Properties of Certain Algebras between L^{∞} and H^{∞}

RAHMAN YOUNIS*.*

Department of Mathematics, University of Wisconsin, Milwaukee, Wisconsin 53201

Communicated by Peter D. Lax

Received April 16, 1981

The main result of this paper is that if F is a closed subset of the unit circle, then $(H^{\infty} + L_F^{\infty})/H^{\infty}$ is an M-ideal of L^{∞}/H^{∞} . Consequently, if $f \in L^{\infty}$ then f has a closest element in $H^{\infty} + L_F^{\infty}$. Furthermore, if |F| > 0 then $L^{\infty}/(H^{\infty} + L_F^{\infty})$ is not the dual of any Banach space.

1. INTRODUCTION

Let L^{∞} denote the usual Lebesgue space of functions on the unit circle. Let H^{∞} denote the subalgebra of boundary values of bounded analytic functions in |z| < 1 and $H^{\infty} + C$ denote the closed linear span of H^{∞} and C, where C is the set of continuous complex-valued functions on |z| = 1.

In [2], Axler *et al.* prove the following theorem: If f is in L^{∞} , then dist $(f, H^{\infty} + C) = ||f - h||_{\infty}$, for some h in $H^{\infty} + C$. Here $|| \cdot ||_{\infty}$ denotes the essential supremum norm and the distance is measured in this norm. In [9], Luccking, proves the following theorem: $(H^{\infty} + C)/H^{\infty}$ is an *M*-ideal of L^{∞}/H^{∞} .

In this paper, we prove Theorem 3.1 and Corollary 3.2 which yield the above results as special cases. To be more specific, let F be a closed subset of the unit circle. We prove that $(H^{\infty} + L_F^{\infty})/H^{\infty}$ is an M-ideal of L^{∞}/H^{∞} . As a consequence, we get: If $f \in L^{\infty}$ then dist $(f, H^{\infty} + L_F^{\infty}) = ||f - h||_{\infty}$, for some h in $H^{\infty} + L_F^{\infty}$. The preceding result is a contribution to an open question [2] which asks whether any L^{∞} function has a closest element to an arbitrary Douglas algebra. Also, we prove (Theorem 3.3) that if |F| > 0 then $L^{\infty}/(H^{\infty} + L_F^{\infty})$ is not the dual of any Banach space, which is a generalization of the known result [2] that $L^{\infty}/(H^{\infty} + C)$ is not the dual of any Banach space. In Section 4, we present some applications concerning supports of extreme points of the unit ball of $(H^{\infty})^{\perp}$.

^{*} The author would like to express his deep appreciation to Professor Patrick Ahern for his encouragement and for helpful discussions.

⁺Current address: Department of Mathematics. Kuwait University, P.O. Box 5969, Kuwait.

RAHMAN YOUNIS

2. Preliminaries

Let X be a compact Hausdorff space. We denote by C(X) the space of all continuous complex-valued functions on X. Let A be a closed subalgebra of C(X). A closed subset, S, of X is called a peak set for A if there exists f in A such that f = 1 on S and |f| < 1 off S. A weak peak set for A is an arbitrary intersection of peak sets for A. A closed subset, E, of X is called the essential set for A if E is the zero set of the largest closed ideal in C(X) which lies in A. The following properties of the essential set E of an algebra A are needed in this paper.

- (i) E is a weak peak set for A [3, p. 145].
- (ii) If $\mu \perp A$, then the support of μ lies in E [10, p. 64].

Let Y be a Banach space. A subspace J of Y is called an L-ideal if there is a projection p of Y onto J such that ||y|| = ||py|| + ||y - py||, $y \in Y$. Such a projection is called an L-projection. A subspace K of a Banach space X is called an M-ideal if the annihilator K is an L-ideal of X* (see [1] for these concepts). The following properties of an M-ideal of X are needed in this paper.

LEMMA A [1, Corollary 5.6]. If M is an M-ideal of X and if $x \in X$, then there exists $m \in M$ such that dist(x, M) = ||x - m||.

