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The main result of this paper is that if F is a closed subset of the unit circle, then
(H* + LF)/H™ is an M-ideal of L*/H*. Consequently, if f&€ L™ then f has a
closest element in H® + L;°. Furthermore, if |F| > 0 then L*/(H* + L") is not
the dual of any Banach space.

1. INTRODUCTION

Let L® denote the usual Lebesgue space of functions on the unit circle.
Let H® denote the subalgebra of boundary values of bounded analytic
functions in |z| < 1 and H® + C denote the closed linear span of H* and C, _
where C is the set of continuous complex-valued functions on |z| = L.

In [2], Axler et al. prove the following theorem: If f is in L™, then
dist(f, H® + C) = || f— k|| for some & in H* + C. Here | - ||, denotes the
essential supremum norm and the distance is measured in this norm. In [9],
Luecking, proves the following theorem: (H®™ + C)/H® is an M-ideal of
L*®/H=.

In this paper, we prove Theorem 3.1 and Corollary 3.2 which yield the
above results as special cases. To be more specific, let F be a closed subset
of the unit circle. We prove that (H® + L°)/H® is an M-ideal of L*/H™.
As a consequence, we get: If £€ L™ then dist (f, H® + LF)=|f— hll,, for
some h in H* + L. The preceding result is a contribution to an open
question |2]| which asks whether any L* function has a closest element to an
arbitrary Douglas algebra. Also, we prove (Theorem 3.3) that if |F| > O then
L®/(H*® 4+ L) is not the dual of any Banach space, which is a
generalization of the known result [2] that L*/(H® + C) is not the dual of
any Banach space. In Section 4, we present some applications concerning
supports of extreme points of the unit ball of (H®)
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2. PRELIMINARIES

Let X be a compact Hausdorff space. We denote by C(X) the space of all
continuous complex-valued functions on X. Let A be a closed subalgebra of
C(X). A closed subset, S, of X is called a peak set for A if there exists f'in 4
such that f=1o0n S and | f| < | off S. A weak peak set for 4 is an arbitrary
intersection of peak sets for A. A closed subset, E, of X is called the essential
set for A if E is the zero set of the largest closed ideal in C(X) which lies in
A. The following properties of the essential set £ of an algebra 4 are needed
in this paper.

(i) E is a weak peak set for 4 [3.p. 145].
(ii) If u L A. then the support of 4 lies in E [10, p. 64].

Let Y be a Banach space. A subspace J of Y is called an L-ideal if there is
a projection p of Y onto J such that {|y||=1py|l + |y —pyll, yE€ Y. Such a
projection is called an L-projection. A subspace K of a Banach space X is
called an M-ideal if the annihilator K is an L-ideal of X* (see [1] for these
concepts). The following properties of an M-ideal of X are needed in this

paper.

LemMa A [1, Corollary 5.6]. If M is an M-ideal of X and if x € X, then
there exists m € M such that dist(x, M) =[x — m]||.

LEMMA B |7, Theorem 3|. {f M is an M-ideal of X and if x € X\M then
the span {m: m € M, dist(x, M) =||x —m||} = M.

We identify L* with C(M(L*)), via the Gelfand transform, where M(L*)
denotes the maximal ideal space of L®. Thus H® can be considered as a
function algebra on M(L“). No notational distinction will be made between f
in L™ viewed as a function on the unit circle and its Gelfand transform f
viewed as a continuous function on M(L*).

Let z denote the identity function on the unit circle, T. For a € T the fiber
X, of M(L™) over a is the set X, = {¢ € M(L™): ¢(z) = a}. The fiber Y, of
M(H™) over a is the set Y, = {§ € M(H®): ¢(z) = a}.

3. THE MAIN RESULTS

Let F be a closed subset of the unit circle T, and let L be the set of those
L~ functions which are continuous at each point of F. Davie et al. |5, p. 66|
have shown that H* + L is a closed subalgebra of L, and furthermore
that it is a Douglas algebra. A closed subalgebra 4 of L™ which contains
H®* is called a Douglas algebra if 4 is the closed algebra generated by H™
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and {b € A: b is a Blaschke product}. Chang and Marshall [4] have shown
that every closed subalgebra of L™ which contains H* is a Douglas algebra.

THEOREM 3.1. (H™ + LF¥)/H™ is an M-ideal in the space L™/H*.
The case in which F =T has been proved by Luecking [9].

COROLLARY 3.2. Iff€ L™, then dist(f, H* + L) =||f— h| ., for some
hEH® + L.

In case F =T, this corollary is Theorem 4 of [2|, where the proof given
there uses an operator theory technique.

