
Journal of Computational and Applied Mathematics 236 (2012) 2741–2753

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A global best artificial bee colony algorithm for global optimization
Weifeng Gao ∗, Sanyang Liu, Lingling Huang
Department of Applied Mathematics, Xidian University, Xi’an 710071, China

a r t i c l e i n f o

Article history:
Received 9 September 2010
Received in revised form 31 October 2011

Keywords:
Artificial bee colony algorithm
Initial population
Variant artificial bee colony algorithm
Search strategy

a b s t r a c t

The artificial bee colony (ABC) algorithm is a relatively new optimization technique which
has been shown to be competitive to other population-based algorithms. However, there
is still an insufficiency in the ABC algorithm regarding its solution search equation, which
is good at exploration but poor at exploitation. Inspired by differential evolution (DE), we
propose a modified ABC algorithm (denoted as ABC/best), which is based on that each bee
searches only around the best solution of the previous iteration in order to improve the
exploitation. In addition, to enhance the global convergence, when producing the initial
population and scout bees, both chaotic systems and opposition-based learning method
are employed. Experiments are conducted on a set of 26 benchmark functions. The results
demonstrate good performance of ABC/best in solving complex numerical optimization
problems when compared with two ABC based algorithms.

© 2012 Elsevier B.V. All rights reserved.

Contents

1. Introduction.. 2741
2. Artificial bee colony algorithm.. 2742
3. Variant artificial bee colony algorithm... 2743

3.1. Initial population ... 2743
3.2. Two modified search strategies .. 2744
3.3. Two variant artificial bee colony algorithms (ABC/best)... 2745

4. Experiments ... 2746
4.1. Benchmark functions and parameter settings ... 2746
4.2. Experimental results.. 2747

4.2.1. Performance comparison between the proposed initialization with the random initialization......................... 2747
4.2.2. Performance comparison between the proposed algorithms with two ABC based algorithms.......................... 2749

4.3. Effects of limit on the performance of ABC/best .. 2751
4.4. Effects of each technique on the performance of ABC/best/1 ... 2752

5. Conclusion .. 2753
Acknowledgments ... 2753
References... 2753

1. Introduction

Optimization problems arise in a variety of fields, including engineering design, operational research, information science
and related areas. Effective and efficient optimization algorithms are always needed to tackle increasingly complex real

∗ Corresponding author. Tel.: +86 02988201214; fax: +86 02988204396.
E-mail address: gaoweifeng2004@126.com (W. Gao).

0377-0427/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.01.013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82468337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cam.2012.01.013
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:gaoweifeng2004@126.com
http://dx.doi.org/10.1016/j.cam.2012.01.013

2742 W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753

world optimization problems. Stochastic optimization algorithms, such as genetic algorithm (GA) [1], particle swarm
optimization (PSO) [2], ant colony optimization (ACO) [3], biogeography-based optimization (BBO) [4], harmony search
(HS) [5], and artificial bee colony (ABC) algorithm [6], have been shown to be successful in dealing with many optimization
problems.

In this paper, we concentrate on artificial bee colony algorithm, developed by Karaboga [6] based on simulating the
foraging behavior of honey bee swarm. Numerical comparisons demonstrated that the performance of ABC algorithm is
competitive to other population-based algorithms with an advantage of employing fewer control parameters [7–9]. Due to
its simplicity and ease of implementation, ABC algorithm has captured much attention and has been applied to solve many
practical optimization problems [10–12] since its invention in 2005.

However, similar to other evolutionary algorithms, ABC algorithm also faces up to some challenging problems. For
example, the convergence speed of ABC algorithm is typically slower than those of representative population-based
algorithms (e.g., differential evolution (DE) [13] and PSO) when handling those unimodal problems [9]. What is more, ABC
algorithm can easily get trapped in the local optima when solving complex multimodal problems [9]. The reasons are as
follows [14]. It is well known that both exploration and exploitation are necessary for a population-based optimization
algorithm. In practice, the exploration and exploitation contradicts to each other. In order to achieve good performances on
problem optimizations, the two abilities should be well balanced. While, we observed that the solution search equation of
ABC algorithmwhich is used to generate new candidate solutions based on the information of previous solutions, is good at
exploration but poor at exploitation, which results in the above two insufficiencies.

