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a b s t r a c t

On-line algorithms have been extensively studied for the one-dimensional bin packing
problem. In this paper, we investigate two classes of one-dimensional bin packing
algorithms, and we give better lower bounds for their asymptotic worst-case behavior. For
on-line algorithms so far the best lower bound was given by van Vliet in (1992) [12]. He
proved that there is no on-line bin packing algorithm with better asymptotic performance
ratio than 1.54014 . . . . In this paper, we give an improvement on this bound to 248

161 =

1.54037 . . . and we investigate the parametric case as well. For those lists where the
elements are preprocessed according to their sizes in non-increasing order, Csirik et al.
(1983) [1] proved that no on-line algorithm can have an asymptotic performance ratio
smaller than 8

7 . We improve this result to 54
47 .

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The one-dimensional bin packing problem can be stated as follows. We are given a list L of n items – where the number
of items is the length of the list – with sizes ai, i = 1, . . . , n, satisfying 0 < ai ≤ 1. We need to pack these items into a
minimal number of unit-capacity bins such that the total sum of the sizes in each bin is at most 1. The problem is known
to be NP-hard [6]. So, substantial research has been focused on finding good approximation algorithms. One possibility to
measure the performance of an algorithm A is to give its asymptotic performance ratio RA. For a list L, let OPT(L) denote the
number of bins in an optimal packing and let A(L) denote the number of bins that algorithm A uses for packing L. If RA(l)
denotes the supremum of the ratios A(L)/OPT(L) for all lists L with OPT(L) = l, then the asymptotic performance ratio is
defined as

RA := lim sup
l→∞

RA(l).

If an algorithm belongs to the class of on-line algorithms then it packs items immediately when they appear without
any knowledge of subsequent items of the list. After an item has been placed in a bin, it must not be moved again. This
lack of knowledge is such a severe handicap that no on-line algorithm can have an asymptotic performance ratio close
to 1. In the case of on-line algorithms, it is more fashionable to use the phrase asymptotic competitive ratio instead of
asymptotic performance ratio. The best known on-line algorithm is due to Seiden [9] with asymptotic performance ratio at
most 1.58889.., while van Vliet [12] gave a lower bound 1.54014 . . . for any on-line algorithm in 1992. He also investigated
the parametric case, where for the sizes of the elements the inequality 0 < ai ≤

1
r is true for some r > 1 integer. To prove

his result, van Vliet considered the solution of a special linear program. The proof is rather complicated and assumes a fair
amount of knowledge about linear programming.
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It was observed very early that the asymptotic performance ratio of on-line algorithms becomes significantly better if
one can suppose that the elements arrive in decreasing order. For this case the best known on-line algorithm is First Fit
Decreasing (FFD) given by Johnson [7] with RFFD =

11
9 . For pre-ordered lists the best known lower bound is 8

7 . It was given
by Csirik et al. [1]. So we have a very narrow gap [1.142857 . . . , 1.22 . . .] between the lower and upper bounds. In spite of
great efforts, neither lower bound nor upper bound could be improved in the past 27 years.

This paper is organized as follows. In Section 2, we reformulate the packing pattern technique first introduced in [2].
In Section 3, we show that using this technique the 1.54014 . . . lower bound is also achievable with the right choice of
the weights. Giving new sequences for the sizes of elements, in Section 4, we consider the parametric case and we slightly
improve van Vliet’s lower-bound to 248

161 = 1.54037 . . . . In Section 5, for pre-ordered lists we improve the 8
7 lower bound to

54
47 = 1.148936 . . . . Some open problems conclude the paper.

2. Reformulated packing pattern technique

In this section, we reformulate the packing pattern technique which was first evaluated in [2]. Later the method was
used by Galambos and Frenk in [3]. Both versions allowed only equal length lists in the construction of the proof. In his Ph.D.
thesis, van Vliet [13] extended the technique for those constructions where one can use sublists with different sizes. Since
we will use this basic theorem in our improvements we discuss the proof in detail. First, we need some preliminaries and
we also introduce some notations.

For an arbitrary large integer n, we consider lists L1, L2, . . . , Lk of lengths nj = cj ·n for certain integers cj, j = 1, 2, . . . , k.
Sublist Lj contains equally sized elements. We assume that the size of an item does not depend on n. In the concatenated
list (L1L2 . . . Lj) the elements of L1 are followed by the elements of L2 etc., and the list is terminated by the elements of Lj.

As a further notation, let n · Uj be an upper bound for the optimal packing of the concatenated list (L1L2 . . . Lj), i.e.,

Uj ≥
OPT(L1L2 . . . Lj)

n
, 1 ≤ j ≤ k.

Using the definition of the asymptotic performance ratio it is clear that for any on-line algorithm A

RA ≥ max
1≤j≤k

lim sup
n→∞

A(L1L2 . . . Lj)
OPT(L1L2 . . . Lj)

≥ max
1≤j≤k

lim sup
n→∞

A(L1L2 . . . Lj)
n · Uj

.

