in $|z| < 1$ and $H^{\infty} + C$ denote the closed linear span of H^{∞} and C, where C is the set of continuous complex-valued functions on $|z| = 1$.

In [2], Axler et al. prove the following theorem: If f is in L^{∞} , then $dist(f, H^{\infty} + C) = ||f - h||_{\infty}$, for some h in $H^{\infty} + C$. Here $|| \cdot ||_{\infty}$ denotes the essential supremum norm and the distance is measured in this norm. In [9], Luecking, proves the following theorem: $(H^{\infty} + C)/H^{\infty}$ is an M-ideal of L^{∞}/H^{∞} .

In this paper, we prove Theorem 3.1 and Corollary 3.2 which yield the above results as special cases. To be more specific, let F be a closed subset of the unit circle. We prove that $(H^{\infty} + L_{F}^{\infty})/H^{\infty}$ is an *M*-ideal of L^{∞}/H^{∞} . As a consequence, we get: If $f \in L^{\infty}$ then dist $(f, H^{\infty} + L_F^{\infty}) = ||f - h||_{\infty}$, for some h in $H^{\infty} + L_F^{\infty}$. The preceding result is a contribution to an open question [2] which asks whether any L^∞ function has a closest element to an arbitrary Douglas algebra. Also, we prove (Theorem 3.3) that if $|F| > 0$ then $L^{\infty}/(H^{\infty} + L^{\infty})$ is not the dual of any Banach space, which is a generalization of the known result [2] that $L^{\infty}/(H^{\infty} + C)$ is not the dual of any Banach space, In Section 4, we present some applications concerning supports of extreme points of the unit ball of $(H^{\infty})^{\perp}$.

*The author would like to express his deep appreciation to Professor Patrick Ahern for his encouragement and for helpful discussions.

' Current address: Department of Mathematics. Kuwait University. P.O. Box 5969. Kuwait.

RAHMAN YOUNIS

2. PRELIWNARIES

Let X be a compact Hausdorff space. We denote by $C(X)$ the space of all continuous complex-valued functions on X . Let A be a closed subalgebra of $C(X)$. A closed subset, S, of X is called a peak set for A if there exists f in A such that $f = 1$ on S and $|f| < 1$ off S. A weak peak set for A is an arbitrary intersection of peak sets for A . A closed subset, E , of X is called the essential set for A if E is the zero set of the largest closed ideal in $C(X)$ which lies in A. The following properties of the essential set E of an algebra A are needed in this paper.

- (i) E is a weak peak set for A [3, p. 145].
- (ii) If $\mu \perp A$, then the support of μ lies in E [10, p. 64].

Let Y be a Banach space. A subspace J of Y is called an L -ideal if there is a projection p of Y onto J such that $||y|| = ||py|| + ||y - py||$, $y \in Y$. Such a projection is called an L-projection. A subspace K of a Banach space X is called an M-ideal if the annihilator K is an L-ideal of X^* (see [1] for these concepts). The following properties of an *M*-ideal of X are needed in this paper.

LEMMA A [1, Corollary 5.6]. If M is an M-ideal of X and if $x \in X$, then there exists $m \in M$ such that $dist(x, M) = ||x - m||$.

LEMMA B [7, Theorem 3]. If M is an M-ideal of X and if $x \in X \backslash M$ then the span $\{m: m \in M, \text{dist}(x, M) = ||x - m||\} = M$.

We identify L^{∞} with $C(M(L^{\infty}))$, via the Gelfand transform, where $M(L^{\infty})$ denotes the maximal ideal space of L^{∞} . Thus H^{∞} can be considered as a function algebra on $M(L^{\alpha})$. No notational distinction will be made between f in L^{∞} viewed as a function on the unit circle and its Gelfand transform \hat{J} viewed as a continuous function on $M(L^{\infty})$.

Let z denote the identity function on the unit circle, T. For $\alpha \in T$ the fiber X_{α} of $M(L^{\infty})$ over α is the set $X_{\alpha} = {\phi \in M(L^{\infty}) : \phi(z) = \alpha}$. The fiber Y_{α} of $M(H^{\infty})$ over a is the set $Y_{\alpha} = {\phi \in M(H^{\infty}) : \phi(z) = \alpha}.$

3. THE MAIN RESULTS

Let F be a closed subset of the unit circle T, and let L_F^{∞} be the set of those L^{∞} functions which are continuous at each point of F. Davie et al. [5, p. 66] have shown that $H^{\infty} + L_F^{\infty}$ is a closed subalgebra of L^{∞} , and furthermore that it is a Douglas algebra. A closed subalgebra A of L^{∞} which contains H^{∞} is called a Douglas algebra if A is the closed algebra generated by H^{∞}

and $\{\overline{b} \in A : b \text{ is a Blaschke product}\}.$ Chang and Marshall [4] have shown that every closed subalgebra of L^{∞} which contains H^{∞} is a Douglas algebra.