LEMMA B [7, Theorem 3]. If M is an M-ideal of X and if $x \in X \setminus M$ then the span $\{m: m \in M, \operatorname{dist}(x, M) = ||x - m||\} = M$.

We identify L^{∞} with $C(M(L^{\infty}))$, via the Gelfand transform, where $M(L^{\infty})$ denotes the maximal ideal space of L^{∞} . Thus H^{∞} can be considered as a function algebra on $M(L^{\infty})$. No notational distinction will be made between f in L^{∞} viewed as a function on the unit circle and its Gelfand transform \hat{f} viewed as a continuous function on $M(L^{\infty})$.

Let z denote the identity function on the unit circle, T. For $\alpha \in T$ the fiber X_{α} of $M(L^{\infty})$ over α is the set $X_{\alpha} = \{\phi \in M(L^{\infty}) : \phi(z) = \alpha\}$. The fiber Y_{α} of $M(H^{\infty})$ over α is the set $Y_{\alpha} = \{\phi \in M(H^{\infty}) : \phi(z) = \alpha\}$.

3. THE MAIN RESULTS

Let F be a closed subset of the unit circle T, and let L_F^{∞} be the set of those L^{∞} functions which are continuous at each point of F. Davie *et al.* [5, p. 66] have shown that $H^{\infty} + L_F^{\infty}$ is a closed subalgebra of L^{∞} , and furthermore that it is a Douglas algebra. A closed subalgebra A of L^{∞} which contains H^{∞} is called a Douglas algebra if A is the closed algebra generated by H^{∞}

and $\{\overline{b} \in A : b \text{ is a Blaschke product}\}$. Chang and Marshall [4] have shown that every closed subalgebra of L^{∞} which contains H^{∞} is a Douglas algebra.

THEOREM 3.1. $(H^{\infty} + L_F^{\infty})/H^{\infty}$ is an *M*-ideal in the space L^{∞}/H^{∞} .

The case in which F = T has been proved by Luecking [9].

COROLLARY 3.2. If $f \in L^{\infty}$, then dist $(f, H^{\infty} + L_F^{\infty}) = ||f - h||_{\infty}$, for some $h \in H^{\infty} + L_F^{\infty}$.

In case F = T, this corollary is Theorem 4 of [2], where the proof given there uses an operator theory technique.

Proof of Corollary 3.2. By Theorem 3.1 and Lemma A we have for any f in L^{∞} , there exists g in $H^{\infty} + L_F^{\infty}$ such that $\operatorname{dist}(f, H^{\infty} + L_F^{\infty}) =$ $\operatorname{dist}(f-g, H^{\infty})$. It is well-known (see, e.g., [8, p. 197]) that there exists g_0 in H^{∞} such that $\operatorname{dist}(f-g, H^{\infty}) = ||f-g-g_0||_{\infty}$. Set $h = g + g_0$; then $\operatorname{dist}(f, H^{\infty} + L_F^{\infty}) = ||f-h||_{\infty}$.

Remark. If $f \in L^{\infty}$, $f \notin H^{\infty} + L_F^{\infty}$ then the best approximation h in Corollary 3.2 is not unique. Indeed, if $f \notin H^{\infty} + L_F^{\infty}$ then by Theorem 3.1 and Lemma B, h is never unique.