In order to establish the theorems, we introduce the definition of packing patterns (see [2]). Suppose that some algorithm
A packs the elements of the concatenated list L = (L1L2 . . . Lk) into bins. A packing pattern p = (p1, p2, . . . , pk) is a vector
that denotes the number of elements from every list Lj, j = 1, 2, . . . , k,while the algorithmplaces items into a bin according
to that packing pattern. A packing pattern is feasible if

k
i=1 aipi ≤ 1,where ai is the size of items in Li. The set of all feasible

packing patterns will be denoted by P. We define the subsets

Pi = {p ∈ P | pi > 0 and pj = 0, for j < i}, i = 1, 2, . . . k.

Clearly, Pi ∩ Pj = ∅ if i ≠ j, and P = ∪
k
i=1Pi.

While we pack the elements of the concatenated list L = (L1L2 . . . Lk), every bin must be filled according to one feasible
packing pattern. For a given type p = (p1, p2, . . . , pk)wedenote the total number of binswhich have been packed according
to the packing pattern p by n(p). The number of bins used by algorithm A while successively packing the lists is

A(L1 . . . Lj) =

j
i=1


p∈Pi

n(p), for j = 1, 2, . . . , k, (1)

and

nj =


p∈P

pjn(p), for j = 1, 2, . . . , k. (2)

van Vliet stated the following theorem.

Theorem 2.1 ([13]). Let wj, 1 ≤ j ≤ k, be some positive weights such that for every p ∈ Pi, i = 1, 2, . . . , k

k
j=i

wjpj ≤ k − i + 1 (3)

holds. Then for every on-line algorithm A we have that

RA ≥

k
j=1 wjcjk
j=1 Uj

. (4)
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In this theorem, van Vliet considered k positive weights without any further condition, so if we apply this theorem for a
special class of algorithms the weights can be arbitrary small. To avoid this inconvenience we can rescale the weights, and
so we reformulate the above theorem as follows.

Theorem 2.2. Let αj and βj be 2k positive integers such that for every p ∈ Pi, i = 1, 2, . . . , k

k
j=i

βjpj ≤

k
j=i

αj. (5)

Then for every on-line algorithm A we have that

RA ≥ max
1≤j≤k

lim sup
n→∞

A(L1L2 . . . Lj)
OPT(L1L2 . . . Lj)

≥

k
j=1 βjcjk
j=1 αjUj

. (6)

Proof. If we multiply, for j = 1, 2, . . . , k, Eqs. (1) and (2) by αj and βj, respectively, and sum all weighted equations, we get

k
j=1

αjA(L1 . . . Lj) =

k
j=1

αj

j
i=1


p∈Pi

n(p) (7)

and
k

j=1

βjnj =

k
j=1

βj


p∈P

pjn(p). (8)

Because of the property of the constants it follows that

k
j=1

αj

j
i=1


p∈Pi

n(p) =


p∈P1

(α1 + α2 + · · · + αk) n(p)

+


p∈P2

(α2 + · · · + αk) n(p) · · · +


p∈Pk

αkn(p)

≥


p∈P1

(β1p1 + β2p2 + · · · + βkpk) n(p)

+


p∈P2

(β2p2 + · · · + βkpk) n(p) + · · · +


p∈Pk

βkpkn(p)

=

k
j=1

βj


p∈P

pjn(p).

So – using (1) and (2) – we get that

k
j=1

αjA(L1 . . . Lj) ≥

k
j=1

βjnj. (9)

Therefore

RA ≥ max
1≤j≤k

lim sup
n→∞

αjA(L1L2 . . . Lj)
αjOPT(L1L2 . . . Lj)

≥ lim sup
n→∞

k
j=1 αjA(L1 . . . Lj)k

j=1 αjOPT(L1 . . . Lj)

≥ lim sup
n→∞

k
j=1 βjnjk

j=1 αjOPT(L1 . . . Lj)
≥ lim sup

n→∞

n
k

j=1 βjcj

n
k

j=1 αjUj
=

k
j=1 βjcjk
j=1 αjUj

. �

3. The right choice of the weights

In [3], Galambos and Frenk did not give an explicit discussion of the packing pattern technique, but – using the idea of the
packing pattern – they were able to give a simpler proof for the 1.5363 . . . lower bound for on-line bin packing algorithms
given by Liang [8]. They investigated the parametric case as well. In [13], van Vliet – using his generalization – improved the
lower bound to 1.54014 . . . . Here, we will show that the right choice of the weights allows us to give the same lower bound
using the packing pattern technique as van Vliet got with the help of the linear programming technique. During his proof
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he constructed a linear program, he solved it and defined two functions fk and gk, both of them depending on k. He received
his result as a limit of a function in fk and gk for k → ∞. Since van Vliet proved that with the help of the applied sequences
there is no possibility to get a better lower bound, our procedure will also justify that our approach has the same power as
the LP method has.