Proof of Corollary 3.2. By Theorem 3.1 and Lemma A we have for any [
in L%, there exists g in H™+ LY such that dist(f, H® +L7)=
dist(f— g, H*). It is well-known (see, e.g., [8, p. 197]) that there exists g, in
H* such that dist(f—g H®)=|/—g—goll,. Set h=g+g,; then
dist(f, H + L) = || f— hl|.-

Remark. If feL™, f& H® + L7 then the best approximation A in
Corollary 3.2 is not unique. Indeed, if f& H* + L then by Theorem 3.1
and Lemma B, / is never unique.

Proof of Theorem 3.1. Let E=),.rX,, then E is closed in M(L®). We
claim that E is the essential set for H* + L{°. By Theorem 11.6 [5, p. 62],
H? + LY =U,er Hy,, where HY ={f€L%; fx € HJ |. The essential
set of Hy is X,. To see this, note that H"O =H® + Jy,» where

Jy, =\f€ L S(x,) =0} Thus the essential set S for HY lies in X If S
is proper, let x € X_\S and choose a clopen set W contammg x such that
WNS=¢. Since X,(S)=0, the function f=2X, is in Hy . Thus
fix, € Hx_, and moreover fn {0, 1}. This is a contradlctlon, because the
maximal ideal space of HY; is Y,, which is connected [6, p. 188]. Thus X,
is the essential set for H°° Consequently, Uaer X, lies in the essential set
E of H* +LF. Now fet SEL™ be such that f(U,rX,)=0. Then
SE€ MNper Hy . Since E' is the essential set of H* + LY and (J, X, is
closed, we get E' = E. Thus E = Uger X, is the essential set of H® + LY.

The dual space (L*/H%)* is identified with the space (H*)'=
WwE C(X)*: | fdu=0 for all f€ H®}. We identify (H® + LF)/H™)* with
(H® + L¥)Y = {u € C(X)*: [ fdu=0 for all f€ H* + LF}. Thus to prove
the theorem we have to produce an L-projection p of (H™)* onto
(H® + LE) .

Let m denote the Lifting Lebesgue measure from 7 to X = M(L*). That
is, | fdm = (1/2n) [3* f(e'®) d¢, for f€ L™, Let u L H®. Write u =y, + y,,
where u, <m and u, L m. By [6, p. 186], the measure u, is L to H* + C.
Define Pu= X u,, where X, is the characteristic function of E.
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It is easy to see that ||| =|pull + || —pul| and p'u =pu. Note that
H* + L |z =H” + C|; and that E is a weak peak set for H* + C. By {3.p.
106], Xpu, L H* + C. Consequently X u, - H* + L}

Finally, we have to show that P is onto. Let y . H* + L. By (i) of
Section 2 we have support y < E. Thus u= X u. By [9]. u = m. Hence
pu =4 = X u. This ends the proof of Theorem 3.1.

The authors of |2| proved that L*/(H* + C) is not the dual of any
Banach space (in contrast to L*/H®, which is the dual of the space of
functions in H' which have mean value zero). The following theorem is a
generalization of their result.

THEOREM 3.3, Let F be a closed subset of T such that |F|> 0. Then
L%/(H® + L) has no extreme points.

Proof. Let f+ (H® + L}¥) be an extreme point of L*/(H* + L}*). By
Corollary 3.2, we can assume that || f||, = 1. We claim that there exists 4 in
H> + L such that || f+ k|, =1 and & is not identically zero on E, where
E is the essential set of H® +LJF. By Lemma B, span{h+ H™:
he H® + LY, dist(LH* +L7)=||f+ h|lo =1} =(H™ + LF)/H".

If h=0 on E for every h in the above identity, then we would have the
following contradiction: Let g € H® + L. Then there exists A,, &,,..., h, in
H*+LF, h;=0o0nkE,i=l,.,n;suchthatge (h, + --- + h,) + H®. Thus
H* + LY |p=H®|.. By (ii) of Section2, E is a weak peak set for
H* + L. This forces H* + L7 | to be closed in L“|.. Since H* is
strongly logmodular on X, we get E is a weak peak set for H*. Let f be in
H™ such that f=1on E and |f|+# | on X. Thus f=1 on F. Since |F| > 0
we have f=1 a.e. This contradiction shows that there exists 4 in H* + L}
such that || f+ All. = | and h(x,)# O for some x, in E. Pick X, such that
X, € X, for some « in F. Note that | f{x,) + 1h(x,)| # 1. For x in M(L*):

1/00) + 2h) [ <3 S+ 21100 + hlx) < 1.
Define g in L™:
g)=1—|f(x)+2A(x)], x in M(L™).

Thus g> 0 and moreover g is not identically zero. Let 5= {x€ M(L™):
g(x)=0}, and let x, be in X, such that x,+# x,. Choose a clopen set W
such that x, € W and WM [S U {x,}] =¢. Let a = min{g (x): x € W}, then
a > 0. Hence g > aX, . The function X, & H{ because the maximal ideal
space of H*|, is connected. Thus X, & H® + L, and hence f + aX, +
(H* + LP)#f+ (H* + LYF). Furthermore, |f+aX, +(H® +LY¥)| <
I/ + aXy + $h1l < SUPer s {I0x) + $h()| + g (x)} = L. Since [+
(H* + LY)=3|f+aX, + (H® +LE) | +3[/—aX, + (H* +LF)], we
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conclude that L*/(H® + L) has no extreme points. This completes the
proof of Theorem 3.3.