Proof of Theorem 3.1. Let $E = \bigcup_{a \in F} X_a$, then E is closed in $M(L^{\infty})$. We claim that E is the essential set for $H^{\infty} + L_F^{\infty}$. By Theorem 11.6 [5, p. 62], $H^{\infty} + L_F^{\infty} = \bigcup_{a \in F} H_{X_a}^{\infty}$, where $H_{X_a}^{\infty} = \{f \in L^{\infty}; f|_{X_a} \in H_{|X_a}^{\infty}\}$. The essential set of $H_{X_a}^{\infty}$ is X_a . To see this, note that $H_{X_a}^{\infty} = H^{\infty} + J_{X_a}$, where $J_{X_a} = \{f \in L^{\infty}: f(x_a) = 0\}$. Thus the essential set S for $H_{X_a}^{\infty}$ lies in X_a . If S is proper, let $x \in X_a \setminus S$ and choose a clopen set W containing x such that $W \cap S = \phi$. Since $X_w(S) = 0$, the function $f = X_w$ is in $H_{X_a}^{\infty}$. Thus $f_{|X_a} \in H_{|X_a}^{\infty}$, and moreover $f_{|X_a} = \{0, 1\}$. This is a contradiction, because the maximal ideal space of $H_{|X_a}^{\infty}$ is Y_{α} , which is connected [6, p. 188]. Thus X_a is the essential set for $H_{X_a}^{\infty}$. Consequently, $\bigcup_{a \in F} X_a$ lies in the cosential set E' of $H^{\infty} + L_F^{\infty}$. Now let $f \in L^{\infty}$ be such that $f(\bigcup_{a \in F} X_a) = 0$. Then $f \in \bigcap_{a \in F} H_{X_a}^{\infty}$. Since E' is the essential set of $H^{\infty} + L_F^{\infty}$ and $\bigcup_{a \in F} X_a$ is closed, we get E' = E. Thus $E = \bigcup_{a \in F} X_a$ is the essential set of $H^{\infty} + L_F^{\infty}$.

The dual space $(L^{\infty}/H^{\infty})^*$ is identified with the space $(H^{\infty})^{\perp} = {\mu \in C(X)^* : \int f d\mu = 0 \text{ for all } f \in H^{\infty}}$. We identify $((H^{\infty} + L_F^{\infty})/H^{\infty})^{\perp}$ with $(H^{\infty} + L_F^{\infty})^{\perp} = {\mu \in C(X)^* : \int f d\mu = 0 \text{ for all } f \in H^{\infty} + L_F^{\infty}}$. Thus to prove the theorem we have to produce an *L*-projection *p* of $(H^{\infty})^{\perp}$ onto $(H^{\infty} + L_F^{\infty})^{\perp}$.

Let *m* denote the Lifting Lebesgue measure from *T* to $X = M(L^{\infty})$. That is, $\int_X f dm = (1/2\pi) \int_0^{2\pi} f(e^{i\phi}) d\phi$, for $f \in L^{\infty}$. Let $\mu \perp H^{\infty}$. Write $\mu = \mu_a + \mu_s$, where $\mu_a \ll m$ and $\mu_s \perp m$. By [6, p. 186], the measure μ_s is \perp to $H^{\infty} + C$. Define $P\mu = X_E \mu_s$, where X_E is the characteristic function of *E*. It is easy to see that $\|\mu\| = \|p\mu\| + \|\mu - p\mu\|$ and $p^2\mu = p\mu$. Note that $H^{\infty} + L_F^{\infty}|_E = H^{\infty} + C|_E$ and that *E* is a weak peak set for $H^{\infty} + C$. By [3, p. 106], $X_E\mu_s \perp H^{\infty} + C$. Consequently $X_E\mu_s \perp H^{\infty} + L_F^{\infty}$.

Finally, we have to show that P is onto. Let $\mu \perp H^{\infty} + L_I^{\infty}$. By (i) of Section 2 we have support $\mu \subset E$. Thus $\mu = X_E \mu$. By [9], $\mu \perp m$. Hence $p\mu = \mu = X_E \mu$. This ends the proof of Theorem 3.1.

The authors of [2] proved that $L^{\infty}/(H^{\infty} + C)$ is not the dual of any Banach space (in contrast to L^{∞}/H^{∞} , which is the dual of the space of functions in H^1 which have mean value zero). The following theorem is a generalization of their result.

THEOREM 3.3. Let F be a closed subset of T such that |F| > 0. Then $L^{\infty}/(H^{\infty} + L_F^{\infty})$ has no extreme points.

