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SUMMARY

Intrinsically disordered protein (IDP)-mediated inter-
actions are often characterized by low affinity but
high specificity. These traits are essential in signaling
and regulation that require reversibility. Entero-
haemorrhagic Escherichia coli (EHEC) exploit this
situation by commandeering host cytoskeletal
signaling to stimulate actin assembly beneath bound
bacteria, generating ‘‘pedestals’’ that promote intes-
tinal colonization. EHEC translocates two proteins,
EspFU and Tir, which form a complex with the host
protein IRTKS. The interaction of this complex with
N-WASP triggers localized actin polymerization. We
show that EspFU is an IDP that contains a transiently
a-helical N-terminus and dynamic C-terminus. Our
structure shows that single EspFU repeat forms
a high-affinity trimolecular complex with N-WASP
and IRTKS. We demonstrate that bacterial and
cellular ligands interact with IRTKS SH3 in a similar
fashion, but the bacterial protein has evolved to
outcompete cellular targets by utilizing a tryptophan
switch that offers superior binding affinity enabling
EHEC-induced pedestal formation.

INTRODUCTION

Intrinsically disordered proteins (IDPs) are ubiquitous proteins

that are often involved in cell signaling. They do not possess

a folded tertiary structure in native state and typically rely on

short motifs and transient—but specific—interactions to carry

out their function (Vacic et al., 2007; Hazy and Tompa, 2009;

Uversky, 2010; Babu et al., 2011). Disordered proteins bind to

their targets at the expense of reduction in conformational

entropy, which enables combining high specificity with modest

affinity, and thus renders such interactions suitable for

processes destined to be reversible (Dyson and Wright, 2005;

Mittag et al., 2010). The high degree of regulation, typical for

cellular processes, can be considered as an Achilles’ heel of

these fine-tuned interactions, and pathogens have evolved to

exploit this vulnerability (Babu et al., 2011; Davey et al., 2011).
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Indeed, a common approach of pathogens is to copy a host

protein’s functionality and to produce mimetics of higher affinity

(Davey et al., 2011).

EspFU (also known as TccP) is a translocated bacterial effector

enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7

that promotes the formation of actin ‘‘pedestals’’ on mammalian

cells beneath bound bacteria (Campellone et al., 2004; Garmen-

dia et al., 2004; Campellone, 2010). To generate pedestals,

EspFU becomes localized in the host cell at sites of bacterial

attachment, where it activates actin assembly. EspFU is a 337-

residue protein composed of an N-terminal sequence that

promotes EspFU translocation into the host cell via a bacterial

type III secretion system, followed by multiple 47-residue highly

conserved consecutive repeats (Campellone et al., 2004;

Garmendia et al., 2004, 2006) that possess dual activities.

The N-terminal 20 residues of the repeat bind to the GBD

(GTPase binding domain of neuronal Wiskott-Aldrich syndrome

protein) of WASP/N-WASP, members of a family of nucleation-

promoting factors that regulate a central pathway of actin

assembly. The EspFU-GBD interaction disrupts an autoinhibitory

interaction between the GBD and the WH2 (C-terminal WASP

homology 2)/VCA (verpolin-connector-acidic) (Cheng et al.,

2008; Sallee et al., 2008). In turn, this activated WASP/

N-WASP stimulates the Arp2/3 actin nucleator complex. The

22 C-terminal residues of the EspFU repeat contain a proline-

rich sequence that binds to the SH3 (Src homology-3 domain)

of IRTKS (insulin receptor tyrosine kinase substrate) or the

related IRSp53 (Cheng et al., 2008; Sallee et al., 2008; Weiss

et al., 2009; Vingadassalom et al., 2009; Aitio et al., 2010) (Fig-

ure 1A). IRTKS and IRSp53 bind to a cytoplasmic sequence of

EHEC effector protein Tir, which after translocation into host

cells is localized at sites of bacterial attachment (Vingadassalom

et al., 2009). Thus, EspFU binding of the IRTKS/IRSp53 SH3

domain results in recruitment of the EspFU:N-WASP:Arp2/3

complex and localized actin assembly.

We have recently shown that the IRTKS SH3-EspFU complex

establishes a nonconsensus type I SH3 interaction that involves

accommodation of two adjacent polyproline II (PPII) helical PxxP

motifs by a single SH3 domain, representing one of the highest

affinity SH3 interactions currently known (Aitio et al., 2010;

Saksela and Permi, 2012). Of note, a similar arrangement of

tandem PxxP motifs is also found in the cellular ligands of the

IRTKS/IRSp53 family SH3 domains, suggesting that this interac-

tion is evolutionary conserved (Aitio et al., 2010). Although the
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Figure 1. Structural Characterization of Free EspFU

(A) Amino acid sequence of EspFU fifth repeat (R475) along with N-WASP GBD and IRTKS/IRSp53 SH3 binding epitopes.

(B) Structural disorder prediction for R475 based on IUPred and Disprot algorithms.

(C) 15N-1H correlation (HSQC) spectrum of 15N,13C-labeled EspFU R475, recorded at 800 MHz 1H frequency. Narrow range of 1H chemical shifts is a signature of

disordered nature of EspFU R475.

(D) Analysis of 13Ca and secondary chemical shifts in unbound EspFU R475. Deviations from residue-specific random coil chemical shifts are shown, which take

into account the nearest neighbor effects and temperature (Kjaergaard and Poulsen, 2011).

(E) Values of reduced spectral density functions at three frequencies 0.87uH,uN, and 0 against the primary sequence of EspFUR475. Transiently populated a helix

as well as XPxXP motifs are shown above histograms.

See also Figures S1 and S2 and Table S1.
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mechanism of opening the autoinhibitory lock of N-WASP by

EspFU is well understood (Cheng et al., 2008; Sallee et al.,

2008), the functional hijacking of IRTKS/IRSp53 SH3 by EspFU
has remained elusive.

In this work we have used bioinformatics and biophysical

tools, for example, nuclearmagnetic resonance (NMR) spectros-

copy and isothermal titration calorimetry (ITC), for structural
Structure 20, 1692–1
characterization of EspFU. We show that EspFU is disordered

in its native state. However, the N-WASP GBD binding domain

in the N terminus of EspFU transiently populates an a-helical

conformation, whereas the proline-rich IRTKS SH3 binding motif

establishes a highly dynamic polypeptide. We also show that

EspFU undergoes disorder-to-order transition upon formation

of a trimolecular complex with IRTKS SH3 and N-WASP GBD.
703, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 1693



Structure

Characterization of EspFU Structure and Function
Most importantly, we reveal the underlying structural mechanism

by which EspFU outcompetes cellular IRTKS SH3 binding

ligands and firmly interconnects actin polymerization and

membrane regulation machineries.