Therefore, accelerating convergence speed and avoiding the local optimahave become twomost important and appealing
goals in ABC research. A number of variant ABC algorithms have, hence, been proposed to achieve these two goals [14–16].
However, so far, it is seen to be difficult to simultaneously achieve both goals. For example, the chaotic ABC algorithm
(CABC3) in [16] focuses on avoiding the local optima, but brings in a more extra function evaluations in chaotic search as a
result.

To achieve both goals, inspired by DE, we propose an improved ABC algorithm called ABC/best, which is based on that
each bee searches only around the best solution of the previous iteration to improve the exploitation. In addition, to enhance
the global convergence, when producing the initial population and scout bees, both chaotic systems and opposition-based
learning method are employed. The rest of this paper is organized as follows. Section 2 summarizes ABC algorithm. The
improved ABC algorithm called ABC/best algorithm is presented and analyzed in Section 3. Section 4 presents and discusses
the experimental results. Finally, the conclusion is drawn in Section 5.

2. Artificial bee colony algorithm

The artificial bee colony consists of three groups of bees: employed bees, onlookers and scout bees. All bees which are
currently exploiting a food source are known as employed. The employed bees exploit the food source, carry the information
about food source back to the hive and share this information with onlooker bees. Onlookers bees are waiting in the hive
for the information to be shared by the employed bees about their discovered food sources and scouts bees will always
be searching for new food sources near the hive. Employed bees share information about food sources by dancing in the
designated dance area inside the hive. The nature of dance is proportional to the nectar content of food source just exploited
by the dancing bee. Onlooker beeswatch the dance and choose a food source according to the probability proportional to the
quality of that food source. Therefore, good food sources attractmore onlooker bees compared to bad ones.Whenever a food
source is exploited fully, all the employed bees associatedwith it abandon the food source, and become scout. Scout bees can
be visualized as performing the job of exploration, whereas employed and onlooker bees can be visualized as performing
the job of exploitation.

In ABC algorithm, each food source is a possible solution for the problem under consideration and the nectar amount of a
food source represents the quality of the solution represented by the fitness value. The number of food sources is the same
as the number of employed bees and there is exactly one employed bee for every food source.

An onlooker bee chooses a food source depending on the probability value Pi associated with that food source,

Pi =
fit i

SN
i=1

fit i

, (1)

where fit i is the fitness value of solution i; SN is the number of food sources which is equal to the number of employed bees
or onlooker bees.

In order to produce a candidate food position Vi = [vi,1, vi,2, . . . , vi,D] from the old one Xi = [xi,1, xi,2, . . . , xi,D] in
memory, the ABC uses the following expression:

vi,j = xi,j + Φi,j(xi,j − xk,j), (2)

where k ∈ {1, 2, . . . , SN} and j ∈ {1, 2, . . . ,D} are randomly chosen indexes; k has to be different from i; D is the number
of variables (problem dimension); Φi,j is a random number in the range [−1, 1].

W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753 2743

After each candidate source position is produced and evaluated by the artificial bee, its performance is compared with
that of the old one. If the new food source has an equal or better quality than the old source, the old one is replaced by the
new one. Otherwise, the old one is retained.