THEOREM 3.1. $(H^{\infty} + L^{\infty}_F)/H^{\infty}$ is an *M*-ideal in the space L^{∞}/H^{∞} .

The case in which $F = T$ has been proved by Luecking [9].

COROLLARY 3.2. If $f \in L^{\infty}$, then $dist(f, H^{\infty} + L^{\infty}) = ||f - h||_{\infty}$, for some $h\in H^{\infty}+L_{F}^{\infty}.$

In case $F = T$, this corollary is Theorem 4 of [2], where the proof given there uses an operator theory technique.

Proof of Corollary 3.2. By Theorem 3.1 and Lemma A we have for any f in L^{∞} , there exists g in $H^{\infty} + L_F^{\infty}$ such that dist $(f, H^{\infty} + L_F^{\infty}) =$ $dist(f - g, H^{\infty})$. It is well-known (see, e.g., [8, p. 197]) that there exists g_0 in H^{∞} such that dist $(f-g, H^{\infty}) = ||f-g - g_0||_{\infty}$. Set $h = g + g_0$; then $dist(f, H^{\infty} + L_F^{\infty}) = ||f - h||_{\infty}$.

Remark. If $f \in L^{\infty}$, $f \notin H^{\infty} + L_F^{\infty}$ then the best approximation h in Corollary 3.2 is not unique. Indeed, if $f \notin H^{\infty} + L^{\infty}$ then by Theorem 3.1 and Lemma B, h is never unique.

Proof of Theorem 3.1. Let $E = \bigcup_{\alpha \in F} X_{\alpha}$, then E is closed in $M(L^{\infty})$. We claim that E is the essential set for $H^{\infty} + L_F^{\infty}$. By Theorem 11.6 [5, p. 62], $H^{\infty} + L_F^{\infty} = \bigcup_{\alpha \in F} H_X^{\infty}$, where $H_X^{\infty} = \{ f \in L^{\infty}; f_{1X} \in H_{1X}^{\infty} \}$. The essential set of H_x^{∞} is X_a . To see this, note that $H_x^{\infty} = H^{\infty} + J_y$, where $J_x = \{f \in L^{\infty}: f(x) = 0\}$. Thus the essential set S for H_x^{∞} lies in X_{α} . If S is proper, let $x \in X_{\alpha} \backslash S$ and choose a clopen set W containing x such that $W \cap S = \phi$. Since $X_w(S) = 0$, the function $f = X_w$ is in $H_{X_Q}^{\infty}$. Thus $f_{|X_{\alpha}} \in H^{\infty}_{|X_{\alpha}}$, and moreover $f_{|X_{\alpha}} = \{0, 1\}$. This is a contradiction, because the maximal ideal space of H_{1x}^{∞} is Y_{α} , which is connected [6, p. 188]. Thus X, is the essential set for H_{λ}^{∞} . Consequently, $\bigcup_{\alpha \in F} X_{\alpha}$ lies in the essential set E' of $H^{\infty} + L_F^{\infty}$. Now let $f \in L^{\infty}$ be such that $f(\bigcup_{\alpha \in F} X_{\alpha}) = 0$. Then $f \in \bigcap_{\alpha \in F} H_{X_\alpha}^{\infty}$. Since E' is the essential set of $H^{\infty} + L_F^{\infty}$ and $\bigcup_{\alpha \in F} X_{\alpha}$ is closed, we get $E' = E$. Thus $E = \bigcup_{\alpha \in F} X_{\alpha}$ is the essential set of $H^{\infty} + L_F^{\infty}$.

The dual space $(L^{\infty}/H^{\infty})^*$ is identified with the space $(H^{\infty})^{\perp}$ ${\mu \in C(X)^* : \int f d\mu = 0$ for all $f \in H^\infty}$. We identify $((H^\infty + L^\infty_F)/H^\infty)^{\perp}$ with $(H^{\infty} + L_F^{\infty})^{\perp} = {\mu \in C(X)^{*}: \int f d\mu = 0$ for all $f \in H^{\infty} + L_F^{\infty}}$. Thus to prove the theorem we have to produce an L-projection p of $(H^{\infty})^{\perp}$ onto $(H^{\infty} + L^{\infty}_{F})^{\perp}.$

Let *m* denote the Lifting Lebesgue measure from T to $X = M(L^{\infty})$. That is, $\int_{\mathcal{X}} \hat{f} dm = (1/2\pi) \int_0^{2\pi} f(e^{i\phi}) d\phi$, for $f \in L^{\infty}$. Let $\mu \perp H^{\infty}$. Write $\mu = \mu_a + \mu_s$, where $\mu_a \ll m$ and $\mu_s \perp m$. By [6, p. 186], the measure μ_s is \perp to $H^{\infty} + C$. Define $\ddot{P}\mu = X_E \mu_s$, where X_E is the characteristic function of E.