RESULTS

Structural and Dynamical Characterization of EspFU

R475 Free in Solution
We carried out sequence analysis of each repeat using several

bioinformatics tools (e.g., IUPred, Disprot, and PSIpred) avail-

able for predicting disordered regions in proteins based on their

amino acid sequence. All these analyses suggested that repeats

are disordered and EspFU belongs to a class of intrinsically

disordered proteins, IDPs (Figure 1B). Further analysis was

carried out using NMR that has been shown to be an excellent

tool for characterization of IDPs (Mukrasch et al., 2009; Hellman

et al., 2011). Instead of well-dispersed 15N-1H correlation spec-

trum of folded proteins, the 15N-HSQC spectrum of EspFU R475
displayed a poorly dispersed correlation map reminiscent of

disordered polypeptide chain (Figure 1C). For more detailed

characterization of EspFU, we first carried out the assignment

of main-chain 1H, 13C, and 15N chemical shifts in EspFU using

the suite of Ha detected experiments that are very useful for

proline-rich IDPs (Mäntylahti et al., 2010, 2011). The 13Ca

secondary chemical shift (SCS) is a reliable indicator of residual

secondary structure in the polypeptide (Wishart et al., 1995;

Kjaergaard and Poulsen, 2011). The N-terminal segment
3DVAQRLMQHLAEH15 shows clearly positive 13Ca SCSs, up

to 1.3 ppm (Figure 1D). This indicates that these residues frac-

tionally populate a-helical conformation, up to 26.2% based on

the secondary structure propensity score (Marsh et al., 2006).

In contrast, the C-terminal part (residues 17–47), which includes

the proline-rich segment 27IPPAPNWPAPTPP39 that harbors the

tandem PxxP motifs responsible IRTKS SH3 binding, is highly

disordered.

Further evidence of transient structural elements was gleaned

by [1H]-15N NOE data as well as 15N T2 and T1 relaxation times,

which are reporters of ps-ns timescale dynamics (Figure S1

available online). Spectral density mapping method was used

for quantitative analysis of relaxation data (Farrow et al., 1995;

Lefèvre et al., 1996). Dynamics at three different frequencies,

J(0), J(uN), and J(0.87uH) underscores increased rigidity for resi-

dues 5AQRLMQHLAEH15 that correspond to the transient

a-helical region of R475 (Figure 1E). Dissection of motional

fluctuations in the proline-rich region pinpoints more distinctive

local features. For both 27IPPAP31 and 35APTPP39 (XPxXP)

motifs, significant contribution of high-frequency motions was

observed, J(0.87 uH) �20–27 ps/rad, indicating highly flexible

polypeptide in this region. In contrast, the linker 32NWP34

between the PxxP motifs as well as the linker 22NMAEH26, which

interconnects the N-terminal N-WASP GBD binding segment to

the proline-rich region, displays more restricted backbone

mobility, J(0.87 uH) �10–15 ps/rad. The very C-terminal part of

the R475 repeat is highly flexible with elevated supra-ps time-

scale dynamics as manifested by J(0.87 uH) values up to

40 ps/rad. Altogether, these data suggest that the tandem

PxxP elements exhibit elevated local dynamics in ns-ps time-

scale when compared to their flanking regions.
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A final point of interest concerns proline cis-trans isomeriza-

tion, which has earlier been shown to play an important role in

signaling (Sarkar et al., 2011). We detected a second set of

resonances corresponding to cis isomer of P34 in the linker

between PxxP motifs as well as to the N- and C-terminal P2

and P47. The cis isomer content of P34 is approximately 30%.

Kinetics of cis-trans isomerization was studied using the 15N

exchange spectroscopy, but as no cross-peaks between cis

and trans conformers were observed, this process is likely to

be very slow (kex <
15N R1 z 1 s). Taken together, although the

N-terminal segment of free EspFU R475 fractionally pre-exists

in its bound conformation, it is unlikely that the proline-rich

segments exist in a PPII conformation. Further support for this

interpretation was obtained in terms of residual dipolar couplings

(RDCs), which indicated a-helical tendency for the N-terminal

residues of EspFU, whereas the ideal PPII conformation found

in the EspFU:SH3 complex was clearly absent in the free EspFU
(Figure S2).

Trimolecular Complex between EspFU R475, N-WASP
GBD, and IRTKS SH3
To understand the structural details of the interaction of EspFU
R47 with N-WASP GBD and IRTKS SH3, we determined the

structure of the ternary complex between N-WASP GBD, EspFU
R475, and IRTKS SH3 (Figure 2A). It is composed of binary

complexes between the N-terminal EspFU and N-WASP

GBD and the C-terminal EspFU and IRTKS SH3, which are con-

nected by a short six amino acid linker. Superposition of the

N-WASP GBD and the N-terminal R475 or IRTKS SH3 and the

C-terminal R475 confirm that individual subunits of the complex

are very well determined (Figure 2B; Table 1). The binary

complexes are essentially similar to those reported previously

(Cheng et al., 2008; Aitio et al., 2010), but subtle differences

between the N-WASP:EspFU and the WASP:EspFU complexes

(Cheng et al., 2008) can be recognized. This may arise from

several differences between N-WASP/WASP GBD residues

facing the EspFU binding site. The GBD domain in both struc-

tures is highly similar (rmsd 1.02 Å for residues 216–262), but

the length of a helix in EspFU and its orientation with respect to

the GBD domain as well as the positioning of the extended

arm deviate.

In N-WASP:EspFU complex the EspFU a helix begins at P502,

which is confirmed by the a helix characteristic dab(i,i+3)

and daN(i,i+3) NOEs detected between P502 and A505 (making

it 4 Å longer). P502 also makes hydrophobic contacts with

M238 of the N-WASP GBD helix 1. Instead of a methionine

WASP GBD has an arginine at this position, and the next residue

is alanine contrary to the N-WASP cysteine 239. The hydro-

phobic contacts with P502 pull the N terminus of EspFU
a helix towards the N-WASP GBD helix 1, and on the other

hand the larger van der Waals radius of C539, as compared to

alanine in WASP, pushes it away. As a consequence the EspFU
a helix makes a 12� angle with its WASP complex counterpart

(Figure 2C).

Despite subtle chemical shift perturbations observed in
15N-HSQC spectra of EspFU R475 between binary and

ternary complexes (Figure 2D), the structure suggests that the

N- and C-terminal regions of EspFU function as independent

units. To rule out putative reciprocal orientation between
All rights reserved



Figure 2. Structure and Dynamics Ternary Complex

Structure of trimolecular complex between N-WASP GBD, EspFU R475 and IRTKS SH3.

(A) Ribbon presentation of the lowest energy conformation of the ternary complex. N-WASP GBD, orange; EspFU R475, green; and IRTKS SH3, magenta.

(B) Superimposition of 20 lowest energy conformers of N-WASP GBD 212-270 : EspFU 502-521(left) and IRTKS SH3 343-400 : EspFU 527-540 (right). Same

coloring as in (A).

(C) Superimposition of GBD domains from N-WASP:EspFU (red) and the WASP:EspFU complexes (Cheng et al., 2008) (blue) for residues 216–262. M238, C239

from N-WASP GBD and the corresponding R35 and A36 from WASP are shown in stick presentation.