If a position cannot be improved further through a predetermined number of cycles, then the food source is assumed to
be abandoned. The value of predetermined number of cycles is an important control parameter of ABC algorithm, which is
called limit for abandonment. Assume that the abandoned source is Xi and j ∈ {1, 2, . . . ,D}, then the scout discovers a new
food source to be replaced with Xi. This operation can be defined as

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j). (3)

3. Variant artificial bee colony algorithm

3.1. Initial population

Population initialization is a crucial task in evolutionary algorithms because it can affect the convergence speed and
the quality of the final solution. If no information about the solution is available, then random initialization is the most
commonly used method to generate candidate solutions (initial population). This paper proposes a novel initialization
approach which employs chaotic systems [16] and opposition-based learning method [17] which possess ergodicity,
randomness and irregularity to generate initial population. Here, sinusoidal iterator is selected and its equation is defined as
follows

chk+1 = sin(πchk), chk ∈ (0, 1), k = 0, 1, 2, . . . , K , (4)

where k is the iteration counter, K is the preset maximum number of chaotic iterations.
Based on these operations, Gao and Liu [18] proposed the following algorithm to generate initial population which can

be used instead of a pure random initialization.

Algorithm 3.1.

01 Set the maximum number of chaotic iteration K = 300, the population scale SN , and the
individual counter i = 1, j = 1.
02 For i = 1 to SN
03 For j = 1 to D
04 Randomly initialize variables ch0,j ∈ (0, 1); set iteration counter k = 0.
05 For k = 1 to K
06 chk+1,j = sin(πchk)

07 End
08 Pi,j = xmin,j + chk,j(xmax,j − xmin,j)

09 End
10 End
11 Set the individual counter i = 1, j = 1.
12 For i = 1 to SN
13 For j = 1 to D
14 OPi,j = xmin,j + xmax,j − Pi,j
15 End
16 End
17 Selecting SN fittest individuals from set the {P(SN) ∪ OP(SN)} as initial population.

Remark 3.1. Algorithm 3.1 is also used by scout bees to discover a new food source.

Note that in order to find the existing region of the optimal solutions faster, the population should cover thewhole search
space better in the initialization period of the evolutionary algorithms. Specially, the population diversity (‘‘Diversity’’ for
short) is a measurement of the cover degree, which is defined as follows:

Diversity =
1
SN

SN
i=1

 1
D

D
j=1


xi,j − x̄j

2
, (5)

where SN denotes the number of food sources which is equal to the number of employed bees or onlooker bees, D is
the number of variables (problem dimension), and x̄ is the center position of the colony. This definition will be used in
Section 4.2.1.

2744 W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753

Fig. 1. The convergence characteristics of function f1 .

3.2. Two modified search strategies

Differential evolution (DE) [13] has been shown to be a simple yet efficient evolutionary algorithm formany optimization
problems in real-world applications. It follows the general procedure of an evolutionary algorithm. After initialization, DE
enters a loop of evolutionary operations: mutation, crossover, and selection. There are several variant DE algorithms which
are different in that their mutation strategies are adopted differently. The following are different mutation strategies used
in the literature:

‘‘DE/best/1’’ : Vi = Xbest + F(Xr1 − Xr2), (6)
‘‘DE/best/2’’ : Vi = Xbest + F(Xr1 − Xr2) + F(Xr3 − Xr4), (7)

where i = {1, 2, . . . , SN} and r1, r2, r3 and r4 are mutually different random integer indices selected from {1, 2, . . . , SN}.
F , commonly known as scaling factor or amplification factor, is a positive real number, typically less than 1.0 that controls
the rate at which the population evolves.

The best solutions in the current population are very useful sources that can be used to improve the convergence
performance. The examples are the ‘‘DE/best/1’’ and ‘‘DE/best/2’’, where the best solutions explored in the history are used to
direct themovement of the current population. Based on these two variant DE algorithms and the property of ABC algorithm,
the corresponding strategies in ABC algorithm are devised as follows

‘‘ABC/best/1’’ : vi,j = xbest,j + Φi,j(xr1,j − xr2,j), (8)