It is easy to see that $\|\mu\| = \|p\mu\| + \|\mu - p\mu\|$ and $p^2\mu = p\mu$. Note that $H^{\infty} + L_F^{\infty}|_E = H^{\infty} + C|_E$ and that E is a weak peak set for $H^{\infty} + C$. By [3, p. 106], $X_E\mu_s \perp H^{\infty} + C$. Consequently $X_E\mu_s \perp H^{\infty} + L_F^{\infty}$.

Finally, we have to show that P is onto. Let $\mu = H^{\alpha} + L^{\alpha}$. By (i) of Section 2 we have support $\mu \subset E$. Thus $\mu = X_E \mu$. By [9]. $\mu = m$. Hence $p\mu = \mu = X_f\mu$. This ends the proof of Theorem 3.1.

The authors of [2] proved that $L^{\infty}/(H^{\infty} + C)$ is not the dual of any Banach space (in contrast to L^{∞}/H^{∞} , which is the dual of the space of functions in $H¹$ which have mean value zero). The following theorem is a generalization of their result.

THEOREM 3.3. Let F be a closed subset of T such that $|F| > 0$. Then $L^{\infty}/(H^{\infty} + L_{\varepsilon}^{\infty})$ has no extreme points.

Proof. Let $f + (H^{\infty} + L_F^{\infty})$ be an extreme point of $L^{\infty}/(H^{\infty} + L_F^{\infty})$. By Corollary 3.2, we can assume that $||f||_{\infty} = 1$. We claim that there exists h in $H^{\infty} + L_F^{\infty}$ such that $||f+h||_{\infty} = 1$ and h is not identically zero on E, where E is the essential set of $H^{\infty} + L_F^{\infty}$. By Lemma B, span{ $h + H^{\infty}$: $h \in H^{\infty} + L_F^{\infty}$, dist $(f, H^{\infty} + L_F^{\infty}) = ||f + h||_{\infty} = 1$ } = $(H^{\infty} + L_F^{\infty})/H^{\infty}$.

If $h = 0$ on E for every h in the above identity, then we would have the following contradiction: Let $g \in H^{\infty} + L_F^{\infty}$. Then there exists $h_1, h_2, ..., h_n$ in $H^{\infty}+L_{F}^{\infty}$, $h_{i} = 0$ on E, $i = 1,..., n$; such that $g \in (h_{1} + \cdots + h_{n}) + H^{\infty}$. Thus $H^{\infty} + L_F^{\infty} |_E = H^{\infty} |_E$. By (ii) of Section 2. E is a weak peak set for $H^{\infty} + L_F^{\infty}$. This forces $H^{\infty} + L_F^{\infty} \vert_F$ to be closed in $L^{\infty} \vert_F$. Since H^{∞} is strongly logmodular on X, we get E is a weak peak set for H^{α} . Let f be in H^{∞} such that $f = 1$ on E and $|f| \neq 1$ on X. Thus $f = 1$ on F. Since $|F| > 0$ we have $f = 1$ a.e. This contradiction shows that there exists h in $H^{\alpha} + L^{\alpha}_{F}$ such that $||f + h||_{\infty} = 1$ and $h(x_0) \neq 0$ for some x_0 in E. Pick X_a such that $x_0 \in X_\alpha$ for some α in F. Note that $|f(x_0) + \frac{1}{2}h(x_0)| \neq 1$. For x in $M(L^\infty)$:

$$
|f(x) + \frac{1}{2}h(x)| \leqslant \frac{1}{2}|f(x)| + \frac{1}{2}|f(x) + h(x)| \leqslant 1.
$$

Define g in L^{∞} :

$$
g(x) = 1 - |f(x) + \frac{1}{2}h(x)|
$$
, x in $M(L^{\infty})$.