Remark. The condition |F| > 0 is essential in the proof of Theorem 3.3.
The author does not know how to settle down the case |F|=0.

4, FURTHER RESULTS

The proof of Theorem 3.1 allows us to state the following general result
(*): If 4 is a closed subalgebra of L* which contains H*, and if
Al =H® + C|;, where E is the essential set of A, then A/H™ is an M-ideal
of L*/H™.

THEOREM 4.1. Let u and v be any two extreme points of the unit ball of
(H™). Then one of the following three conditions must hold.

(1) suppucsupv,
(2) suppv csuppy,
(3) suppvMsupu=4¢.

The author wishes to give a proof of the above result using an M-ideal
approach, although one could perhaps give a proof foliowing Hoffman’s
unpublished notes. In any case, we need the following results from these
notes.

THEOREM C. Let S be a closed subset of M(L®) which is an antisym-
metric set for H*. Then S is a weak peak set for H®.

Proof. Let |J be a neighborhood of S. Choose f€ (H®) ! such that
Iflo=1,1f=1o0n S and |f| < | off J. Then f+ 1/f is real valued on S,
and hence is constant on S. Thus Ref is constant on S. Similarly, Imf is
constant on S, and so f is constant on S. Multiplying f by a constant of
modulus one, we can assume /= 1 on S. The result now follows.

THEOREM D. Let m and u be probability measures on M(L®). If
m(supp 1) = p(supp m) =0, them supp m M supp ¢ = ¢.

Proof. From the hypothesis: m(supp m\suppu)=1 and u(supp u\

supp m) = 1.  Thus supp m < (supp m\supp 4) and supp x4 C

(supp u\supp m). But supp m\supp ¢ and supp u\supp m are disjoint open
sets and thus they have disjoint closures. Hence supp m M supp u = ¢.

Proof of Theorem 4.1. Let s, =supp u and s, = supp v, and suppose that
S, intersects S,. The sets s, and s, are closed antisymmetric sets for H*

\
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(3. p. 138]. Hence by Theorem C, s, and s, are weak peak sets for H*. By
(*). Hg/H* and HJ/H” are M-ideals in L>*/H”. where
H;‘{fE L™ fls,€EH b i=12.

CLaiM.  Xg v =0 and Xgu=0. Assume the claim for a moment, then
|vl(s;) = l,u](sz)—O Hence by Theorem D, we have s,Ms,=4¢. This
contradiction completes the proof of Theorem 4.1.

Proof of the claim. Let p: (H*)" - (HY)* be an L-projection. If v L HY .
then by (ii) of Section 2 we get s,<s,. Thus v & (H;CI')‘. We show that
pv = 0. If not, then we can write

—pv
Y= 1 Y ———
v=lpell o = ol =
Since ||pv|| +|jv — pv{|=1 and v is an extreme point, we have v = pv/| pv|.
Hence || pv|| pv = pv. Thus we have either pv = 0 or ||pv| = 1. By assumption
pv#0, so we conclude that ||v—pv||=0. That is, pv=v. This is a
contradiction because v & (Hg )", while pv L HY. Thus we conclude that
pv=0. Since yy v L Hg, we get plo— X5 v)= —X s,U. Now,

IV —Xs,vll =i Xs,oll + ol =1 X5, 0l + [0 = Xg vll + | X vl

Thus || X v]|=0. Hence X5 v =0. Similarly X5 u=0. This ends the proof
of the clalm and consequently the proof of Theorem 4.1.

Remark 1. The above theorem is true if H* is replaced by an arbitrary
Douglas algebra. We omit the details.

Remark 2. Let u and v be as in Theorem 4.1. Then the following are
equivalent:

(1) suppu < supp v,
(2) For every Blaschke product B, which is constant on suppr,
implies B is constant on supp u.

Proof. Clearly (1) implies (2). Conversely, let
Al = {fe Lm:f|suppv € Hm'suppv} and 4= {feLm;flsuppu € Hoo|suppu>'
It is easy to see that 4, and A are closed subalgebras of L. We claim that
A, S A. Let B be any Blaschke product such that B € 4,. Then B is constant
on supp v. By condition (2), B is constant on supp 4. Thus B € A. By the
Chang—Marshall Theorem [4] we get 4, S A. Thus the essential set of A lies
in the essential set of 4,. That is, supp # < supp v.

Finally, we end the paper with the following open question: What are the
M-ideals of L®/H>? Perhaps the question is related to the condition in (*).
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