
Linear Algebra and its Applications 431 (2009) 2154–2159

Contents lists available at ScienceDirect

Linear Algebra and its Applications

j ourna l homepage: www.e lsev ie r .com/ loca te / laa

A matrix reverse Hölder inequality

Jean-Christophe Bourin a, Eun-Young Lee b,∗, Masatoshi Fujii c, Yuki Seo d

a Laboratoire de mathématiques, Université de Franche-Comté, 16, route de Gray, 25 000 Besançon, France
b Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea
c Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan
d Faculty of Engineering, Shibaura Institute of Technology, 307 Fukakusa, Minuma-ku, Saitama-City, Saitama 337-8570, Japan

A R T I C L E I N F O A B S T R A C T

Article history:

Received 23 December 2008

Accepted 5 July 2009

Available online 12 August 2009

Submitted by C.K. Li

AMS classification:

47A30

Keywords:

Positive linear maps

Matrix geometric mean

Hölder inequality

Reverse inequalities
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1. Introduction

Let α ∈ [0, 1]. The weighted geometric mean a �α b = a1−αbα of two positive numbers a, b is a

concave operation. Letting α = 1/q and 1 − α = 1/p, this statement is equivalent to the numerical

Hölder inequality∑
a
1/p
i b

1/q
i

�
(∑

ai

)1/p (∑
bi

)1/q
(1)

for positive numbers ai, bi, (i = 1, . . . ,m). Theweighted geometric mean of positive definitematrices

shares similar properties. Let usfirst recall somebasic facts about thenon-weighted case. LetA, B, . . . , Z
be n × n matrices, or operators on an n-dimensional space H. For A, B > 0 (positive definite), their

geometric mean A � B is defined by two quite natural requirements:
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1. AB = BA implies A � B = √
AB,

2. (X∗AX) � (X∗BX) = X∗(A � B)X for any invertible X .

Then, we must have

A � B = A1/2(I � A−1/2BA−1/2)A1/2 = A1/2(A−1/2BA−1/2)
1/2

A1/2 (2)

so thatA � B shouldbesolutionof theRicatti equationZA−1Z = B, Z > 0,orequivalently toZB−1Z = A.

Hence, A � B can be defined by (2) and A � B = B � A. Since f (t) = t1/2 is operator monotone, A � B is

operator increasing. Remarkable properties of the geometric mean are a maximal characterization by

Pusz-Woronovicz [8] and its immediate concavity corollary:

Theorem 1. Let A, B > 0. Then A � B = max

{
X > 0 |

(
A X

X B

)
� 0

}
.

Corollary 1. The geometric mean A � B is concave on pairs of positive definite matrices. Equivalently, for
positive definite matrices {Ai}mi=1 and {Bi}mi=1,∑

Ai � Bi �
(∑

Ai

)
�
(∑

Bi

)
.

Note that Corollary 1 is a matrix version of the Cauchy–Schwarz inequality. Bhatia’s book [3] is a

good reference on the matrix geometric mean.

For A, B > 0, their weighted geometric mean A �α B may also be defined by two quite natural

requirements:

1. AB = BA implies A �α B = A1−αBα ,

2. (X∗AX) �α (X∗BX) = X∗(A �α B)X for any invertible X .

Then, we must have

A �α B = A1/2(A−1/2BA−1/2)αA1/2

so that A �1/2 B = A � B. The above definition is coherent with (2) in the sense that expected compat-

ibility conditions like

A �1/4 B = A � (A � B)

hold. Since the geometric mean is operator monotone and concave, it then follows that the weighted

geometric means are also monotone and concave. The concavity property yields the matrix version of

the Hölder inequality (1):

Corollary 2. Let q > 1. For positive definite matrices {Ai}mi=1 and {Bi}mi=1,∑
Ai �1/q Bi �

(∑
Ai

)
�1/q

(∑
Bi

)
.

We will show in Section 3 a matrix reverse Hölder inequality companion to Corollary 2. This shall

gives us the opportunity to review, in the next section, some elegant reverse results related to themost

classical inequalities.

2. Reverse Cauchy–Schwarz inequality

The next results for sums,more generally for positive linearmapsΦ : Mn(C) −→ Mk(C) hold [6]:

Proposition 2. Let Ai, Bi > 0, i = 1, . . . ,m, with cAi � Bi � dAi and c, d > 0, and let w = c/d. Then

(∑
Ai

)
�
(∑

Bi

)
�

w1/4 + w−1/4

2

∑
Ai � Bi.
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Theorem 3. Let A, B > 0 with cA� B � dA and c, d > 0, let w = c/d and let Φ be a positive linear map.
Then

Φ(A) � Φ(B) �
w1/4 + w−1/4

2
Φ(A � B).

To see that Theorem 3 implies Proposition 2, take Φ : Mnk(C) −→ Mk(C) defined by

Φ

⎛
⎜⎜⎝
⎛
⎜⎜⎝
X1,1

. . .