(D) Chemical shift perturbations observed 1H-15N HSQC spectra between unbound EspFU R475 (blue contours), in complex with IRTKS SH3 (red contours) and in

complex with N-WASP GBD and IRTKS SH3 (green contours).

(E) Comparison of steady-state heteronuclear [1H]-15N NOEs for unbound EspFU R475 (blue bars) and associated to trimolecular complex with N-WASPGBD and

IRTKS SH3 (red bars).

(F) Color coding of observed [1H]-15N NOEs in the complex on the structure of EspFU R475 reflects the increased rigidity on ps-ns timescales for N-WASP binding

residues 3-21 and IRTKS SH3 binding epitope H26-V40 (blue coloring). Sustained flexibility on ps-ns timescales (colored green and yellow) is observed for the

linker residues 22–24 that connect GBD and SH3 binding domains. The C-terminal end of EspFU R475 remains highly disordered also in the complex.

See also Figure S3.

Structure

Characterization of EspFU Structure and Function
N-WASP GBD and IRTKS SH3 when bound to R475, we

employed 15N-1H RDCs measured in 15N-N-WASP GBD:EspFU
R475:

15N/13C-IRTKS SH3 complex (Figure S3). A simple iso-

tropic motional model based on analysis of generalized degree

of order for N-WASPGBD and IRTKS SH3 domains in the ternary

complex indicated large amplitude interdomain motion up to

Jcone = 75� (Tolman et al., 2001).

Therefore, the simultaneous interaction of EspFU with

N-WASP GBD and IRTKS SH3 induces neither additional folding

of EspFU nor conformational changes within GBD and SH3

domains or interactions between them. The flexible linker is likely
Structure 20, 1692–1
to have a role in the assembly and correct positioning of the

domains during the formation of a multiprotein complex. This

structure highlights several characteristic functional features of

IDPs. IDPs often use for recognition short linear motifs that

undergo disorder-to-order transition upon binding. The residual

structure observed for the N-terminal part of EspFU is implicated

in molecular recognition. Also a considerable amount of disorder

is maintained in the bound state.

To investigate the rigidity of EspFU R475 in the complex, we

measured heteronuclear steady-state [1H]-15N NOEs and

compared them with values measured from the unbound EspFU
703, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 1695



Table 1. Statistics of Structure Calculation for N-WASP-

GBD:EspFU R475: IRTKS SH3 Complex

Distance Constraints

N-WASP GBD:EspFU
R475:IRTKS SH3

Total 4,825

Short-range ji-jj< = 1 2,059

Medium-range 1<ji-jj<5 986

Long-range ji-jj R 5 1,780

Number of constraints per residue 27.0

Structure statistics

Average AMBER energy (kcal/mol) �6,057 ± 20

Violations

Distance constraints violations >0.5 Å –

Deviations from idealized geometry

Bond lengths (Å) 0.0098 ± 0.0001

Bond angles (�) 2.319 ± 0.017

Average rmsd from mean coordinates (Å)

Backbone IRTKS SH3 343-400 :

EspFU 527-540

0.27 ± 0.06a

Heavy IRTKS SH3 343-400 : EspFU 527-540 0.69 ± 0.05a

Backbone N-WASP GBD 212-270 :

EspFU 502-521

0.24 ± 0.04a

Heavy N-WASP GBD 212-270 : EspFU
502-521

0.56 ± 0.04a

Ramachandran plot (%)b 81.4/17.1/1.1/0.4
aRmsd values are shown for the 20 calculated complex structures.
bResidues in most favored/additionally allowed/generously allowed/dis-

allowed regions of the Ramachandran plot.
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R475. [
1H]-15N NOE plots for the 15N, 13C-labeled EspFU R475

when bound in the ternary complex or free in solution are

shown overlaid in Figure 2E. Clearly, the N-WASP GBD binding

epitope, encompassing residues 3Asp-Arg21, became more

rigid upon binding to N-WASP as reported by increased

heteronuclear NOEs (> 0.7), whereas extensive disorder-to-

order transition, which translates into substantial increase of

heteronuclear NOEs from negative to large positive values,

could be observed for the IRTKS SH3 binding region

(27IPPAPNWPAPTPP39). The short linker region corresponding

to residues 22–24 exhibits somewhat lower hetNOE values

(0.3–0.6) but indicates stiffening of the mediating linker. Never-

theless, as confirmed by the RDC data (Figure S4), the linker still

enables large amplitude motion of subunits and hence confor-

mational readjustment of polypeptide upon binding to multiple

targets. Similar motional averaging has been reported for
Table 2. Thermodynamics of EspFU-N-WASP Interactions

DG DH

N-WASP-EspFU R475 �40.9 ± 0.8 �64

N-WASPC-EspFU R475 �42.6a �28

N-WASP-EspFU R475+IRTKS SH3 �42.4 �66

DG, DH, and �TDS are given in kJ/mol, and n is stoichiometry of binding. K
aData kindly provided by Drs. Hui-Chun Cheng and Michael Rosen.
bFrom Cheng et al., 2008.
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MBP145–165-CaM complex (Nagulapalli et al., 2012). Also the

very C-terminal part of R475, corresponding to residues 41–47,

remains flexible in the complex as manifested by low positive

or negative [1H]-15N NOEs.

Finally, of the three prolines (P2, P34, and P47) that populate

cis/trans conformations in free EspFU, only P47 is found in equi-

librium of cis/trans conformations, whereas P2 and P34 exist

solely in trans conformation in the complex, hence undergoing

conformational change upon binding to N-WASP GBD and

IRTKS SH3, respectively.

Thermodynamical Characterization of N-WASP
GBD-EspFU Interaction
IDP-mediated molecular interactions are often characterized

with low affinity but high specificity, which offer functional advan-

tage over folded proteins, for example, by enabling association

with multiple partners. Weak association stems from entropic

cost for the Gibbs free energy (DGfree) as IDPs often undergo

disorder-to-order transition upon binding. We utilized ITC data

to glean information on nature and characteristics of EspFU
R475-N-WASP GBD interaction (Table 2). These data show

that interaction of EspFU R475 with the GBD domain is strongly

enthalphy driven (DH = �64.6 kJ/mol) and counterbalanced

with unfavorable entropy (�TDS = 23.7 kJ/mol). Upon formation

of ternary complex, that is, N-WASP GBD binding to EspFU
R475-IRTKS SH3 complex, similar values are obtained, suggest-

ing noncooperative binding model (Table 2). Although the

measured dissociation constants, Kds � 40–70 nM, are similar

to the value of 35 nM reported earlier between C-terminal

region of N-WASPC (residues 193–501 of N-WASP) and EspFU
R475 (Cheng et al., 2008), their thermodynamic fingerprints are

very different, DH = �28.3 kJ/mol and �TDS = �14.3 kJ/mol.