Proof. Let $f + (H^{\infty} + L_F^{\infty})$ be an extreme point of $L^{\infty}/(H^{\infty} + L_F^{\infty})$. By Corollary 3.2, we can assume that $||f||_{\infty} = 1$. We claim that there exists h in $H^{\infty} + L_F^{\infty}$ such that $||f + h||_{\infty} = 1$ and h is not identically zero on E, where E is the essential set of $H^{\infty} + L_F^{\infty}$. By Lemma B, span $\{h + H^{\infty}:$ $h \in H^{\infty} + L_F^{\infty}$, dist $(f, H^{\infty} + L_F^{\infty}) = ||f + h||_{\infty} = 1\} = (H^{\infty} + L_F^{\infty})/H^{\infty}$.

If h = 0 on E for every h in the above identity, then we would have the following contradiction: Let $g \in H^{\infty} + L_F^{\infty}$. Then there exists $h_1, h_2, ..., h_n$ in $H^{\infty} + L_F^{\infty}$, $h_i = 0$ on E, i = 1, ..., n; such that $g \in (h_1 + \cdots + h_n) + H^{\infty}$. Thus $H^{\infty} + L_F^{\infty}|_E = H^{\infty}|_E$. By (ii) of Section 2, E is a weak peak set for $H^{\infty} + L_F^{\infty}$. This forces $H^{\infty} + L_F^{\infty}|_E$ to be closed in $L^{\infty}|_E$. Since H^{∞} is strongly logmodular on X, we get E is a weak peak set for H^{∞} . Let f be in H^{∞} such that f = 1 on E and $|f| \neq 1$ on X. Thus f = 1 on F. Since |F| > 0 we have f = 1 a.e. This contradiction shows that there exists h in $H^{\infty} + L_F^{\infty}$ such that $||f + h||_{\infty} = 1$ and $h(x_0) \neq 0$ for some x_0 in E. Pick X_a such that $x_0 \in X_a$ for some α in F. Note that $||f(x_0)| \neq 1$. For x in $M(L^{\infty})$:

$$|f(x) + \frac{1}{2}h(x)| \leq \frac{1}{2}|f(x)| + \frac{1}{2}|f(x) + h(x)| \leq 1.$$

Define g in L^{∞} :

$$g(x) = 1 - |f(x) + \frac{1}{2}h(x)|, x \text{ in } M(L^{\infty}).$$

Thus $g \ge 0$ and moreover g is not identically zero. Let $S = \{x \in M(L^{\infty}): g(x) = 0\}$, and let x_1 be in X_{α} such that $x_0 \ne x_1$. Choose a clopen set W such that $x_0 \in W$ and $W \cap [S \cup \{x_1\}] = \phi$. Let $a = \min\{g(x): x \in W\}$, then a > 0. Hence $g \ge aX_W$. The function $X_W \notin H_{X_{\alpha}}^{\infty}$ because the maximal ideal space of $H^{\infty}|_{X_{\alpha}}$ is connected. Thus $X_W \notin H^{\infty} + L_F^{\infty}$, and hence $f \pm aX_W + (H^{\infty} + L_F^{\infty}) \ne f + (H^{\infty} + L_F^{\infty})$. Furthermore, $||f \pm aX_W + (H^{\infty} + L_F^{\infty})|| \le ||f \pm aX_W + \frac{1}{2}h|| \le \sup_{x \in M(L^{\infty})} \{|f(x) + \frac{1}{2}h(x)| + g(x)\} = 1$. Since $f + (H^{\infty} + L_F^{\infty}) = \frac{1}{2}[f + aX_W + (H^{\infty} + L_F^{\infty})] + \frac{1}{2}[f - aX_W + (H^{\infty} + L_F^{\infty})]$, we

conclude that $L^{\infty}/(H^{\infty} + L_F^{\infty})$ has no extreme points. This completes the proof of Theorem 3.3.

Remark. The condition |F| > 0 is essential in the proof of Theorem 3.3. The author does not know how to settle down the case |F| = 0.