In all the papers mentioned above, a specific sequence – mostly called as Salzer sequence – was applied to construct
lists with equal sizes of elements. This sequence was first introduced by Sylvester in 1880 [11], therefore, we refer to this
sequence as Sylvester sequence. For integers k > 1 and r ≥ 1, we define the Sylvester sequencem1, . . . ,mk by setting

– m1 = r + 1,
– m2 = r + 2,
– mj = mj−1(mj−1 − 1) + 1, for j = 3, . . . , k.

Now we define k lists as follows. Let n = c(mk − 1) for some positive integer c. Each list Lj, j = 1, . . . , k − 1, contains n
elements, while Lk contains rn pieces of elements, i.e. cj = 1, if j = 1, 2, . . . , k − 1, and ck = r. The sizes of elements in Lj
are aj = 1/mk−j+1 + ε, where 0 < ε < 1/(r + k)(mk(mk − 1)). The following Lemma was proved in [8].

Lemma 3.1. (i) OPT(L1L2 . . . Lj) =
n

mk−j+1−1 , for all j = 1, . . . , k − 1.
(ii) OPT(L1L2 . . . Lk) = n.

So for a fixed kwe set

Uj =


1

mk−j+1 − 1
, if 1 ≤ j ≤ k − 1,

1, if j = k,

and we define the following constants.

βj =

1, if j=1
(mk−j+1 − 1)βj−1, if 2 ≤ j ≤ k − 1,
βk−1, if j = k.

αj =


βj+1, if 1 ≤ j ≤ k − 1,
rβk, if j = k.

Comparing our weights to those given in [13] we can realize the difference between them. So, although the formula is
almost the same, our result is better than that van Vliet has got with the help of the packing pattern technique. On the other
side, it is also easy to check that our proof is much simpler than the LP technique.

Theorem 3.2 ([12]). Every one-dimensional on-line bin packing algorithm A has worst case ratio

RA ≥ lim
k→∞

k
j=1 cjβjk
j=1 αjUj

.

Proof. For the application of Theorem 2.2 we have to show that for every i = 1, . . . , k,

k
j=i

βjpj ≤

k
j=i

αj. (10)

First, we investigate the left hand side of (10).

Lemma 3.3.
k
j=i

βjpj ≤ βi(mk−i+1 − 1). (11)

Proof. Let p = (0, . . . , 0, pi, pi+1, . . . , pk) ∈ Pi be a feasible packing-pattern. It has been proved several times (see e.g. [3],
[5]) that if we replace each element of Lj bymk−j+1 − 1 elements of Lj−1 for some j = i + 1, . . . , k then the sum of the sizes
of the elements in the bin does not increase, and so the new pattern – denoted by p′ – remains feasible.

If we denote the left hand side of (11) byW (p) andW (p′), respectively, then – using the definitions of the β-s – we get

W (p) =

k
l=i

βlpl =

j−1
l=i

βlpl + (mk−j+1 − 1)βj−1  
βj

pj +
k

l=j+1

βlpl = W (p′),
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i.e. the left hand side of (11) does not change while doing this substitution. Repeating this replacement iteratively on p
for j = k, . . . , i + 1 we will end up with a packing pattern containing only elements from Li. Clearly for this pattern
pi ≤ mk−i+1 − 1 holds. From this we get that for every p ∈ Pi pattern

k
j=i

βjpj ≤ βi(mk−i+1 − 1) (12)

which completes the proof of the lemma. �

Now we concentrate on the right side of (10).

Lemma 3.4.

βi(mk−i+1 − 1) =

k
j=i

αj. (13)

Proof.
k
j=i

αj = (αi + · · · + αk−1) + αk = (αi + · · · + αk−1) + rβk

= (αi + · · · + αk−1) + (m1 − 1)βk

= (αi + · · · + αk−2) + αk−1 + (m1 − 1)βk−1

= (αi + · · · + αk−2) + m1βk−1

= (αi + · · · + αk−3) + αk−2 + (m2 − 1)βk−1

= (αi + · · · + αk−3) + βk−1 + (m2 − 1)βk−1

= (αi + · · · + αk−3) + m2βk−1 = (αi + · · · + αk−3) + m2(m2 − 1)βk−2

= (αi + · · · + αk−3) + (m3 − 1)βk−2 = · · ·

= αi + (mk−i − 1)βi+1 = mk−iβi+1 = mk−i(mk−i − 1)βi

= (mk−i+1 − 1)βi

as it was stated in lemma. �

Combining the results of Lemmas 3.3 and 3.4 inequality (10) follows immediately. �

As an example we show the case r = 1, k = 3, wherem1 = 2,m2 = 3,m3 = 7, β1 = 1, β2 = 2, β3 = 2, α1 = 2, α2 = 2,
α3 = 2, U1 =

1
6 , U2 =

1
2 , U3 = 1. So we get

RA ≥

3
j=1 cjβj3
j=1 αjUj

=
5

1
3 + 1 + 2

=
3
2
.