Thus $g \ge 0$ and moreover g is not identically zero. Let $S = \{x \in M(L^{\infty})\}$: $g(x) = 0$, and let x_1 be in X_a such that $x_0 \neq x_1$. Choose a clopen set W such that $x_0 \in W$ and $W \cap [S \cup \{x_1\}] = \phi$. Let $a = \min\{g(x): x \in W\}$, then $a > 0$. Hence $g \ge aX_{\mu}$. The function $X_{\mu} \notin H^{\infty}_{X_{\mu}}$ because the maximal ideal space of $H^{\infty}|_{X_{\alpha}}$ is connected. Thus $X_{W} \notin H^{\infty} + L_{F}^{\infty}$, and hence $f \pm aX_{W} +$ $(H^{\infty}+L_{F}^{\infty})\neq f+(H^{\infty}+L_{F}^{\infty})$. Furthermore, $||f \pm aX_{W}+(H^{\infty}+L_{F}^{\infty})||$ $|| f \pm aX_w + \frac{1}{2}h || \leq \sup_{x \in M(L^\infty)} ||f(x) + \frac{1}{2}h(x)|| + g(x)| = 1.$ Since $f +$ $(H^{\infty}+L^{\infty}_F)=\frac{1}{2}[f+aX_W+(H^{\infty}+L^{\infty}_F)]+\frac{1}{2}[f-aX_W+(H^{\infty}+L^{\infty}_F)],$ we

conclude that $L^{\infty}/(H^{\infty} + L_F^{\infty})$ has no extreme points. This completes the proof of Theorem 3.3.

Remark. The condition $|F| > 0$ is essential in the proof of Theorem 3.3. The author does not know how to settle down the case $|F| = 0$.

4. FURTHER RESULTS

The proof of Theorem 3.1 allows us to state the following general result (*): If A is a closed subalgebra of L^{∞} which contains H^{∞} , and if $A|_F = H^{\infty} + C|_F$, where E is the essential set of A, then A/H^{∞} is an M-ideal of L^{∞}/H^{∞} .

THEOREM 4.1. Let μ and ν be any two extreme points of the unit ball of (H^{∞}) . Then one of the following three conditions must hold.

- (1) $\sup p \mu \subset \sup v$,
- (2) supp $v \subset \text{supp }\mu$,

 \mathbf{I}

(3) supp $v \cap \sup \mu = \phi$.

The author wishes to give a proof of the above result using an M -ideal approach, although one could perhaps give a proof following Hoffman's unpublished notes. In any case, we need the following results from these notes.

THEOREM C. Let S be a closed subset of $M(L^{\infty})$ which is an antisymmetric set for H^{∞} . Then S is a weak peak set for H^{∞} .

Proof. Let \bigcup be a neighborhood of S. Choose $f \in (H^{\infty})^{-1}$ such that $||f||_{\infty} = 1$, $|f| = 1$ on S and $|f| < 1$ off U. Then $f + 1/f$ is real valued on S, and hence is constant on S. Thus $\mathbf{Re} f$ is constant on S. Similarly, $\mathbf{Im} f$ is constant on S, and so f is constant on S. Multiplying f by a constant of modulus one, we can assume $f = 1$ on S. The result now follows.

THEOREM D. Let m and μ be probability measures on $M(L^{\infty})$. If $m(\text{supp }\mu) = \mu(\text{supp } m) = 0$, them supp $m \cap \text{supp }\mu = \phi$.

Proof. From the hypothesis: $m(\text{supp } m \setminus \text{supp } \mu) = 1$ and $\mu(\text{supp } \mu)$ supp m) = 1. Thus supp $m \subset (\text{supp } m \setminus \text{supp } \mu)$ and supp $\mu \subset$ $(\text{supp }\mu\setminus \text{supp }m)$. But supp m\supp μ and supp $\mu\setminus \text{supp }m$ are disjoint open sets and thus they have disjoint closures. Hence supp $m \cap \text{supp }\mu = \phi$.

Proof of Theorem 4.1. Let $s_1 = \text{supp }\mu$ and $s_2 = \text{supp } v$, and suppose that S_1 intersects S_2 . The sets s_1 and s_2 are closed antisymmetric sets for H^∞

[3, p. 138]. Hence by Theorem C, s_1 and s_2 are weak peak sets for H^{∞} . By (*), H_S^{α}/H^{α} and H_S^{α}/H^{α} are *M*-ideals in L^{α}/H^{α} , where $H_{S_i}^{\infty} \{f \in L^{\infty}: f|_{S_i} \in H^{\infty}|_{S_i}\}, i=1, 2.$

CLAIM. $X_{s_1}v = 0$ and $X_{s_2}u = 0$. Assume the claim for a moment, then $|v|(s_1) = |\mu|(s_2) = 0$. Hence by Theorem D, we have $s_1 \cap s_2 = \emptyset$. This contradiction completes the proof of Theorem 4.1.