‘‘ABC/ best/2’’ : vi,j = xbest,j + Φi,j(xr1,j − xr2,j) + Φi,j(xr3,j − xr4,j), (9)

where the indices r1, r2, r3 and r4 aremutually exclusive integers randomly chosen from {1, 2, . . . , SN}, and different from
the base index i. Xbest is the best individual vector with the best fitness in the current population and j ∈ {1, 2, . . . ,D} is
randomly chosen indexes. Φi,j is a random number in the range [−1, 1]. In Eq. (2), the coefficient Φi,j is a uniform random
number in [−1, 1] and xk,j is a random individual in the population, therefore, the solution search dominated by Eq. (2) is
random enough for exploration. In other words, the solution search equation described by Eq. (2) is good at exploration but
poor at exploitation. However, according to Eq. (8) or Eq. (9), ‘‘ABC/best ’’ can drive the new candidate solution only around
the best solution of the previous iteration. Therefore, the modified solution search equation described by Eq. (8) or Eq. (9)
can increase the exploitation of ABC algorithm.

Fig. 1 graphically presents the convergence characteristics of function f1 obtained in the 30 independent runs by ABC
and ABC2 (ABC only combined with the search strategies). It can be seen from Fig. 1 that in the later stage of evolution,
ABC enters a long period of stagnation. While, ABC2 always keeps convergent fast. The reason is that the search equation of
ABC is good at exploration but poor at exploitation. Exploitation ability is important for an optimization or search algorithm
to converge fast and to refine the solution for high accuracy, especially in the later stage of evolution. The best solution
Xbest in the current population is very useful source which can be used to improve the convergence performance. That is
the motivation why we propose the new search equations. With the help of Xbest, the rest of the bees will follow it and
converge to the near region of Xbest. Therefore, we modify the solution search equation by applying the global best solution
to guide the search of new candidate solutions in order to improve the exploitation. Fig. 2 shows the population distribution
observed at various stages of ABC andABC2, respectively.We candirectly see fromFig. 2 that compared toABC, ABC2with the
help of Xbest can converge to global optimum rapidly. Specially, following the initialization, the bees of ABC start to explore
throughout the search space. Then, the bees converge to the best solution very slowly. However, with the guidance of Xbest,

W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753 2745

Fig. 2. Population distribution observed at various stages in ABC and ABC2.

ABC2 pull many bees to swarm together toward the optimal region. Then, the population converges to the global optimum
quickly.

3.3. Two variant artificial bee colony algorithms (ABC/best)

Having discussed the proposed initialization and the search equations, we combine them and propose Algorithm 3.2.
Due to the search equations play the crucial role in the algorithms, so we name the relevant algorithms after the

2746 W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753

search equations. The complete computational procedure is outlined as follows:

Algorithm 3.2 (ABC/Best Algorithm).
01 Initialization: Preset population size SN and limit .
02 Perform Algorithm 3.1 to create an initial population
P = {Xi|i = 1, 2, . . . , SN}, calculate the function

values of the population F = {Fi|i = 1, 2, . . . , SN}.
03 For g = 1 to G
04 For i = 1 to SN
05 Randomly choose Xr1 ≠ Xi,Xr2 ≠ Xi,Xr2 ≠ Xr1 from current
population P .
06 Randomly choose j from {1, 2, . . . ,D}.
07 vi,j = xbest,j + Φi,j(xr1,j − xr2,j)
08 If F(Vi) ≤ F(Xi)

09 Xi = Vi, triali = 1
10 Else
11 triali = triali + 1
12 End
13 If F > 0
14 fit i = 1/(1 + Fi)
15 Else
16 fit i = 1 + abs(Fi)
17 End
18 End
19 Calculate the probability values Pi for the solutions Xi by (1)
(i = 1, 2, . . . , SN).
20 Apply roulette wheel selection method to select SN onlookers
P1 = {Xs(i)|i = 1, 2, . . . , SN}

from the employed bees P .
21 For i = 1 to SN
22 Randomly choose Xr1 ≠ Xs(i),Xr2 ≠ Xs(i),Xr2 ≠ Xr1 from current
population P1.
23 Randomly choose j from {1, 2, . . . ,D}.
24 vi,j = xbest,j + Φi,j(xr1,j − xr2,j)
25 If F(Vi) ≤ F(Xs(i))

26 Xs(i) = Vi, trials(i) = 1
27 Else
28 trials(i) = trials(i) + 1
29 End
30 End
31 If max(triali) > limit
32 Replace Xi with a new produced solution by Algorithm 3.1.
33 End
34 Memorize the best solution achieved so far.
35 End

Remark 3.2. The solution search equation of ABC/best/1 algorithm is described by Eq. (7). While, that of ABC/best/2
algorithm is described by Eq. (8).