Table 2 displays van Vliet’s lower bounds for the asymptotic performance ratio of on-line algorithms for some values of k
and r , which where calculated by our formula.

4. The new parametric on-line lower bound

Proving his result van Vliet used the Sylvester sequence. This is a so-called double exponential sequence whose
reciprocals tend very quickly to zero. That is the reasonwhy constructing a lower bound for k = 5 the first five decimals have
been reached by the appropriate choice of the sizes in the lists. During the past two decades a lot of efforts have been made
to improve this result. It was already proved by van Vliet that his result was not improvable with the Sylvester sequence.
Therefore we inquired to find other sequences which do not tend so quickly. Besides other approaches we attempted to
give up the greedy choice of the next elements in the sequence. Among other – unsuccessful – shots we hit the following
sequence. For any integer r ≥ 1 let

– b1,r = r + 1,
– b2,r = r + 2,
– b3,r = b1,rb2,r + 1,
– bj,r = bj−2

3,r , 4 ≤ j ≤ k − 1,
– bk,r = b1,rb2,rbk−3

3,r + 1.

For the sake of simpler notation instead of bi,r we will use the notation bi.
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Table 1
The first few elements of the parametric Sylvester sequences if k ≥ 5.

r = 1 r = 2 r = 3 r = 4 r = 5

m1 = r + 1 2 3 4 5 6
m2 = r + 2 3 4 5 6 7
m3 = m1m2 + 1 7 13 21 31 43
m4 = m3(m3 − 1) + 1 43 157 421 931 1 807
m5 = m4(m4 − 1) + 1 1807 24493 176821 865831 3263443

Table 2
van Vliet’s lower bounds for on-line bin packing algorithms.

r = 1 r = 2 r = 3 r = 4 r = 5

k = 3 1.5000000 1.3793103 1.2878787 1.2283464 1.1880733
k = 4 1.5390070 1.3895759 1.2914337 1.2298587 1.1888167
k = 5 1.5401467 1.3896489 1.2914427 1.2298604 1.1888172
k = 6 1.5401474 1.3896489 1.2914427 1.2298604 1.1888172
k = 7 1.5401474 1.3896489 1.2914427 1.2298604 1.1888172
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

k = ∞ 1.5401474 1.3896489 1.2914427 1.2298604 1.1888172

Table 3
The first few parametric values of the new sequence for k = 6.

r = 1 r = 2 r = 3 r = 4 r = 5

b1 = r + 1 2 3 4 5 6
b2 = r + 2 3 4 5 6 7
b3 = b1b2 + 1 7 13 21 31 43
b4 = (b1b2 + 1)2 49 169 441 961 1849
b5 = (b1b2 + 1)3 343 2197 9261 29791 79507
b6 = b1b2b33 + 1 2059 26365 185221 893731 3339295

It is easy to prove that for any fixed integer k < ∞

r
1
b1

+

k
i=2

1
bi

< 1.

If we compare the contents of Tables 1 and 3 it is conspicuous: we lose – in contrast to the greedy sequence – a bit at the
fourth member, but – as we will see – our patience effects later improvement.

Using this new sequence we construct our lists as follows. Let A be an on-line algorithm. In the first step we consider a
concatenated list with sublists L1, L2, . . . , Lk for k ≥ 4 as follows.

(i) Lk contains nr elements of size ak =
1
b1

+ ε,

(ii) Lk−1 contains n elements of size ak−1 =
1
b2

+ ε,

(iii) Lj contains n elements of size aj =
1

bk−j+1
+ ε, where 2 ≤ j ≤ k − 2

(iv) L1 contains n elements of size a1 =
1
bk

+ ε,

where ε ≤
1

(k+r)bk(bk−1) , and n = c(bk−1), for some integer c ≥ 1. So, the constants thatwe applywhilewe use Theorem2.2
are cj = 1, if j ≤ k − 1, and ck = r.

Note that for fixed k ≤ 4 this definition gives the same lists, which are used in the proof of van Vliet’s lower bound.
If one tries to prove that this sequence of the lists results in a better lower bound, of course the LP method established by

van Vliet in [12] is adaptable. Indeed, we also constructed this LP. But – as wementioned above – the proof of the cited paper
seemed to be rather complicated, and so we tried to apply our packing pattern technique. To do that, the only question was
whether we could find the correct values of α-s and β-s. (To find a good lower bound for the optimum was not difficult.)
Before proving our main theorem we prove some lemmas.