Xn,n

⎞
⎟⎟⎠
⎞
⎟⎟⎠ = X1,1 + · · · + Xn,n

and applyΦ toA = diag(A1, . . . , An) andB = diag(B1, . . . , Bn). In the sameway, Corollary 1 is a special

case of Ando’s inequality, see [1],

Φ(A � B) � Φ(A) � Φ(B).

Sincepositive linearmaps are regardedas amatrix versionof integrals, this is a genuinematrixCauchy–

Schwarz inequality. Cassel inequality, a reverse to the Cauchy–Schwarz one, can be stated as follows.

Let Ω be a probability space. Let f (ω) and g(ω) be measurable functions on Ω such that

c � f (ω)/g(ω) � d for some c, d > 0. Then

√
E(f )E(g) �

(c/d)1/4 + (d/c)1/4

2
E

(√
fg

)
.

Here, E stands for the expectation. Thus Theorem 3 is amatrix Cassel inequality. An interesting remark

follows fromCassel inequality. Given real numbers ai, i = 1, . . . , n, we denote by a
↓
i , i = 1, . . . , n, their

non-increasing rearrangement. As a reverse result to a basic rearrangement inequality, we have:

Let ai, bi, i = 1, . . . ,m be positive numbers such that r � ai/bi � s for some r � s > 0. Then

∑
a
↓
i b

↓
i

�
r + s

2
√

rs

∑
aibi. (3)

This statement follows from the Cauchy–Schwarz inequality∑
a
↓
i b

↓
i

�
(∑

a2i

∑
b2i

)1/2
and application of Cassel inequality with c = r2, d = s2. Cassel inequality also contains a classical

inequality: Squaring both of its sides and using E2
(√

fg
)

� E(fg) we get

E(f )E(g) �
(
√

c + √
d)2

4
√

cd
E(fg).

The special case, by letting g(ω) = 1/f (ω), is the Kantorovich inequality:

Let f (ω) be a measurable function such that a� f (w) � b > 0. Then,

E(1/f ) �
(a + b)2

4ab
1/E(f ) (4)

and, equivalently,

E(f 2) �
(a + b)2

4ab
E2(f ). (5)

The constant in (4) and its square root occur in several natural matrix inequalities. For instance, given

I � A� 0 and Z > 0, we have

AZA�
(a + b)2

4ab
Z
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where a, b are the extremal eigenvalues of Z . Another striking and very recent example is a matrix

version of (3):

Proposition 4 [4]. Let A, B � 0 such that rA� B � sA for some r, s > 0. Then,

∑
λi(A)λi(B) �

r + s

2
√

rs
Tr AB.

Hereλi(· · ·), i = 1, 2, . . . stand for the eigenvalues arranged in non-increasing order. Thus Proposi-

tion 4 is a reverse statement to the famous von-Neumann Trace Inequality. It also improves an earlier

result from [6].

3. Reverse Hölder inequality

Let h be a unit vector and let Z > 0 with the largest eigenvalue a and the smallest one b. Jensen’s

inequality for convex functions t −→ tp when p > 1 or p < 0 admits the following reverse statement:

(Zph, h) � K(a, b, p)(Zh, h)p (6)

where

K(a, b, p) = apb − abp

(p − 1)(a − b)

(
p − 1

p

ap − bp

apb − abp

)p

is the (generalized) Kantorovich or Ky-Fan [5] constant. Thus K(a, b, 2) = K(a, b,−1) is the constant

occurring in (4) and (5). The constant K(a, b, p) only depends on the condition number w = a/b and

can be written as

K(w, p) = wp − w

(p − 1)(w − 1)

(
p − 1

p

wp − 1

wp − w

)p

.

Since K(w, p) can be defined for all p and satisfies K(w, p) = K(w, 1 − p) it may be convenient to use

the following symmetric form of the Kantorovich constant:

Let α be any real number and let β = 1 − α. Then,

K(w,α) =
(
wα − 1

α

)α (
wβ − 1

β

)β
wαβ

w − 1
.

The reverse inequality (6) for convex power functions holds for all unital positive linear maps Φ , as

noted by Li and Mathias in [7]:

If Z > 0 has condition number w,Φ is a unital positive linear map and p > 1 or p < 0, then

Φ(Zp) � K(w, p)Φ(Z)p.

For concave power functions t → tα , 1 > α > 0, the constant K(w,α) plays a similar role:

Let Z > 0 with a condition number w and let 1 > α > 0. Then, for all unital positive linear maps Φ ,

Φ(Z)α �
1

K(w,α)
Φ(Zα), (7)

also see [7].

Now we can state a reverse Hölder inequality involving the Kantorovich constant. It is a reverse

statement to Corollary 2.

Proposition 5. Let Ai, Bi > 0, i = 1, . . . ,m such that cAi � Bi � dAi for some 0 < d � c, and let w = c/d.
Then, if 0 < α < 1,(∑

Ai

)
�α

(∑
Bi

)
�

1

K(w,α)

∑
Ai �α Bi.
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When α = 1
2
in Proposition 5, the constant is (of course)

w1/4 + w−1/4

2

and we get Proposition 2. Exactly as Proposition 2 follows from Theorem 3, we can derive Proposition

5 from:

Theorem 6. Let A, B > 0with cA� B � dA for some c, d > 0 and w = c/d, and let Φ be a positive linear

map. Then

Φ(A) � Φ(B) �
1

K(w,α)
Φ(A � B).