4. Experiments

4.1. Benchmark functions and parameter settings

In order to test the performance of ABC/best algorithm, it is applied tominimize a set of 15 scalable benchmark functions
of dimensionsD = 30 or 60 [9,15], 2 functions of dimensionsD = 100 or 200 [17] and a set of functions of lower dimensions
D = 3 or 4 [9], as shown in Table 1.

Some comparative experiments on numerical function optimization have been conducted for ABC algorithm in [7–9]. The
experimental results show that ABC algorithm is competitive with some conventional optimization algorithms, such as GA,

W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753 2747

Table 1
Benchmark functions used in experiments.

Test functions D Search range Optimum value

f1(X) =
D

i=1 xi
2 30 and 60 (−100, 100)D 0

f2(X) =
D

i=1 |xi| +
D

i=1 |xi| 30 and 60 (−10, 10)D 0
f3(X) = maxi{|xi|, 1 ≤ i ≤ D} 30 and 60 (−100, 100)D 0
f4(X) =

D
i=1(⌊xi + 0.5⌋)2 30 and 60 (−100, 100)D 0

f5(X) =
D

i=1 ixi + rand[0, 1) 30 and 60 (−1.28, 1.28)D 0

f6(X) =
D

i=1[xi
2
− 10 cos(2πxi) + 10] 30 and 60 (−5.12, 5.12)D 0

f7(X) =
D

i=1[yi
2
− 10 cos(2πyi) + 10] where

yi =


xi |xi| < 0.5
round(2xi)

2
|xi| ≥ 0.5

30 and 60 (−5.12, 5.12)D 0

f8(X) =
1

4000

D
i=1 xi

2
−

D
i=1 cos


xi√
i


+ 1 30 and 60 (−600, 600)D 0

f9(X) = D ∗ 418.982887 −
D

i=1


xi sin

√
|xi|


30 and 60 (−500, 500)D 0

f10(X) = −20 exp


−0.2


1
D

D
i=1 x

2
i


−exp


1
D

D
i=1 cos 2πxi


+20+e 30 and 60 (−32, 32)D 0

f11(X) =

π
D


10 sin2 (πy1) +

D−1
i=1 (yi − 1)2 [1 + sin2 (πyi+1)] + (yD − 1)2


+D

i=1 u (xi, 10, 100, 4)

30 and 60 (−50, 50)D 0

f12(X) = 0.1

sin2 (3πx1) +

D−1
i=1 (xi − 1)2


1 + sin2 (3πxi+1)


+ (xD − 1)2


1 + sin2 (3πxD)


+

D
i=1 u (xi, 5, 100, 4)

30 and 60 (−50, 50)D 0

f13(X) =
D

i=1 |xi · sin (xi) + 0.1 · xi| 30 and 60 (−10, 10)D 0

f14(X) =
D−1

i=1 (xi − 1)2

1 + sin2 (3πxi+1)


+ sin2 (3πx1) +

|xD − 1|

1 + sin2 (3πxD)

 30 and 60 (−10, 10)D 0

f15(X) =
D

i=1

k max
k=0


ak cos


2πbk (xi + 0.5)


−

D
k max

k=0


ak cos


2πbk (xi + 0.5)


where a = 0.5, b = 3, kamx = 20.