In the case of N-WASP GBD-EspFU R475 interaction, two disor-

dered polypeptides undergo disorder-to-order transition upon

binding, resulting in large entropic cost. In contrast, EspFU
R475 interaction with N-WASPC involves disruption of its auto-

inhibited conformation, that is, the process that includes large

order-to-disorder transition and yields entropically favorable

binding.

A Tryptophan in EspFU Linker Is Critical for High Affinity
Similar to the pathogen protein EspFU, the identified cellular

ligands of IRTKS/IRSp53 SH3, namely, Shank 1–3 and Eps8

also contain a tandem PxxP motif. However, a pathogen protein

would be expected to have a higher SH3 binding affinity to

displace cellular ligands in order to hijack IRTKS/IRSp53-

mediated signaling pathways of the host cell. To test this

assumption, we compared the binding affinities obtained using
�TDS Kd n

.6 ± 4.0 23.7 ± 4.9 0.07 ± 0.02 1

.3a 14.3a 0.035b 1

.3 23.9 0.04 1

d is given in 10�6 M. See also Figure S4.
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Table 3. Thermodynamics of SH3 Interactions

DG DH �TDS Kd n

IRTKS SH3-EspFU R475 �35.9 �44.0 8.1 0.5a 1

IRTKS SH3-EspFU R2 �34.2 ± 0.6 �41.6 ± 1.1 7.4 ± 1.6 1.1 ±0.2 1

IRTKS SH3-EspFU
W33A �26.6 ± 0.3 �10.2 ± 0.6 �16.3 ± 0.4 22.3 ± 2.1 1

IRTKS SH3-Eps8 WT �25.8 ± 0.1 �16.8 ± 2.3 �9.1 ± 2.2 30.5 ± 1.7 1

IRTKS SH3-Eps8A33W �32.1 ± 0.1 �26.6 ± 0.1 �5.6 ± 0.2 2.4 ± 0.1 1

Mona/Gads-HPK1b �32.08 �29.47 �2.61 2.4 1

Mona/Gads-SLP-76 (P2)b �40.28 �49.35 9.07 0.09 1

Grb2-SOS-Ac �24.7 �40.6 15.6 54 1

Grb2-SOS-Ec �31.8 �54.4 22.3 3.5 1

DG, DH, and �TDS are given in kJ/mol, and n is stoichiometry of binding. Kd is given in 10�6 M. See also Figure S4 and Table S3.
aFrom Aitio et al., 2010.
bData kindly provided by Drs. Philip Simister and Stephan Feller.
cFrom Wittekind et al., 1994.
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NMR chemical shift perturbation (CSP) mapping and ITC of

EspFU R475 and a 20-residue peptide derived from Eps8

containing the tandem PxxP IRTKS recognition motif (see

Table 3). The CSP mapping showed that these peptides

bound to the same binding site on IRTKS SH3 as peptide addi-

tion induced chemical shift changes for the same set of NH

correlations in the 15N-HSQC spectrum of 15N-labeled IRTKS

SH3 (Figure 3, upper). However, the binding affinities were

different. EspFU was clearly a strong binder as two sets of peaks

were observed in subequimolar concentrations, whereas CSPs

observed for the Eps8 peptide were in the regime of intermediate

exchange in the NMR timescale, indicating lower affinity. In

agreement with CSP, we obtained dissociation constants

Kd (EspFU) = 0.5 mM (Aitio et al., 2010) versus Kd (Eps8) =

30.5 mM, using ITC. These data showed that the pathogenic

EspFU is able to usurp this host cell signaling pathway by super-

seding the cellular ligand with approximately 60 times higher

affinity against its target.

As both EspFU and Eps8 peptides carry a tandem PxxP motif,

some additional factor is needed to explain the substantially

stronger binding of EspFU. Comparison of EspFU sequence

with those of known and predicted cellular partners of IRTKS/

IRSp53SH3demonstrates that only EspFUcontains a tryptophan

residue in the linker between the two PxxP motifs (Figure 4A).

We thus investigated whether this tryptophan could explain

the enhanced affinity acquired by the pathogen. To this end,

we made two peptides that carry mutations in position 33,

according to EspFU R475 numbering: an EspFU peptide in

which the tryptophan in 32NWP34 was replaced by alanine

(yielding 32NAP34) and an Eps8 peptide inwhich the linker alanine

in 32RAP34 was replaced by tryptophan (yielding 32RWP34).

Again, CSP mapping indicated that these peptides interacted

with IRTKS SH3 through the same interface as the EspFU and

Eps8wt peptides (Figure 3, lower). W-to-A replacement in EspFU
peptide reduced the affinity substantially, Kd (EspFU

W33A) =

22.3 mM, and strikingly, the A to W replacement converted the

Eps8 peptide into a strong binder Kd (Eps8A33W) = 2.4 mM. This

clearly pinpointed the critical role of the linker tryptophan for

high affinity, thus explaining the higher affinity of EspFU as

compared to the cellular Eps8 ligand.
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In summary, the W33A mutation in EspFU reduced the binding

affinity by 50-fold, and the reciprocal A-to-W mutant of Eps8

bound 13-fold more tightly to IRTKS SH3 than the wt Eps8.

Our IRTKS SH3:EspFU R475 complex structure shows that

EspFU tryptophan W33 lies in a T-shaped edge-to-face arrange-

ment above W378 of SH3 domain (Figure 4B). EspFU tryptophan

also makes an intramolecular van der Waals contact with

P31 in the bound form. These interactions are not possible

with an alanine at this position. The W-to-A mutation in the

Eps8 peptide provides the same inter- and intramolecular

contacts when bound to IRTKS SH3 domain in the same overall

conformation as EspFU. We conclude that the intermolecular

aromatic interaction betweenW33 andW378 aswell as the intra-

molecular contacts stabilize the association and contribute to

the higher affinity of EspFU and Eps8A33W mutant with respect

to their lower affinity ligands. To our knowledge, this is the first

observation of a p-p interaction between two tryptophan resi-

dues involving an IDP.