4. FURTHER RESULTS

The proof of Theorem 3.1 allows us to state the following general result (*): If A is a closed subalgebra of L^{∞} which contains H^{∞} , and if $A|_E = H^{\infty} + C|_E$, where E is the essential set of A, then A/H^{∞} is an M-ideal of L^{∞}/H^{∞} .

THEOREM 4.1. Let μ and v be any two extreme points of the unit ball of (H^{∞}) . Then one of the following three conditions must hold.

- (1) $\operatorname{supp} \mu \subset \operatorname{sup} v$,
- (2) supp $v \subset \text{supp } \mu$,

۱

(3) supp $v \cap \sup \mu = \phi$.

The author wishes to give a proof of the above result using an M-ideal approach, although one could perhaps give a proof following Hoffman's unpublished notes. In any case, we need the following results from these notes.

THEOREM C. Let S be a closed subset of $M(L^{\infty})$ which is an antisymmetric set for H^{∞} . Then S is a weak peak set for H^{∞} .

Proof. Let \bigcup be a neighborhood of *S*. Choose $f \in (H^{\infty})^{-1}$ such that $||f||_{\infty} = 1$, |f| = 1 on *S* and |f| < 1 off \bigcup . Then f + 1/f is real valued on *S*, and hence is constant on *S*. Thus Re *f* is constant on *S*. Similarly, Im *f* is constant on *S*, and so *f* is constant on *S*. Multiplying *f* by a constant of modulus one, we can assume f = 1 on *S*. The result now follows.

THEOREM D. Let m and μ be probability measures on $M(L^{\infty})$. If $m(\operatorname{supp} \mu) = \mu(\operatorname{supp} m) = 0$, them $\operatorname{supp} m \cap \operatorname{supp} \mu = \phi$.

Proof. From the hypothesis: $m(\operatorname{supp} m \setminus \operatorname{supp} \mu) = 1$ and $\mu(\operatorname{supp} \mu \setminus \operatorname{supp} m) = 1$. Thus $\operatorname{supp} m \subset (\operatorname{supp} m \setminus \operatorname{supp} \mu)$ and $\operatorname{supp} \mu \subset (\operatorname{supp} \mu \setminus \operatorname{supp} m)$. But $\operatorname{supp} m \setminus \operatorname{supp} \mu$ and $\operatorname{supp} \mu \setminus \operatorname{supp} m$ are disjoint open sets and thus they have disjoint closures. Hence $\operatorname{supp} m \cap \operatorname{supp} \mu = \phi$.

Proof of Theorem 4.1. Let $s_1 = \text{supp } \mu$ and $s_2 = \text{supp } v$, and suppose that S_1 intersects S_2 . The sets s_1 and s_2 are closed antisymmetric sets for H^{∞}

[3, p. 138]. Hence by Theorem C, s_1 and s_2 are weak peak sets for H^{∞} . By (*), $H_{S_1}^{\infty}/H^{\infty}$ and $H_{S_2}^{\infty}/H^{\infty}$ are *M*-ideals in L^{∞}/H° , where $H_{S_i}^{\infty}\{f \in L^{\infty}: f|_{S_i} \in H^{\infty}|_{S_i}\}, i = 1, 2.$

CLAIM. $X_{s_1}v = 0$ and $X_{s_2}\mu = 0$. Assume the claim for a moment, then $|v|(s_1) = |\mu|(s_2) = 0$. Hence by Theorem D, we have $s_1 \cap s_2 = \phi$. This contradiction completes the proof of Theorem 4.1.