30 and 60 (−0.5, 0.5)D 0

f16(X) =
1
n

D
i=1


x4i − 16x2i + 5xi


100 and 200 (−5, 5)D −78.33236 for D = 100

f17(X) = −
D

i=1 sin (xi) sin20


i×x2i
π


100 and 200 (0, π)D −99.2084 for D = 100

f18(X) =
10

i=1


ai −

x1

b2i +bix2


b2i +bix3+x4

2

4 (−5, 5)D 0.0003075

f19(X) = 100

x21 − x2

2
+ (x1 − 1)2 + (x3 − 1)2 + 90


x23 − x4

2
+

10.1

(x2 − 1)2 + (x4 − 1)2


+ 19.8 (x2 − 1) (x4 − 1)

4 (−10, 10)D 0

f20(X) =
D

k=1

D
i=1 x

k
i


− bk

2
4 (−0,D)D 0

f21(X) =

D
i=1 x

2
j


+

D
i=1 0.5ixi

2
+

D
i=1 0.5ixi

4
3 and 4 (−5, 5)D 0

f22(X) = 0.5 +

sin2
D

i=1 x2i


−0.5

1+0.001
D

i=1 x2i
2 3 and 4 (−100, 100)D 0

f23(X) = cos

2π

N
i=1 x

2
i


+ 0.1

N
i=1 x

2
i + 1 3 and 4 (−100, 100)D 0

f24(X) =
D−1

i=1


100


x2i − xi+1

2
+ (xi − 1)2


3 and 4 (−30, 30)D 0

f25(X) = −
D

i=1


(X − ai) (X − ai)T + ci

−1
7 and 10 (0, 10)D −10.4 and 10.5

f26(X) = −
4

i=1 ci exp
D

j=1 aij

xj − pij

2 3 and 6 (0, 1)D −3.86 and −3.32

DE and PSO. In this section, a set of experiments tested on 26 numerical benchmark function are performed to compare the
performance of ABC/best algorithm with that of ABC algorithm. The population size is 100 which is the same as that in [8],
limit is 0.6 ∗ SN ∗ D and the maximum number of generations is listed in Table 3. Each of the experiments is repeated 30
times independently. And the reported results are themeans and standard deviations of the statistical experimental data. For
clarity, the results of the best algorithm are marked in boldface, respectively; if not all algorithms produce identical results.
All the algorithms are coded in Matlab 7.0 and the simulations are run on a Pentium IV 2.4 GHz with 512 MB memory
capacity. And you can get the source code of ABC/best from me by Email.

4.2. Experimental results

4.2.1. Performance comparison between the proposed initialization with the random initialization
In order to illustrate the randomness and sensitivity dependence on the initial conditions of Eq. (4), we present Figs. 3

and 4, which show the distribution of the chaotic sequence. As is shown in Fig. 3, the chaotic sequence is relatively scattered,

2748 W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753

Fig. 3. The relationship between k and chk .

Fig. 4. The sensitivity to initial condition.

Table 2
Performance comparison of random initialization and proposed initialization.

Fun Random initialization Proposed initialization
Fitness Diversity Fitness Diversity

f1 1.0254e+05 56.7520 8.6928e+04 67.8944
f2 9.3031e+19 5.7977 5.4117e+15 6.8821
f3 97.5630 58.3586 94.0856 69.9976
f4 1.0042e+05 56.6417 9.1010e+04 67.9087
f5 256.4803 0.7280 190.4312 0.8618
f6 549.4686 2.9257 518.3174 3.5084
f7 563.2750 2.9521 483.3585 3.5343
f8 898.7446 342.3789 812.9512 405.7734
f9 1.2830e+04 281.3224 1.1720e+04 352.6507
f10 21.1550 18.1921 21.0200 22.2830
f11 6.2992e+08 28.7773 3.7820e+08 34.0883
f12 1.1253e+09 28.2784 8.0963e+08 34.2690
f13 85.3119 5.4509 77.4637 6.8258
f14 1.4741e+03 5.6438 1.2560e+03 6.9533
f15 30.1261 0.2819 28.2750 0.3349

and almost traverses the whole interval [0, 1] when k gets big enough. In Fig. 4, ‘+’ indicates the initial value of the sequence
is set to 0.7. While ‘.’ stands for the initial value of the sequence is set to 0.700001. It can be seen from Fig. 4 that even a small
difference between the initial values (only 0.000001) can exert non-ignorable influence on the sequence.