Lemma 4.1. For the optimum values of the concatenated lists the following relations hold

(i) OPT(L1 . . . Lj) ≤
n

b1b2b
k−j−2
3

, for 1 ≤ j ≤ k − 2,

(ii) OPT(L1 . . . Lk−1) ≤
n
b1

=
n

r+1 ,

(iii) OPT(L1 . . . Lk) ≤ n.
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Proof. We will generate a feasible packing for each concatenated list.
Case (i): it is trivial that the items of L1 can be packed into n

b1b2b
k−3
3

bins. Consider the list (L1L2 . . . Lj) for 2 ≤ j ≤ k − 2. Let

z = b1b2bk−3
3 , then

Sj =

j
i=1

ai

=
1

b1b2bk−3
3 + 1

+
1

bk−3
3

+ · · · +
1

bk−j−1
3

+
j

(k + r)b1b2bk−3
3 (b1b2bk−3

3 + 1)

<
z + b1b2 · (z + 1) + b1b2b3(z + 1) + · · · + b1b2b

j−2
3 (z + 1) + 1

z(z + 1)

=
1 + b1b2(1 + b3 + · · · + bj−2

3 )

z
=

bj−1
3

b1b2bk−3
3

=
1

b1b2b
k−j−2
3

.

This proves that the elements of the lists (L1 . . . Lj) can be packed into n
b1b2b

k−j−2
3

bins if 1 ≤ j ≤ k − 2.

Case (ii):

Sk−1 =

k−1
i=1

ai

=
1

b1b2bk−3
3 + 1

+
1

bk−3
3

+ · · · +
1
b3

+
1
b2

+
k − 1

(k + r)b1b2bk−3
3 (b1b2bk−3

3 + 1)

<
z + b1b2(z + 1) + · · · + b1b2bk−4

3 (z + 1) + b1bk−3
3 (z + 1) + 1

z(z + 1)

=
b1b2(1 + b3 + · · · + bk−4

3 ) + b1b3k − 3
z

=

b1b2
bk−3−1
b3−1 + b1b3k − 3

z

=
1 + bk−3

3 − 1 + b1b3k − 3
z

=
bk−3
3 (b1 + 1)

b1b2bk−3
3

=
b1 + 1
b1b2

=
1
b1

.

So, the elements of (L1 . . . Lk−1) can be packed into n
b1

bins.
Case (iii):

Sk =

k−1
i=1

ai + rak

=
1

b1b2bk−3
3 + 1

+
1

bk−3
3

+ · · · +
1
b3

+
1
b2

+
r
b1

+
k + r − 1

(k + r)b1b2bk−3
3 (b1b2bk−3

3 + 1)

<
(z + 1)(1 + b1b2 + b1b2b3 + · · · + b1b2bk−4

3 + b1bk−3
3 + rb2bk−3

3 )

z(z + 1)

=
1 + b1b2


1 + b3 + · · · + bk−4

3


+ b1bk−3

3 + rb2bk−3
3

z

=

1 + b1b2
bk−3
3 −1
b3−1 + b1bk−3

3 + rb2bk−3
3

z
=

1 + bk−3
3 − 1 + b1bk−3

3 + rb2bk−3
3

z

=
bk−3
3 (1 + b1 + rb2)

b1b2bk−3
3

=
b2(1 + r)

b1b2
= 1.

Therefore, the elements of (L1 . . . Lk) can be packed into n bins. �

Based on the above Lemma, we can choose the values of Uk
j as follows.

Uk
j =


1

b1b2b
k−j−2
3

, if j ≤ k − 2,

1
b1

=
1

r + 1
, if j = k − 1,

1, if j = k.
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For a given k ≥ 4 we define two k-dimensional vectors βk and αk, as follows.

βk
j =


1, if j = 1,
b1b2, if j = 2,
b3βk

j−1, if 3 ≤ j ≤ k − 2,
b1βk

k−2, if k − 1 ≤ j ≤ k.

αk
j =


b1b2, if j = 1,
(b1b2)2, if j = 2 and k ≥ 5,
b3αk

j−1, if 3 ≤ j ≤ k − 3,
βk
k−1, if k − 2 ≤ j ≤ k − 1,

rβk
k , if j = k.

Considering the above constants we need to prove for every feasible packing that inequality (5) holds. Let us suppose that
the packing pattern p = (0, . . . , 0, pi, . . . , pk) belongs to the subset Pi of the feasible packings. The packing pattern p is
dominant in Pi if

at +

k
j=1

ajpj > 1,

for every i ≤ t ≤ k. We note that in our recent case as < at , if s < t , so during our proof we will use that p is dominant in
Pi if

ai +
k

j=1

ajpj > 1.

Let Di(p) be the set of those packing patterns for which p is dominant in Pi. So, it is enough to investigate the dominant
patterns for each Pi. See for example [10].

Lemma 4.2. Let L = (L1 . . . Lk) be the above defined concatenated list for some k ≥ 4. Then for every feasible dominant packing
pattern p ∈ Pi

k
j=i

βk
j pj ≤

k
j=i

αk
j . (14)

Proof. We prove by induction. Since the constants for the case k = 4 are the same as in the new proof of van Vliet’s lower
bound, for this case the statement of the Lemma holds. Suppose now that the statement holds for some k ≥ 4.