This result is a reverse of Ando inequality and it contains (7) by letting B = I. However, to prove

Theorem 6, we need as a lemma the most elementary case of (7):

Lemma 7. Let Z > 0 with extremal eigenvalues a, b and condition number w = a/b. Then, for all 0 <
α < 1 and all unit vectors h,

(Zh, h)α � K(w,α)−1(Zαh, h).

(Futhermore this inequality is sharp.)

Proof. Put μ = aα−bα

a−b
and ν = abα−aαb

a−b
. Since y = tα is concave for 0 < α < 1, then for the line

μt + ν crossing tα at t = b and t = a, we have

K(a, b,α)tα � μt + ν � tα

on [b, a]. In fact, F(t) = μt + ν − K(a, b,α)tα is a convex functionwithminimumat t0 = α
1−α

aαb−abα

aα−bα

since F ′(t0) = 0 (and t0 ∈ [b, a]). Thus we have

K(a, b,α)(Zh, h)α � μ(Zh, h) + ν = ((μZ + ν)h, h) �(Zαh, h)

for all unit vector h, so that we have the required inequality.

Since μt + ν < tα for t ∈ (b, a), the equality (Zαh, h) = ((μZ + ν)h, h) holds if and only if is h is

a linear combination of eigenvalues corresponding to a and b. Moreover, the only zero of F is t0. Hence

the equality μ(Zh, h) + ν = K(a, b,α)(Zh, h)α holds if and only if (Zh, h) = t0. �

We will actually use the following variation of Lemma 6:

Lemma 8. Let A, B > 0 with cA� B � dA for some scalars 0 < d � c and w = c/d. Then, for all vectors h
and all 0 < α < 1,

(A �α Bh, h) �(Ah, h)1−α(Bh, h)α � K(w,α)−1(A �α Bh, h)

Proof. Let Z > 0 with aI � Z � bI and w = a/b. By concavity of t −→ tα and Lemma 7, we have

K(w,α)(Zx, x)α(x, x)1−α �(Zαx, x) �(Zx, x)α(x, x)1−α

for every x. Replacing Z and x by A−1/2BA−1/2 and A1/2h respectively gives the lemma. �

We turn to the proof of Theorem 6.

Proof. Suppose that Φ is a vector state: Φ(A) = (Ah, h) for a vector h. By Lemma 8, it follows that

Φ(A) �α Φ(B) = (Ah, h)1−α(Bh, h)α

� K(w,α)−1(A �α Bh, h)

= K(w,α)−1Φ(A �α B).
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Now consider the case of a general positive linear map Φ . Let h be any vector. Then, by the first

inequality of Lemma 8, it follows that

(Φ(A) �α Φ(B)h, h) �(Φ(A)h, h)1−α(Φ(B)h, h)α = Ψ (A)1−αΨ (B)α ,

where Ψ is defined by Ψ (A) = (Φ(A)h, h).
SinceΨ is a positive linear functional onMn(C), there exists X � 0 such thatΦ(A) = Tr AX . Hence,

if π(A) : Mn(C) → Mn(C) is the left multiplication by A, we can write

Ψ (A) = 〈h,π(A)h〉,
where the inner product 〈·, ·〉 is the canonical inner product onMn(C) and h = X1/2. Since cA� B � dA

implies cπ(A) � π(B) � dπ(A), the second inequality of Lemma 8 yields

Ψ (A)1−αΨ (B)α � K(w,α)−1Ψ (A �α B).

Combining with the previous inequality we have

(Φ(A) �α Φ(B)h, h) � K(w,α)−1(Φ(A �α B)h, h)

for every h. �

Proposition 5 for scalars can be stated as a reverse numerical Hölder inequality as follows:

Corollary 3. Let {ak}nk=1 and {bk}nk=1 be n-tuples of positive numbers and let p > 1 and 1
p

+ 1
q

= 1. If

M, m are two positive numbers such that 0 < m� ak/b
q/p
k

�M(k = 1, . . . , n), then

(∑
a
p
k

)1/p (∑
b
q
k

)1/q
� λ

n∑
k=1

akbk

where

λ = Mp − mp

p1/pq1/q(M − m)1/p(Mpm − mpM)1/q
.

It turns out that this inequality goes back to a paper written in French in 1933 by Gheorgiu. This

result, without proof, and its reference are in the survey book [9, p. 124]. Hence, Cassel’s inequality

(1951), Ky Fan constant and reverse inequalities (1966) were already known or implicit in Gheorgiu’s

paper.

In this paper, the “swandwich condition” for positive operators,

cA� B � dA

is the key for all statements. This condition is also the natural one for several forthcoming, related re-

sults. For instance, interesting rearrangement inequalities for unitarily invariant norms are considered

in [2,4].
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