Proof of the claim. Let $p: (H^{\infty})^{\perp} \to (H_{S_1}^{\infty})^{\perp}$ be an *L*-projection. If $v \perp H_{S_1}^{\infty}$, then by (ii) of Section 2 we get $s_2 \subset s_1$. Thus $v \notin (H_{S_1}^{\infty})^{\perp}$. We show that pv = 0. If not, then we can write

$$v = \|pv\| \frac{pv}{\|pv\|} + \|v - pv\| \frac{v - pv}{\|v - pv\|}.$$

Since ||pv|| + ||v - pv|| = 1 and v is an extreme point, we have v = pv/||pv||. Hence ||pv|| pv = pv. Thus we have either pv = 0 or ||pv|| = 1. By assumption $pv \neq 0$, so we conclude that ||v - pv|| = 0. That is, pv = v. This is a contradiction because $v \notin (H_{S_1}^{\infty})^{\perp}$, while $pv \perp H_{S_1}^{\infty}$. Thus we conclude that pv = 0. Since $\chi_{S_1}v \perp H_{S_1}^{\infty}$, we get $p(v - X_{S_1}v) = -X_{S_1}v$. Now,

 $\|V - X_{S_1}v\| = \|X_{S_1}v\| + \|v\| = \|X_{S_1}v\| + \|v - X_{S_1}v\| + \|X_{S_1}v\|.$

Thus $||X_{s_1}v|| = 0$. Hence $X_{s_1}v = 0$. Similarly $X_{s_2}\mu = 0$. This ends the proof of the claim, and consequently the proof of Theorem 4.1.

Remark 1. The above theorem is true if H^{α} is replaced by an arbitrary Douglas algebra. We omit the details.

Remark 2. Let μ and v be as in Theorem 4.1. Then the following are equivalent:

(1) $\operatorname{supp} \mu \subseteq \operatorname{supp} v$,

(2) For every Blaschke product B, which is constant on supp v, implies B is constant on supp u.

Proof. Clearly (1) implies (2). Conversely, let $A_1 = \{f \in L^\infty; f|_{\sup p, v} \in H^\infty|_{\sup p, v}\}$ and $A = \{f \in L^\infty; f|_{\sup p, \mu} \in H^\infty|_{\sup p, \mu}\}$. It is easy to see that A_1 and A are closed subalgebras of L^∞ . We claim that $A_1 \subseteq A$. Let B be any Blaschke product such that $\overline{B} \in A_1$. Then B is constant on supp v. By condition (2), B is constant on supp μ . Thus $\overline{B} \in A$. By the Chang-Marshall Theorem [4] we get $A_1 \subseteq A$. Thus the essential set of A lies in the essential set of A_1 . That is, supp $\mu \subseteq \text{supp } v$.

Finally, we end the paper with the following open question: What are the *M*-ideals of L^{∞}/H^{∞} ? Perhaps the question is related to the condition in (*).

References

- 1. E. ALFSEN AND E. EFFORS, Structure in real Banach spaces, Ann. of Math. 96 (1972), 98-173.
- 2. S. AXLER, I. D. BERG, N. JEWELL, AND A. SHIELDS, Approximation by compact operators and the space $H^{\infty} + C$, Ann. of Math. 109 (1979), 601-612.
- 3. A. BROWDER, "Introduction to Function Algebras," Benjamin, New York, 1969.
- 4. S. Y. CHANG AND D. MARSHALL, "Some Algebras of Bounded Analytic Functions," Lecture Notes in Mathematics No. 604, pp. 12–20, Springer-Verlag, New York, 1977.
- 5. A. M. DAVIE, T. W. GAMELIN, AND J. GARNETT, Distance estimates and point wise bounded density, *Trans. Amer. Math. Soc.* 175 (1973), 37-68.
- 6. K. Hoffman, "Banach Spaces of Analytic Functions," Prentice-Hall Studies in Modern Analysis, Prentice-Hall, New York, 1962.
- 7. R. HOLMES, B. SCRANTAN, AND J. WARD, Approximation from the space of compact operators and other *M*-ideals, *Duke Math. J.* **42**(1975), 259-269.
- 8. P. KOOSIS, "Introduction to H_p Spaces," Cambridge Univ. Press, New York, 1980.
- 9. D. H. LUECKING, The compact Hankel operators form an *M*-ideal in the space of Hankel operators, *Proc. Amer. Math. Soc.* **79**(1980), 222-224.
- 10. G. LEIBOWITZ. "Lectures on Complex Function Algebras," Scott, Foresman, Glenview, Ill., 1970.