We will distinguish two cases. First, we suppose that p ∈ Pi, i ≥ 3. Let p′
∈ Pj for some i ≤ j ≤ k + 1. We say that the

packing pattern p′ is the j-suffix of p if

p′

l =


pl, if j ≤ l ≤ k + 1,
0, if l < j.

Claim 4.3. If p ∈ Pi, i ≥ 3, and p′
∈ Pj is its j-suffix, where i ≤ j, then the packing pattern p′′

= (0, . . . , 0, pj, pj+1, . . . , pk+1)
was already investigated during the case k′

= k − j + 2 and it satisfies condition (14).

Proof. Since k′ < k, we can apply the inductionhypothesis to thepackingpattern p′′, and the statement follows immediately
from the definitions of the lists. �

Therefore, if p ∈ Pi, i ≥ 3 then it satisfies condition (14).
So, we can suppose that p ∈ Pi, i ≤ 2. Let us transform p = (p1, . . . , pk+1) to a new packing pattern pT as follows

pTj =

p1 + b1b2p2, if j = 1,
0, if j = 2,
pi, if j > 2.

By the definition of βk+1
j the equation

k+1
j=1

βk+1
j pTj =

k+1
j=1

βk+1
j pj

holds. Clearly, if p is dominant with respect to the set Di(p) then pT is also feasible and dominant with respect to those
packing patterns which we get with the same transformation from the elements of Di(p).

Claim 4.4. For every dominant pattern p of the form (p1, 0, p3, . . . , pk+1), p1 can be divided by b3.
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Proof. Consider an arbitrary index j, 3 ≤ j ≤ k+1. The packing pattern p contains exactly pj items from Lj. By the definition
of the items qj =

bk+1−1
bk−j+2

is an integer and can be divided by b3. So we can substitute each element of Lj by qj elements of L1.

We must prove that the pattern remains feasible after the substitutions. For this we show that p1 +
k+1

j=3 pjqj ≤ bk+1 − 1.
The pattern is feasible before the substitutions, so

p1a1 +

k+1
j=3

pjaj ≤ 1.

Since there is a positive pj (j = 1, 3, . . . , k + 1) and the previous sum contains at least one ε it follows that

p1
1

bk+1
+

k+1
j=3

pj
1

bk−j+2
< 1,

so

1 > p1
1

bk+1
+

k+1
j=3

pj
bk+1 − 1

(bk+1 − 1)bk−j+2
= p1

1
bk+1

+

k+1
j=3

pjqj
1

bk+1 − 1

≥ p1
1

bk+1
+

k+1
j=3

pjqj
1

bk+1
,

i.e.

p1 +

k+1
j=3

pjqj < bk+1,

and since p1, pj-s and qj-s (j = 3, . . . , k + 1) are integers,

p1 +

k+1
j=3

pjqj ≤ bk+1 − 1. (15)

Considering (15) and the definition of ε, we get that
p1 +

k+1
j=3

pjqj


a1 =


p1 +

k+1
j=3

pjqj


1

bk+1
+ ε


≤

bk+1 − 1

 1
bk+1

+ ε


=

bk+1 − 1
bk+1

+ (bk+1 − 1)ε ≤
bk+1 − 1
bk+1

+
1

bk+1
= 1,

which means that the pattern is feasible.
Having done this substitution for every j, we can calculate the maximal value of p1 as

p1 = b1b2bk−2
3 −

k+1
j=3

pjqj,

i.e. the difference between the maximal possible number of a1 items in a bin, and the sum of the weighted qj-s. Since each
qj can be divided by b3, p1 can also be divided by b3. �

This fact proves that if pT is a dominant pattern, then p1 + b1b2p2 can be divided by b3 in pT . Nowwe are ready to define
a new packing pattern of (L1L2 . . . Lk). This will be

pk =


p1 + b1b2p2

b3
, p3, . . . , pk+1


.

Claim 4.5. If p = (p1, p2, . . . , pk+1) is a feasible dominant packing pattern for the list L = (L1L2 . . . Lk+1) then pk = (
p1 + b1b2p2

b3
,

p3, . . . , pk+1) is also feasible for L′
= (L1L3 . . . Lk+1).