Next, we compare the performance of the proposed initialization with the random initialization in terms of Fitness and
Diversity. As all test functions are minimization problems, the smaller the Fitness, the better it is. While Diversity is the
opposite. The results are shown in Table 2. So, it can be seen from Table 2 that the Mean and Diversity of the proposed

W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753 2749

Table 3
Performance comparison of ABC, ABC/best/2 and ABC/best/1.

Fun D G ABC ABC/best/2 ABC/best/1
Mean SD Mean SD Mean SD

f1
30 1000 6.99e−10 5.91e−10 4.37e−22 2.14e−22 1.57e−27 1.14e−27
60 2000 1.94e−09 8.33e−10 1.57e−20 4.90e−21 2.42e−25 1.09e−25

f2
30 1000 2.36e−06 8.32e−07 2.73e−12 4.61e−13 3.45e−15 8.79e−16
60 2000 8.30e−06 8.93e−07 2.14e−11 4.39e−12 5.94e−14 1.28e−14

f3
30 1000 1.70e+01 1.95e−00 7.89e−00 1.77e−00 7.02e−00 9.94e−01
60 2000 3.79e+01 3.66e−00 3.34e+01 2.45e−00 3.41e+01 2.89e−00

f4
30 1000 0 0 0 0 0 0
60 2000 0 0 0 0 0 0

f5
30 1000 1.01e−01 2.44e−02 3.72e−02 1.73e−02 3.20e−02 6.03e−03
60 2000 2.58e−01 2.92e−02 1.02e−01 1.35e−02 9.91e−02 1.07e−02

f6
30 1000 6.63e−03 1.71e−02 0 0 0 0
60 2000 3.03e−01 4.53e−01 0 0 0 0

f7
30 1000 4.12e−01 4.81e−01 0 0 0 0
60 2000 2.55e−00 1.45e−00 0 0 0 0

f8
30 1000 8.73e−09 1.47e−08 4.47e−08 1.05e−07 4.23e−11 2.16e−11
60 2000 4.46e−09 6.68e−09 2.18e−10 4.33e−10 0 0

f9
30 1000 2.05e+02 1.63e+02 0 0 0 0
60 2000 6.93e+02 1.39e+02 3.67e−11 3.17e−12 3.74e−11 2.59e−12

f10
30 1000 1.02e−05 4.15e−06 1.89e−11 4.75e−12 1.26e−13 3.48e−14
60 2000 2.05e−05 5.54e−06 1.08e−10 4.97e−12 3.40e−13 6.35e−14

f11
30 1000 1.60e−11 1.95e−11 9.84e−24 9.84e−24 2.85e−30 2.19e−30
60 2000 1.18e−10 8.99e−11 9.92e−23 2.82e−23 2.89e−28 1.54e−28

f12
30 1000 3.72e−09 1.79e−09 2.17e−22 1.55e−22 3.88e−29 1.57e−29
60 2000 1.06e−08 6.25e−09 5.54e−21 1.35e−21 2.06e−26 5.74e−27

f13
30 1000 1.38e−04 6.38e−05 7.34e−10 1.01e−09 1.32e−14 5.04e−15
60 2000 1.32e−03 1.21e−03 2.68e−08 1.84e−08 4.46e−13 4.13e−13

f14
30 1000 3.21e−09 4.41e−09 3.58e−21 5.69e−21 6.05e−28 3.30e−28
60 2000 2.35e−09 2.35e−09 5.28e−21 2.64e−21 3.29e−26 1.29e−26

f15
30 1000 1.52e−01 2.65e−02 6.32e−05 4.44e−05 2.84e−15 2.13e−15
60 2000 4.32e−01 3.33e−02 7.76e−04 4.28e−04 3.17e−12 4.59e−12