Thermodynamics of Binding of EspFU and Eps8 Peptides
with IRTKS SH3
SH3-ligand interactions are typically characterizedby a favorable

DH contribution to DG counterbalanced by an unfavorable

entropic penalty (�TDS), which seems surprising considering

the large hydrophobic interaction surface involved (Palencia

et al., 2004; Wang et al., 2001). Similar to other SH3 ligand pairs,

the IRTKS SH3-ligand interactions are dominated by an en-

thalpic contribution (DH) (see Table 3). Enthalpy-driven hydro-

phobic complexation arises from poor solvation of the binding

surface in unbound state (Bissantz et al., 2010), and the enthalpy

gain results from stronger hydrogen bonds formed between

water molecules released from the surface of the protein upon

binding (Meyer et al., 2003). It is noteworthy that entropy change

(�TDS) contributes favorably towt Eps8 (�9.1 kJ/mol), Eps8A33W

(�5.6 kJ/mol), and EspFU
W33A (�16.3 kJ/mol) binding that,

according to our CSPmapping experiments, interact with IRTKS

SH3 in the similar manner as the wt EspFU (see Figure 3). In these

peptides IRTKS SH3 recognizes two consecutive proline-rich

motifs connected by a three-residue linker. The linker interacts,

without making any polar contacts, with the specificity pocket,
703, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 1697



Figure 3. Chemical Shift Perturbation Mapping of IRTKS SH3 upon Addition of Peptides from EspFU and Eps8

Full assignment of resonances is given for IRTKS SH3:EspFU R475 complex (upper left). Selected boxed resonances with assignments capture the embedded

binding affinity and show that all the peptides bind to the same binding site on IRTKS SH3. The assignments correspond to the saturated state with IRTKS

SH3:peptide shown in blue. Saturated state for EspFUR475 and Eps8A33W correspond to SH3:peptidemolar ratio 1:1 and for EspFU
W33A and Eps8 to SH3:peptide

molar ratio 1:3.25. Free IRTKS resonances are shown in red, and other colors correspond to intermediate states between free and saturated states.

See also Table S3.
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thus rendering the interaction particularly hydrophobic. This

implies that although classical SH3 ligand interactions have

predominantly hydrophobic character, even larger hydrophobic

surfaces, such as in the case of Eps8:IRTKS SH3, are required

for a favorable entropic contribution.

However, binding is entropically unfavorable for the fifth

EspFU repeat (R475), as well as for the 20-residue peptide from

the second EspFU repeat (referred to as EspFU R2), which

show the highest affinities for IRTKS SH3. Comparison of

thermodynamic data shows that for both EspFU R475 and

Eps8 peptides changing of A to W increases affinity, which is

accompanied by a gain in enthalpy and loss in entropy. The

mechanisms underlying this frequently observed entropy-

enthalpy compensation are not well understood. However, it

is likely that although additional ligand-protein interactions

provide a net gain in enthalpy, increased rigidity in a high-affinity

complex, that is, reduction of backbone motion induced by

ligand binding, translates into decrease in entropy (Wang et al.,
1698 Structure 20, 1692–1703, October 10, 2012 ª2012 Elsevier Ltd
2001; Bissantz et al., 2010; Williams et al., 2004; Frederick

et al., 2007). In addition, a specific edge-to-face orientation of

tryptophan residues is likely to increase entropic cost of binding

(Tatko and Waters, 2002).

Interestingly, Eps8A33W and EspFU R475 (or EspFU R2) have

considerably different thermodynamic signatures, although

both peptides contain the tandem PxxP motifs and the critical

tryptophan in the linker. There is only a single amino acid differ-

ence in residues in direct contact with the SH3 domain. Eps8 as

well as other cellular ligands have a proline instead of alanine at

position 30 (according to EspFU numbering). Both interactions

are enthalpy-driven, but the change in entropy contributes unfa-

vorably to EspFU R475 binding, whereas it contributes favorably

to Eps8A33W binding. This might relate to a higher cis/trans pop-

ulation of Eps8 ligands, but it is difficult to explain how these

subtle structural differences between EspFU and Eps8A33W

translate into difference in relative DH and TDS contributions

(Bissantz et al., 2010).
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W-to-A Mutation Disrupts the Recruitment of EspFU

to Sites of Bacterial Attachment
It has been shown previously that IRTKS (or IRSp53) binding is an

essential activity for recruitment of EspFU to the sites of clustered

Tir (Weiss et al., 2009; Vingadassalom et al., 2009; Aitio et al.,

2010). To test whether increased binding affinity and stability

of the IRTKS:EspFU complex, mediated by the tryptophan p-p

interaction, translates into functional importance upon EHEC

infection, we investigated the role of the W33A mutation in

pedestal formation.

First, a proline-rich sequence of the EspFU repeat that is recog-

nized by the SH3 domain of IRTKS/IRSp53 has been identified

(Weiss et al., 2009; Aitio et al., 2010), and deletion of the EspFU
repeat C-terminal 14 residues, which interrupts this sequence,

blocked binding by IRTKS in yeast two-hybrid assays (Vingadas-

salom et al., 2009). Therefore, we designed an EspFU construct

that contained only the 23 residue proline-rich region (‘‘P’’ in Fig-

ure 4C) fused to the Gal4AD and cotransformed the reporter

strain L40 with LexADBD-IRTKS-SH3. The ‘‘P’’ construct closely

approximated the reporter activity of a full repeat ‘‘HP’’ (Fig-

ure 4C). Next, we tested alanine substitution of residue W33 in

a yeast two-hybrid assay and found that W-to-A mutation in

‘‘PW33A’’ construct disrupted binding to IRTKS-SH3 and

completely abrogated any activity in this assay (Figure 4C).

To further explore the role of tryptophan switch in IRTKS

recruitment and actin assembly, we generated HP*HP*, a

simplified two-repeat EspFU construct in which both of the two

repeats contained the W33A mutation, and ectopically ex-

pressed GFP-HPHP or GFP-HP*HP* with wild type or mutant

repeats, respectively, in mouse embryonic fibroblasts (MEFs).

When MEFs expressing wild type GFP-HPHP fusion construct

were infected with KC12, a modified E. coli capable of translo-

cating Tir but not expressing EspFU, the ectopically expressed

GFP-HPHP was recruited to the sites of bacterial attachment,

as shown by immunostaining the myc-tagged GFP-HPHP

fusion, and induced actin pedestal formation (Figure 4D). In

contrast, the IRTKS binding-deficient mutant GFP-HP*HP* failed

to be recruited to the sites of bacterial attachments and conse-

quently no actin assembly was observed, suggesting that IRTKS

binding was an essential activity for EspFU recruitment to sites of

clustered Tir. To verify whether the defect of GFP-HP*HP* in

actin assembly was due solely to its inability to be recruited to

Tir, we tested whether the HP*HP* derivative of EspFU could

stimulate pedestal formation when artificially clustered by trans-

lational fusion to Tir. To this end, we devised a TirDC-HP*HP*, in

which the TirC-terminal cytoplasmic domainwas replaced by the

two repeat HP*HP* sequence, which lacks the ability to bind

IRTKS because of W33A mutation. When TirDC-HP*HP* clus-

tered in the plasma membrane by infection with E. coli express-

ing intimin, robust actin pedestals were observed, indicating that

the critical actin assembly defect in GFP-HP*HP* was due to its

inability to be recruited to Tir by IRTKS (Figure 4E). Thus, we

conclude that the enhanced IRTKS binding affinity provided by

W33 plays a critical role in pedestal formation.