Proof. Let we remind the reader that the sizes of the elements are different if one considers L or L′. We need to prove that
by substituting the p1 and p2 pieces of elements from L with p1 + b1b2p2

b3
pieces of items from L′ the occupied place will not
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increase.

p1 + b1b2p2
b3


1

b1b2bk−3
3 + 1

+ ε


<

p1
b1b2bk−2

3 + b3
+

p1
bk−2
3

ε +
p2
bk−2
3

+
b1b2p2
bk−2
3

ε

< p1


1

b1b2bk−2
3 + 1

+
1

bk−2
3

ε


+ p2


1

bk−2
3

+
b1b2bk−2

3

bk−2
3

ε



< p1


1

b1b2bk−2
3 + 1

+ ε


+ p2


1

bk−2
3

+ ε


. �

By the induction hypothesis for each feasible packing

k
j=1

βk
j p

k
j ≤

k
j=1

αk
j . (16)

Using the definition of α-s and β-s we can calculate both sides of (16) for a given packing pattern:

k
j=1

βk
j p

k
j =

p1 + b1b2p2
b3

+

k
j=2

βk
j pj+1

=
p1 + b1b2p2

b3
+

k+1
j=3

βk+1
j

b3
pj =

1
b3

k+1
j=1

βk+1
j pj,

and
k

j=1

αk
j = b1b2 +

k
j=2

αk
j = b1b2 +

k+1
j=3

αk+1
j

b3
= b1b2 +

1
b3

k+1
j=3

αk+1
j .

So

1
b3

k+1
j=1

βk+1
j pj ≤ b1b2 +

1
b3

k+1
j=3

αk+1
j ,

therefore
k+1
j=1

βk+1
j pj ≤ b1b2 + (b1b2)2 +

k+1
j=3

αk+1
j =

k+1
j=1

αk+1
j .

So we completed the proof of Claim 4.5. �

Now we are ready to prove the new lower bound.

Theorem 4.6. Let r be a positive integer, and we consider the parametric bin packing problem, i.e. ai ≤
1
r , if ai ∈ L. Then there

is no one-dimensional on-line bin packing algorithm A with an asymptotic performance ratio

RA <
r6 + 8r5 + 29r4 + 60r3 + 75r2 + 55r + 20
r6 + 7r5 + 22r4 + 40r3 + 45r2 + 33r + 13

.

Proof. Using Lemmas 4.1 and 4.2 and Theorem 2.2 the following inequality is true

RA ≥

k
j=1 cjβ jk
j=1 αjUj

.

Because
k

j=1

cjβj = 1 + b1b2 + (b3 − 1)
k−2
j=3

bj−2
3 + bk−4

3 b21b2(1 + r)

= b3 + (b3 − 1)b3
bk−4
3 − 1
b3 − 1

+ bk−4
3 b31b2 = bk−4

3 (b3 + b31b2)
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and
k

j=1

αjUj =
1

bk−3
3

+
(b1b2)2

b1b2bk−4
3

+ (b1b2)2
k−3
j=3

bj−2
3

b1b2b
k−j−2
3

+
1

b1b2
b21b2b

k−4
3 +

1
b1

b21b2b
k−4
3 + rb21b2b

k−4
3

=
1

bk−3
3

+
b1b2
bk−4
3

+
b1b2
bk3

k−3
j=3

b2j3 + bk−4
3 b1(1 + b2 + rb1b2)

=
1

bk−3
3

+
b1b2
bk−4
3

+
b1b2b63

bk3

b2(k−5)
3 − 1
b23 − 1

+ bk−4
3 b1(1 + b2 + rb1b2)

=
1

bk−3
3

+
b1b2
bk−4
3

+
bk−4
3

b3 + 1
−

b63
bk3(b3 + 1)

+ bk−4
3 b1(1 + b2 + rb1b2)

=

b3+1
b3

+ b1b2(b3 + 1) + b2(k−4)
3 − b23

bk−4
3 (b3 + 1)

+
b2(k−4)
3 b1(1 + b2 + rb1b2)(b3 + 1)

bk−4
3 (b3 + 1)

=

1
b3

+ b2(k−4)
3


1 + b1(1 + b2 + rb1b2)(b3 + 1)


bk−4
3 (b3 + 1)

,

we get that

RA ≥ lim
k→∞

b2(k−4)
3 (b3 + b31b2)(b3 + 1)

1
b3

+ b2(k−4)
3


1 + b1(1 + b2 + rb1b2)(b3 + 1)


=

(b3 + b31b2)(b3 + 1)
1 + b1(1 + b2 + rb1b2)(b3 + 1)

.

We know that b1 = r + 1, b2 = r + 2 and b3 = r2 + 3r + 3, so we get

RA ≥
r6 + 8r5 + 29r4 + 60r3 + 75r2 + 55r + 20
r6 + 7r5 + 22r4 + 40r3 + 45r2 + 33r + 13

. �

At the end of the section we give a table which displays the new lower bounds for the asymptotic competitive ratio of
on-line algorithms for some values of r .