Proof of the claim. Let $p: (H^{\infty})^{\perp} \to (H^{\infty})^{\perp}$ be an *L*-projection. If $v \perp H^{\times}_{S}$. then by (ii) of Section 2 we get $s_2 \subset s_1$. Thus $v \notin (H_S^{\infty})^{\perp}$. We show that $pv = 0$. If not, then we can write

$$
v = ||pv|| \frac{pv}{||pv||} + ||v - pv|| \frac{v - pv}{||v - pv||}.
$$

Since $||pv|| + ||v - pv|| = 1$ and v is an extreme point, we have $v = pv/||pv||$. Hence $||pv||pv = pv$. Thus we have either $pv = 0$ or $||pv|| = 1$. By assumption $pv \neq 0$, so we conclude that $||v - pv|| = 0$. That is, $pv = v$. This is a contradiction because $v \notin (H_{S_1}^{\infty})^{\perp}$, while $pv \perp H_{S_1}^{\infty}$. Thus we conclude that $pv=0$. Since $\chi_{S_1}v \perp H_{S_2}^{\infty}$, we get $p(v-X_{S_1}v)=-X_{S_2}v$. Now,

 $||V-X_{S}^{},v||=||X_{S}^{},v||+||v||=||X_{S}^{},v||+||v-X_{S}^{},v||+||X_{S}^{},v||.$

Thus $||X_{s_i}v|| = 0$. Hence $X_{s_i}v = 0$. Similarly $X_{s_i}u = 0$. This ends the proof of the claim, and consequently the proof of Theorem 4.1.

Remark 1. The above theorem is true if H^{α} is replaced by an arbitrary Douglas algebra. We omit the details.

Remark 2. Let μ and υ be as in Theorem 4.1. Then the following are equivalent:

(1) supp $\mu \subseteq \text{supp } \nu$,

(2) For every Blaschke product B, which is constant on supp v , implies B is constant on supp u .

Proof. Clearly (1) implies (2). Conversely, let $A_1 = \{f \in L^\infty : f|_{\text{supp } v} \in H^\infty|_{\text{supp } v}\}$ and $A = \{f \in L^\infty; f|_{\text{supp } \mu} \in H^\infty|_{\text{supp } \mu}$ It is easy to see that A_1 and A are closed subalgebras of L^{∞} . We claim that $A_1 \subseteq A$. Let B be any Blaschke product such that $\overline{B} \in A_1$. Then B is constant on supp v. By condition (2), B is constant on supp μ . Thus $\overline{B} \in A$. By the Chang-Marshall Theorem [4] we get $A_1 \subseteq A$. Thus the essential set of A lies in the essential set of A_1 . That is, supp $\mu \subseteq \text{supp } v$.

Finally, we end the paper with the following open question: What are the M-ideals of L^{∞}/H^{∞} ? Perhaps the question is related to the condition in (*).

REFERENCES

- 1. E. ALFSEN AND E. EFFORS, Structure in real Banach spaces, Ann. of Math. 96 (1972). 98-173.
- 2. S. AXLER. 1. D. BERG, N. JEWELL, AND A. SHIELDS. Approximation by compact operators and the space H^{∞} + C, Ann. of Math. 109 (1979), 601–612.
- 3. A. BROWDER. "Introduction to Function Algebras," Benjamin, New York, 1969.
- 4. S. Y. CHANG AND D. MARSHALL, "Some Algebras of Bounded Analytic Functions," Lecture Notes in Mathematics No. 604, pp. 12-20, Springer-Verlag. New York. 1977.
- 5. A. M. DAVIE, T. W. GAMELIN. AND J. GARNETT. Distance estimates and point wise bounded density, Trans. Amer. Math. Soc. 175 (1973), 37-68.
- 6. K. Hoffman, "Banach Spaces of Analytic Functions." Prentice-Hall Studies in Modern Analysis. Prentice-Hall. New York. 1962.
- 7. R. HOLMES. B. SCRANTAN. AND J. WARD. Approximation from the space of compact operators and other M -ideals, Duke Math. J. 42(1975), 259-269.
- 8. P. Koosis, "Introduction to H_n Spaces," Cambridge Univ. Press, New York, 1980.
- 9. D. H. LUECKING, The compact Hankel operators form an *M*-ideal in the space of Hankel operators, Proc. Amer. Math. Soc. 79(1980), 222-224.
- 10. G. LEIBOWITZ. "Lectures on Complex Function Algebras," Scott, Foresman, Glenview. Ill.. 1970.