An Engineered Tryptophan Switch Promotes
Intracellular Association of IRTKS with Eps8
Our results indicated the tryptophan residue 33 in the tripeptide

linker between the two PxxP motifs of EspFU provided it with
Structure 20, 1692–1
a superior binding affinity compared to cellular ligands of IRTKS

SH3. To further validate this concept, we tested if binding to

IRTKS by its cellular interaction partner Eps8 could be increased

by introducing an EspFU-like W-containing inter-PxxP linker into

Eps8. As showed in Figure 4F this prediction indeed turned out to

be correct. A dramatic increase in coprecipitation of Eps8 with

IRTKS was observed in 293 cells transfected with the linker-

modified Eps8 compared to wild-type Eps8. Thus, the trypto-

phan switch is not only critical for the pedestal formation, as

demonstrated by the loss-of-function phenotype in the bacterial

infection experiment shown in Figure 4F but can also be used to

engineer a gain-of-function mutant of a cellular ligand that other-

wise binds to IRTKS with a modest affinity.

DISCUSSION

In this work, we have shown that the bacterial effector EspFU is

an intrinsically disordered protein. It contains two protein recog-

nition motifs, which undergo disorder-to-order transition upon

binding. Although molecular interactions involving IDPs are typi-

cally weak and transient because of their regulatory roles in

cellular processes, EspFU is able to establish a tight complex

with two host proteins, N-WASPGBD and IRTKS SH3. Our study

highlights that a tertiary structure is not a prerequisite for tight

interactions, and pathogens are able to use bacterial IDPs to

commandeer tightly regulated cellular processes. The N-WASP

GBD binding (‘‘H’’) motif is clearly disordered when free in solu-

tion, although it is significantly more rigid than the IRTKS SH3

binding (‘‘P’’) region of EspFU. Indeed, our data show that the

Hmotif transiently pre-exists in its bound conformation, whereas

the left-handed PPII conformation is clearly absent in the P motif

when free in solution. TheHmotif then falls in the category of pre-

formed structural element or molecular recognition element

(Fuxreiter et al., 2004; Oldfield et al., 2005), although very high-

affinity complex is established with N-WASP, atypically for IDP

interactions.

We have characterized and demonstrated the critical role of

W33 in the EspFU P motif for high-affinity binding to IRTKS

SH3 in vitro and for actin pedestal formation in vivo. Strikingly,

a single correctly positioned residue in a bacterial effector that

mimics its host counterpart is sufficient to deceive host signaling

and to enable a hostile takeover by having a 60 times higher

affinity than its cellular counterparts. Indeed, our data show

that W33 plays a decisive role in IRTKS-mediated recruitment

of EspFU to Tir upon bacterial clustering and actin pedestal

formation in vivo.

Molecular characterization of the P motif echoes its IDP

nature; it is highly disordered as evidenced by the nuclear spin

relaxation and bioinformatics analyses. Yet, amino acid

composition of the P motif in EspFU and cellular ligands is

more typical for IDPs than linear motifs (LMs are depleted in

Ala, Gly and enriched in aromatic, Cys and Leu residues)

(Fuxreiter et al., 2007). Indeed, our findings add an interesting

detail to the so-called Y-F-W conundrum (Uversky, 2011).

Although aromatic residues are rare in IDPs, they are strategi-

cally positioned and often participate in protein interactions

(Fuxreiter et al., 2004; Uversky, 2011). In contrast, aromatic

residues are often found enriched in LMs or short molecular

recognition elements termed/consensus sequences (Fuxreiter
703, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 1699



Figure 4. Structural and Functional Role of the W-Switch

(A) Alignment of tandem PxxP-containing ligands. Delphilin is a protein that we predicted as a potential novel IRTKS ligand, but this has not been experimentally

tested.

(B) EspFU W33 establishes a T-shaped edge-to-face arrangement with IRTKS W378.

(C) Schematic showing a single repeat of EspFUC. The N-WASP binding helix ‘‘H’’ (Cheng et al., 2008) and IRTKS binding ‘‘P’’ (Weiss et al., 2009; Vingadassalom

et al., 2009) domains are indicated. The asterisk indicates the site of the W33A mutation. Plasmids encoding the LexA DNA binding domain-IRTKSSH3 and the

indicated GAL4 AD-EspFU fusions were cotransformed into a yeast two-hybrid reporter strain L40. ‘‘PW33A’’ indicates the mutant with the alanine substitution of

residueW33. b-galactosidase activity was assessed as an average of three cotransformants in Miller Units (MU) with error bars indicating the standard deviation.

Results are representative of at least three experiments.

(D) FLCs expressing myc-tagged GFP-EspFU fusions were infected with EPEC KC12, which requires ectopic expression of EspFU for pedestal formation. Red

asterisks (and corresponding red stripes in schematic) indicate W33A mutations. Monolayers were stained with DAPI (blue), anti-myc antibody (green), and

Alexa568-phalloidin (red).

(E) FLCs expressing HA-tagged Tir-EspFU fusion protein carrying W33A mutations were infected with intimin-expressing E. coli K12. Monolayers were stained

with DAPI (blue), anti-HA antibody (green), and Alexa568-phalloidin (red).

(F) An engineered tryptophan mutation in Eps8 dramatically enforces its intracellular association with IRTKS. Human 293T cells were transfected with an

expression vector for IRTKS tagged with a biotin acceptor domain together with a vector for a Myc-tagged wild-type Eps8 (wt) or a mutated derivative (mut)

containing an EspFU-like tryptophan-containing linker between the PxxP motifs in the IRTKS SH3 domain binding region. IRTKS from lysates of these cells was
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et al., 2007). Given that cellular ligands of IRTKS/IRSp53 SH3

that contain the tandem PxxP motif do not have any aromatic

residues, the strategic positioning of an aromatic residue is

certainly true for EspFU. The information regarding aromatic

p-p interactions involving IDPs is very limited (Espinoza-

Fonseca, 2012). Yet, occurrence of tryptophans (�10%) in p-p

interactions is low in comparison to Phe (�60%) and Tyr

(�25%). Furthermore, no p-p interactions have been reported

between two tryptophans at the molecular interfaces involving

an IDP (Espinoza-Fonseca, 2012). Our thermodynamical data

show that this unique intermolecular p-p interaction between

tryptophan residues adds 9.3 kJ/mol to the Gibbs free energy

of binding between IRTKS/IRSp53 and EspFU.

Although EspFU undergoes a disorder-to-order transition

upon binding to N-WASP and IRTKS, it also contains segments

that remain flexible or disordered in the ternary complex. The
22NMAE25 linker and especially the C-terminal tail, 41Gln-Pro47,

remain flexible when bound to N-WASP and IRTKS. These

linkers are completely conserved among the EspFU repeats,

and the C-terminal tail contains mostly polar residues, Gln,

Asn, and Ser, as well as Pro. It is quite likely the intrinsic flexibility

of N-WASP- and IRTKS-bound EspFU enables a relatively unhin-

dered spatial search by attached domains and conformational

readjustment upon recruitment of multiple N-WASP and IRTKS

ligands. Indeed, a recent survey has shown that IDPs often

contain repeat regions that might have evolved via repeat expan-

sion and have a role in the assembly of macromolecular arrays

(Davey et al., 2011, 2012). Short linker sequences of similar

composition, known as Q-linkers owing to a high proportion of

polar residues in these segments (�70%), are found in a number

of bacterial regulatory proteins (Dyson and Wright, 2005; Woot-

ton and Drummond, 1989).