5. Improved lower bound for decreasing lists

For those lists where the elements are preprocessed according to their sizes in decreasing order, Csirik et al. [1] proved
that there is no on-line algorithm with a better asymptotic performance ratio than 8

7 . Their construction is based on two
lists which contain elements with sizes 1

3 + ε and 1
3 −2ε. In the past three decades, attempts to obtain a better lower bound

were not successful. The difficulty originates from the fact that the sizes of the elements of the last list in the concatenated
list may not be too small, and hence they may fill up the opened bins, resulting in a better packing than in the earlier step.
So, there is no point in investigating concatenated lists with k different sublists with k → ∞, while the sizes of elements
become progressively smaller and smaller. As a further application of Theorem 2.2, here we give a construction with three
different lists. (Using 4 sublists, we were unsuccessful.) In our proof, we will use again the condition that the sublists must
not have the same lengths.

Let A be an on-line algorithm. We consider a concatenated list with three sublists L1, L2 and L3.

– L1 contains n1 elements of size 7
24 − 4ε,

– L2 contains n2 elements of size 5
24 + ε,

– L3 contains n3 elements of size 4
24 + ε,

where ε < 1
96 , n1 = n2 = 6n and n3 = 18n. It means that c1 = c2 = 6 and c3 = 18. It is easy to see that the following

inequalities are true.

OPT(L1) ≤ 2n, OPT(L1L2) ≤ 3n, OPT(L1L2L3) ≤ 6n.

So, we can set the upper bounds to

U1 = 2, U2 = 3, U3 = 6.
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Table 4
The new lower bounds for on-line bin packing algorithms.

r = 1 r = 2 r = 3 r = 4 r = 5

k = 3 1.5000000 1.3793103 1.2878787 1.2283464 1.1880733
k = 4 1.5390070 1.3895759 1.2914337 1.2298587 1.1888167
k = 5 1.5403448 1.3896631 1.2914442 1.2298607 1.1888172
k = 6 1.5403721 1.3896636 1.2914443 1.2298607 1.1888172
k = 7 1.5403726 1.3896636 1.2914443 1.2298607 1.1888172
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

k = ∞ 1.5403726 1.3896636 1.2914443 1.2298607 1.1888172
k = ∞

248
161

1694
1219

7502
5809

24992
20321

68420
57553

In fact, these upper bounds are sharp. Let us now consider the following constants.

α1 = 4, α2 = 3, α3 = 5

and

β1 = 4, β2 = 2, β3 = 1.

Considering the above constants we need to prove that for every dominant packing pattern inequality (5) holds. Since
the number of dominant patterns is small we can investigate all of them. Three cases have to be distinguished.

(i) For i = 1, we consider the dominant patterns in P1. We need to prove that any feasible packing pattern p ∈ P1 satisfies

12 ≥ 4p1 + 2p2 + p3.

The dominant patterns are (3, 0, 0), (2, 2, 0), (2, 1, 1), (2, 0, 2), (1, 3, 0), (1, 2, 1), (1, 1, 3) and (1, 0, 4). It is easy to check
that the inequality holds for all of them.

(ii) For i = 2, the dominant patterns of bins in P2 have to be considered. These are (0, 4, 0), (0, 3, 2), (0, 2, 3) and (0, 1, 4).
All of them satisfy

8 ≥ 2p2 + p3.

(iii) Finally, we have to address the packing patterns in P3. The only dominant pattern is (0, 0, 5) and the inequality

5 ≥ p3

trivially holds.

So, the conditions of Theorem 2.2 hold and therefore

RA ≥

3
j=1 cjβjk
j=1 αjUj

=
24 + 12 + 18
8 + 9 + 30

=
54
47

.

We can summarize our calculation in the following theorem.

Theorem 5.1. No on-line algorithm for the one-dimensional bin packing problem which packs the elements in decreasing order
and can have better asymptotic performance ratio than 54

47 = 1.1489361 . . . .

6. Conclusions

In this paper, we improved two old lower-bound results for certain classes of one-dimensional bin packing algorithms.
For on-line algorithms we considered the parametric case and the new lower bounds are summarized for some positive
integers r in Table 4. For those semi-online bin packing algorithms, which allow pre-ordering, yielding the elements in
decreasing order, our new lower bound is 54

47 = 1.1489361 . . . vs. 8
7 = 1.142857 . . . . As a ‘‘byproduct’’ we gave a simple

combinatorial proof for van Vliet’s lower bound for the performance of on-line algorithms.
For the latter case we note that if the size of the largest elements is in the interval ( 8

29 ,
1
2 ] then First Fit Decreasing

yields the upper bound 71
60 (see [7]). However, our efforts to get a better result were not successful so far. It is true, that our

improvements are very small in absolute values. However we did an exhaustive search for possible lists and we have not
found worse ones. We strongly believe that the gap might be decreased only by defining better algorithms or one needs to
find a new method for proving lower bounds.

The packing pattern techniquewas used for the two- and three-dimensional bin packing problems [5] and the best known
lower bound for the on-line vector packing algorithms operates also with this technique (see [4]). Since in these cases the
Sylvester sequence was used during the proof it is plausible that the application of the new series will also improve these
lower bounds. We are convinced that this technique is usable for other classes of algorithms.
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