CONCLUSIONS In vivo measurements by OFDI and IVUS can show variable discrepancies depending on the parameters and time points after stent deployment. Methods for strut contour tracing can also lead to a small but systematic difference in OFDI measurement results; therefore, consistency in methodology is advised for comparative studies.

CATEGORIES IMAGING: Intravascular

KEYWORDS IVUS, OCT, OFDI

TCT-335
Diagnostic concordance of intravascular ultrasound imaging compared to fractional flow reserve for the severity assessment of coronary lesions: A bivariate meta-analysis

Georgios Siontis,1 Lorenz Raber,1 Fabien Praz,1 Thomas Pilgrim,3 Peter Jüni,4 Stephan Windecker1
1Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea, Republic of
2Bern University Hospital, Bern, Switzerland; 3University Hospital Bern, Bern, Switzerland; 4University Hospital Bern, Bern, Switzerland

BACKGROUND Intravascular ultrasound (IVUS) has been introduced as a useful diagnostic tool in coronary interventions by providing additional anatomic and morphological details of coronary lesions. However, limited studies have examined the diagnostic accuracy of IVUS compared to fractional flow reserve (FFR) for the detection of significant coronary stenoses. We aimed to evaluate the diagnostic accuracy of IVUS using FFR as the reference standard in a bivariate meta-analysis.

METHODS Through a broad computerized literature search of PubMed, Cochrane Libraries, and EMBASE, we identified original studies that evaluated the diagnostic accuracy of IVUS compared to FFR. Eligible studies provided raw lesion-level data that enabled the calculation of diagnostic accuracy metrics. Our analyses were focused on IVUS-derived measurements of minimal lumen diameter (MLD), minimum lumen area (MLA), and percent area stenosis (%AS). We constructed 2x2 tables according to the concordance of IVUS versus FFR by using a threshold of 0.80 for identification of hemodynamically significant stenoses. A sensitivity analysis by excluding studies of left-main coronary lesions was also performed. Three pre-specified cutoffs for MLD, MLA, and %AS were adopted for determination of significant coronary stenoses: MLD of 1.50, 1.75, 2.0 mm; MLA of 2.0, 3.0, 4.0 mm2 and %AS of 50%, 70%, 90%. A recently developed bivariate random effects meta-analysis model was used to derive summary metrics of diagnostic accuracy.

RESULTS A total of 14 studies concerning 2,740 patients (92% coronary lesions) were deemed eligible; whereas two studies had exclusively included patients with left main coronary artery stenoses. Bivariate meta-analysis demonstrated a moderate diagnostic concordance for MLD measured with FFR. For the lower cutoffs of MLD (1.50 mm) and MLD (2.0 mm), IVUS yielded high specificity (0.87 [95% CI, 0.69-0.95]) and 0.94 (95% CI, 0.88-0.97) respectively and very low sensitivity (0.41 [95% CI, 0.18-0.68] and 0.18 [95% CI, 0.09-0.32]) respectively. Overall sensitivity and specificity was 0.65 (95% CI, 0.28-0.90) and 0.75 (95% CI, 0.33-0.95) for MLD of 1.75 mm; and 0.69 (95% CI, 0.55-0.80) and 0.74 (95% CI, 0.58-0.85) for MLA of 3 mm2. The sensitivity and specificity for the commonly used threshold of 2.0 mm for MLA was 0.90 (95% CI, 0.64-0.98) and 0.55 (95% CI, 0.17-0.88) respectively. Under the hierarchical summary receiver operator curve (HSROC) of 0.85 (95% CI, 0.81-0.88). The results were consistent also for %AS. In the sensitivity analysis, diagnostic accuracy of IVUS was slightly improved but remained moderate.

CONCLUSIONS By using FFR as the reference method, IVUS demonstrated a moderate diagnostic accuracy to detect hemodynamically significant coronary artery stenoses for different thresholds of the examined metrics. The role of IVUS in clinical practice should be complimentary to the other available diagnostic tools.

CATEGORIES IMAGING: Intravascular

TCT-336
Predictors of plaque progression in hypertensive angina patients with achieved low density lipoprotein cholesterol less than 70 mg/dL after rosuvastatin treatment

Young Joon Hong,1 Yohan Ku,1 Myung Ho Jeong,1 Min Chul Kim,1 Hyun Kuk Kim,1 Keun Ho Park,1 Doo Sun Kim,1 Ju Han Kim,1 Youngkeun Ahn1
1Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea, Republic of
2Department of Biomedical Engineering, National University Singapore, Singapore, Singapore

BACKGROUND We evaluated the predictors of plaque progression in statin-treated hypertensive angina patients who achieved low density lipoprotein cholesterol (LDL-C) level was less than 70 mg/dL at follow-up using virtual histology-intravascular ultrasound (VH-IVUS).