Classical SH3 ligands consist of a proline-rich motif flanked by

a positively charged residue. The ligands adopt a left-handed

PPII helical conformation as they bind a hydrophobic groove

on the SH3 surface. The positively charged residue forms

a salt bridge with aspartate or glutamate at the bottom of the

specificity pocket. SH3 interactions with short peptide ligands

are typically characterized with favorable enthalpic contribution

to DG, which is counterbalanced by an unfavorable entropic

penalty. This seems surprising considering the large hydro-

phobic interaction surface involved in binding (Palencia et al.,

2004; Wang et al., 2001). IRTKS SH3 recognizes two consecu-

tive proline-rich motifs of EspFU connected by a three-residue

linker. The linker interacts without making any polar contacts

with the specificity pocket, thus rendering the interaction partic-

ularly hydrophobic. Notwithstanding, IRTKS SH3-ligand interac-

tions are dominated by an enthalpic contribution similar to other

SH3/ligand complexes (Table 3). Enthalpy-driven hydrophobic

complexation is proposed to arise from poor solvation of the

binding surface in the unbound state (Bissantz et al., 2010).

The enthalpy gain results from stronger hydrogen bonds formed

between water molecules released from the surface of the

protein upon binding, known as the ‘‘nonclassical hydrophobic
precipitated using streptavidin-coated beads. Proteins precipitated from these ly

anti-Myc antibodies and labeled streptavidin to detect Eps8 and IRTKS proteins, r

expression without prior affinity selection as indicated.

See also Tables S1 and S2.
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effect’’ phenomenon, and is characteristic for many previously

described complexation processes (Meyer et al., 2003). We pro-

pose that this is also generally valid for SH3 ligands interactions.

Favorable entropy terms observed for wt Eps8, Eps8A33W, and

EspFU
W33A interactions suggest that larger hydrophobic

surfaces than those found in classical SH3-ligand interactions

are a prerequisite for a favorable entropic contribution. On the

contrary, EspFU has a larger entropic penalty. Our structural

and dynamic characterization of EspFU reveals its highly disor-

dered nature when unbound and shows that binding to IRTKS

is accompanied by substantial disorder-to-order transition,

resulting in decreased conformational entropy. Furthermore,

P34 has a significant cis population in the unbound state and

undergoes conformational change to trans upon binding to

IRTKS. Both of these factors contribute unfavorably to entropy.

Although differences in the thermodynamic signatures of EspFU
and Eps8A33W remain to be unraveled, a similar thermodynamic

profile is observed when comparing the binding of SLP-76 and

HPK1 peptides to the C-terminal Mona/Gads SH3 domain

(Lewitzky et al., 2004; Harkiolaki et al., 2003). These peptides

interact with similar binding sites and make similar hydrophobic

and polar contacts, yet their binding affinity, enthalpic, and

entropic terms differ considerably.

In connection with SH3-mediated interactions it is often dis-

cussed whether or not simple PxxP motifs are sufficient to

achieve specificity. Many SH3 domains have been reported to

bind peptides without PxxP motifs, and also several examples

indicate that regions beyond this motif are involved in recogni-

tion. For example, p67phox SH3 binds tightly to a p47phox peptide

consisting of a PxxP unit with a C-terminally flanking segment

that forms a helix-turn-helix structure (Kami et al., 2002). On the

other hand, in the case of SH3 binding by HIV-1 Nef, the whole

RT-loop of the SH3 domain contributes considerably to binding

(Lee et al., 1996). Our study clearly demonstrates that the oppo-

site scenario is also possible. Indeed, EspFU contains only

a single proline-rich sequence available for the SH3 interaction,

one that enables it to outcompete its host counterpart whether

or not that interaction involves interactions beyond PxxP.

EXPERIMENTAL PROCEDURES

Yeast Two-Hybrid Analyses

The two-hybrid expression vectors pGAD424 and pBTM116 as well as

reporter strain L40 were used to define the interaction between IRTKS,

IRSp53, EspFU, and EHEC Tir as previously described (Cheng et al., 2008;

Liu et al., 2002). ONPG assays were performed as previously described

(Garmendia et al., 2004; Cheng et al., 2008). See also Supplemental Experi-

mental Procedures and Tables S1 and S2.

Mammalian Cell Infections and Immunofluorescence Microscopy

Formicroscopic analysis, mammalian cells were grown, infectedwith bacteria,

and processed as described previously (Garmendia et al., 2004; Cheng et al.,

2008; Campellone and Leong, 2005). Cells were treated with mouse anti-HA

tag mAb HA.11 (1:500; Covance, Princeton, NJ, USA), mouse anti-HA Alexa-

488 (Invitrogen, Carlsbad, CA, USA), or mouse anti-IRTKS mAb (1:100; Novus

Biologicals, Littleton, CO, USA).
sates with streptavidin-coated beads were examined by western blotting using

espectively. Part of the total lysates was similarly analyzed for Eps8 and IRTKS
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NMR Spectroscopy

All NMR spectra were measured at 25�C, using either Varian INOVA 600 MHz

or 800 MHz spectrometers, equipped with a 5 mm 15N/13C/1H z-gradient

triple-resonance cold probes.

The spectra for the main-chain and side-chain resonance assignments as

well as for measuring 15N dynamics and 1H-15N RDCs were recorded at

800 MHz. The chemical shift perturbation mapping of 15N, 13C-labeled IRTKS

SH3 with unlabeled peptides was carried out at 600 MHz. (See also Supple-

mental Experimental Procedures.)

Resonance assignments were carried out both for free EspFU R475 and for

each subcomponent of the trimolecular N-WASP-GBD : IRTKS SH3 : EspFU
R475 ternary complex. For the assignment and structure determination of

ternary complex, three differentially labeled samples were made and mixed

together in 1:1:1 ratio:

(1) 15N, 13C N-WASP GBD : IRTKS SH3 : EspFU R475,

(2) N-WASP GBD : 15N, 13C IRTKS SH3 : EspFU R475,

(3) N-WASP GBD : IRTKS SH3 : 15N, 13C EspFU R475.
Structure Calculation

Structure calculation of the EspFU R475:N-WASP GBD:IRTKS SH3 complex

was carried out automatically using the software package CYANA (Herrmann

et al., 2002). Peaks were picked manually from 15N- and 13C NOESY spectra.

The peak lists, together with the chemical shift assignments, were used as

input for the iterative NOE assignment and structure calculations. During struc-

ture calculations the protein sequences were connected through a set of

weightless noninteracting dummy atoms from C terminus to N terminus in

the order N-WASP GBD, IRTKS SH3, and EspFU R475. We generated

200 conformers in each of the seven cycles of the combined automated

NOESY and structure calculation algorithm. The final 20 structures were

energy-minimized, using CYANA-derived NOE restraints, in AMBER 8

(Case et al., 2005). One thousand iterations with the standard AMBER force

field and generalized Born implicit solvent model were performed. Quality of

structure was analyzed with PROCHECK-NMR (Laskowski et al., 1996), indi-

cating that 81.4%, 17.1%, 1.1%, and 0.4% of the residues are in the most

favored, additionally allowed regions, generously allowed, and disallowed

regions respectively, of the Ramachandran plot.

Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) experiments were performed at 25�C
using a VP-ITC microcalorimeter (Microcal, Inc. Northampton, MA, USA).

Eps8 WT, Eps8A33W, and EspFU
W33A peptides were dissolved in ddH2O

and pH was adjusted to 7 with NaOH, lyophilized and dissolved in NMR

buffer for final concentration of 0.25 mM (Eps8A33W), 0.5 mM (Eps8 WT), or

1 mM (EspFU
W33A). Peptides were titrated separately into the 20 mM (Eps8A33W

and Eps8 WT) or 65 mM (EspFU
W33A) IRTKS SH3 solution in the sample

cell. In addition, 0.22 mM EspFU was titrated to 10 mM N-WASP, and 0.1 mM

IRTKS SH3-EspFU complex to 10 mM N-WASP solution in the sample cell.

Experimentswere repeated twice. In order tomeasure heats of dilution, control

experiments were performed by titrating peptide to buffer and subtracted from

raw titration data. Thermodynamic profile of the IRTKS SH3 and peptide inter-

actions, were obtained by nonlinear least square fitting of experimental data

using a single-site binding model of the Origin 7 software.

ACCESSION NUMBERS

The BioMagResBank (BMRB) accession number for the resonance assign-

ments reported in this paper is 18165. The Protein Data Bank (PDB) accession

number for coordinates of the EspFU R475:N-WASPGBD:IRTKS SH3 complex

structure reported in this paper is 2lnh.
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Davey, N.E., Travé, G., and Gibson, T.J. (2011). How viruses hijack cell regu-

lation. Trends Biochem. Sci. 36, 159–169.

Davey, N.E., Van Roey, K.V., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg,

B., Budd, A., Diella, F., Dinkel, H., and Gibson, T.J. (2012). Attributes of short

linear motifs. Mol. Biosyst. 8, 268–281.

Dyson, H.J., and Wright, P.E. (2005). Intrinsically unstructured proteins and

their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208.

Espinoza-Fonseca, L.M. (2012). Aromatic residues link binding and function of

intrinsically disordered proteins. Mol. Biosyst. 8, 237–246.

Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A., and Kay, L.E. (1995).

Spectral density function mapping using 15N relaxation data exclusively.

J. Biomol. NMR 6, 153–162.

Frederick, K.K., Marlow, M.S., Valentine, K.G., and Wand, A.J. (2007).

Conformational entropy in molecular recognition by proteins. Nature 448,

325–329.

Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004). Preformed struc-

tural elements feature in partner recognition by intrinsically unstructured

proteins. J. Mol. Biol. 338, 1015–1026.

Fuxreiter, M., Tompa, P., and Simon, I. (2007). Local structural disorder

imparts plasticity on linear motifs. Bioinformatics 23, 950–956.

Garmendia, J., Phillips, A.D., Carlier, M.F., Chong, Y., Schüller, S., Marches,

O., Dahan, S., Oswald, E., Shaw, R.K., Knutton, S., and Frankel, G. (2004).

TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector
All rights reserved

http://dx.doi.org/10.1016/j.str.2012.07.015


Structure

Characterization of EspFU Structure and Function
protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol. 6, 1167–

1183.

Garmendia, J., Carlier, M.F., Egile, C., Didry, D., and Frankel, G. (2006).

Characterization of TccP-mediated N-WASP activation during enterohaemor-

rhagic Escherichia coli infection. Cell. Microbiol. 8, 1444–1455.

Harkiolaki, M., Lewitzky, M., Gilbert, R.J., Jones, E.Y., Bourette, R.P.,

Mouchiroud, G., Sondermann, H., Moarefi, I., and Feller, S.M. (2003).

Structural basis for SH3 domain-mediated high-affinity binding between

Mona/Gads and SLP-76. EMBO J. 22, 2571–2582.

Hazy, E., and Tompa, P. (2009). Limitations of induced folding in molecular

recognition by intrinsically disordered proteins. ChemPhysChem 10, 1415–

1419.

Hellman, M., Tossavainen, H., Rappu, P., Heino, J., and Permi, P. (2011).

Characterization of intrinsically disordered prostate associated gene

(PAGE5) at single residue resolution by NMR spectroscopy. PLoS ONE 6,

e26633.
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Beutling, U., Disanza, A., Frank, R., Jänsch, L., et al. (2009). IRSp53 links the

enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation.

Cell Host Microbe 5, 244–258.

Williams, D.H., Stephens, E., O’Brien, D.P., and Zhou, M. (2004).

Understanding noncovalent interactions: ligand binding energy and catalytic

efficiency from ligand-induced reductions in motion within receptors and

enzymes. Angew. Chem. Int. Ed. Engl. 43, 6596–6616.

Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E.,

Markley, J.L., and Sykes, B.D. (1995). 1H, 13C and 15N chemical shift refer-

encing in biomolecular NMR. J. Biomol. NMR 6, 135–140.

Wittekind, M., Mapelli, C., Farmer, B.T., 2nd, Suen, K.-L., Goldfarb, V., Tsao,

J., Lavoie, T., Barbacid, M., Meyers, C.A., and Mueller, L. (1994). Orientation

of peptide fragments from Sos proteins bound to the N-terminal SH3 domain

of Grb2 determined by NMR spectroscopy. Biochemistry 33, 13531–13539.

Wootton, J.C., and Drummond, M.H. (1989). The Q-linker: a class of interdo-

main sequences found in bacterial multidomain regulatory proteins. Protein

Eng. 2, 535–543.
703, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 1703


	Enterohaemorrhagic Escherichia Coli Exploits a Tryptophan Switch to Hijack Host F-Actin Assembly
	Introduction
	Results
	Structural and Dynamical Characterization of EspFU R475 Free in Solution
	Trimolecular Complex between EspFU R475, N-WASP GBD, and IRTKS SH3
	Thermodynamical Characterization of N-WASP GBD-EspFU Interaction
	A Tryptophan in EspFU Linker Is Critical for High Affinity
	Thermodynamics of Binding of EspFU and Eps8 Peptides with IRTKS SH3
	W-to-A Mutation Disrupts the Recruitment of EspFU to Sites of Bacterial Attachment
	An Engineered Tryptophan Switch Promotes Intracellular Association of IRTKS with Eps8

	Discussion
	Experimental Procedures
	Yeast Two-Hybrid Analyses
	Mammalian Cell Infections and Immunofluorescence Microscopy
	NMR Spectroscopy
	Structure Calculation
	Isothermal Titration Calorimetry

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