METHODS The effects of 10 mg of rosuvastatin therapy on coronary plaque progression were evaluated using VH-IVUS. 78 patients who achieved on-treatment LDL-C <70 mg/dL were divided into plaque progressors (n=30) and plaque regressors (n=40) at the baseline minimum lumen area (MLA) site at 9-month follow-up.

RESULTS There were higher prevalence of chronic kidney disease (CKD) (creatinine clearance (CrCl)< 60 ml/min) and current smoking in progressors with regressors (90.0% vs. 31.3%, p<0.001, 41.3% vs. 12.5%, p<0.005, respectively). Baseline CrCl was significantly lower and baseline apolipoprotein(apo) B/ A1 was significantly higher in progressors compared with regressors (21±13 mL/min vs. 70±20 mL/min, p<0.001, 0.77±0.23 vs. 0.65±0.16, p=0.01, respectively). At MLA site, external elastic membrane cross-sectional area increased in progressors, in contrast decreased in regressors (+0.48±0.73 mm2 vs. -0.63±0.67 mm2, p<0.001) and absolute and relative fibrotic areas increased in progressors, in contrast decreased in regressors from baseline to follow-up (+0.84±0.77 mm2 vs. -1.40±0.70 mm2, p<0.001, 7.2±10.9% vs. -13.1±11.8%, p<0.001, respectively). CKD [Odds ratio (OR) 2.13, 95% CI 1.77-2.53, p=0.03], smoking (OR 1.76, 95% CI 1.23-2.22, p=0.038), and apoB/A1 (OR 1.25, 95% CI 1.12-1.40, p=0.023) were the independent predictors of plaque progression at follow-up.

CONCLUSIONS In hypertensive angina patients who achieved very low LDL-C after rosuvastatin treatment, clinical factors including CKD, smoking, and apoB/A1 rather than baseline plaque components detected by VH-IVUS are associated with plaque progression at follow-up.

CATEGORIES IMAGING: Intravascular

KEYWORDS Angina pectoris, Hypertension, Plaque

TCT-337
Intravascular Assessment of Arterial Diseases using Compensated Optical Coherence Tomography: Proof-of-Concept with Comparison with Histology

Renick D. Lee,1 Nicolas Foin,2 Fumiyuki Otsuka,3 Philip Wong,4 Jean Martial Mari,5 Michael Joner,6 Michael J. Girard,7 Renu Virmani1 National Heart Centre Singapore, Singapore, Singapore; 2National Heart Centre Singapore, Singapore, Singapore; 3National Heart Centre Singapore, Singapore, Singapore; 4University of the Polynésie française, Tahiti, French Polynesia; 5CVPath Institute Inc., Gaithersburg, United States; 6National Heart Centre Singapore, Singapore, Singapore; 7Department of Biomedical Engineering, National University Singapore, Singapore, Singapore

BACKGROUND While Optical Coherence Tomography (OCT) has emerged as the state-of-the-art modality for intravascular imaging, its use for assessment of atherosclerotic plaque is hampered by shadow artefacts and limited penetration depth due to rapid attenuation of OCT signals within tissues. In this study, we evaluated the improvement in image contrast with compensated OCT over conventional OCT.

METHODS 22 OCT pullbacks were acquired from pathological coronary artery specimens (subject 1: male, 53 years old, LAD; subject 2: male, 46 years old, LCX) using a C7 intracoronary OCT system (ST Jude Medical, St Paul, MN). OCT-Histology matched sections were obtained from histopathology analysis. OCT pullbacks were exported in raw format and post-processed in Matlab (Mathworks, US) with an algorithm that was previously developed to compensate for OCT signal attenuation in tissues. The intra-inter layer and inter-inter layer OCT signals were analyzed before and after compensation and compared with histological images. Comparison was based on 3 parameters, namely 1) intralayer contrast (between shadowed and non-shadowed areas) to evaluate shadow removal, 2) intralayer contrast (between different intralayer structures) to evaluate shadow removal, 3) interlayer contrast (between different vessel wall layers) to evaluate the clarity of boundaries. Statistical analyses were performed using one way ANOVA with Tukey multiple post-comparison test (GraphPad Prism software package), with p<0.05 representing significance.

RESULTS The study showed that compensation: 1) Enhanced the detectability of intraplaque morphology and deep tissue boundaries as evidenced by the increase in contrast between different structures within the plaque components from (0.05 to 0.23; p<0.0001) and that