f16
100 1000 −77.3547 1.59e−01 −78.3323 1.13e−05 −78.3323 9.77e−07
200 2000 −77.1908 2.64e−01 −78.3322 2.23e−05 −78.3323 2.50e−06

f17
100 1000 −83.3160 2.90e−01 −84.9950 4.40e−01 −90.3619 3.54e−01
200 2000 −163.4126 9.91e−01 −165.5409 7.12e−01 −174.0796 8.74e−01

f18 4 2000 4.31e−04 4.51e−05 4.13e−04 7.48e−05 3.16e−04 5.33e−06
f19 4 2000 1.17e−01 6.94e−02 2.41e−02 2.18e−02 2.14e−03 2.21e−03
f20 4 2000 6.67e−03 5.98e−03 9.24e−03 5.21e−03 3.22e−03 3.01e−03

f21
3 1000 9.65e−74 1.93e−73 7.1e−120 1.4e−119 4.9e−216 0
4 2000 5.03e−61 9.96e−61 5.87e−06 1.17e−06 2.04e−63 6.11e−63

f22
3 1000 2.07e−03 3.91e−03 3.55e−05 5.63e−05 2.57e−12 1.12e−11
4 2000 4.06e−02 4.84e−02 1.35e−03 3.27e−03 2.51e−06 7.54e−06

f23
3 1000 1.28e−06 3.79e−06 5.75e−05 3.92e−05 0 0
4 2000 3.39e−05 2.80e−04 3.92e−04 7.70e−05 0 0

f24
3 1000 3.93e−02 3.11e−02 1.95e−03 1.52e−03 9.06e−06 1.41e−05
4 2000 3.21e−02 3.26e−02 1.86e−03 1.03e−03 1.29e−07 3.83e−07

f25
4 1000 −10.4029 1.58e−15 −10.4029 1.77e−15 −10.4029 1.12e−15
4 1000 −10.5364 3.39e−14 −10.5364 1.65e−15 −10.5364 1.58e−15

f26
3 1000 −3.8628 2.11e−15 −3.8628 8.88e−16 −3.8628 8.88e−16
6 1000 −3.3220 4.44e−16 −3.3220 4.44e−16 −3.3220 4.44e−16

initialization is better than the random initialization for all the test functions. In a word, by combining the advantages of
chaotic systems and opposition-based learning method, the proposed initialization can increase the population diversity
and obtain good initial solutions.

4.2.2. Performance comparison between the proposed algorithms with two ABC based algorithms
The performance on the solution accuracy of ABC is compared with ABC/best. The results are shown in Table 3 in

terms of the mean and SD of the solutions obtained in the 30 independent runs by each algorithm. Fig. 5 graphically

2750 W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753

Fig. 5. Convergence performance of the different ABCs on the 10 test functions.

presents the comparison in terms of convergence characteristics of the evolutionary processes in solving the 10 different
problems.

W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753 2751

Table 4
Performance comparison of GABC, E-ABC, ABC/best/2 and ABC/best/1.

Algorithm Schaffer Rosenbrock Sphere
D = 2 D = 3 D = 2 D = 3 D = 30 D = 60

GABC (C = 1.5) Mean 0 1.85e−18 1.68e−04 2.65e−03 4.17e−16 1.43e−15
SD 0 1.01e−17 4.42e−04 2.22e−03 7.36e−17 1.37e−16

E-ABC Mean 0 2.79e−07 4.63e−04 1.20e−02 1.67e−16 1.41e−15
SD 0 2.24e−07 4.57e−04 7.06e−03 2.70e−16 1.82e−15

ABC/best/2 Mean 0 3.56e−06 4.42e−04 9.90e−04 1.7e−126 3.72e−58
SD 0 1.27e−06 2.39e−04 6.92e−04 2.7e−126 2.67e−58

ABC/best/1 Mean 0 0 4.99e−06 5.52e−06 1.1e−150 4.40e−69
SD 0 0 8.22e−06 3.03e−06 1.4e−150 2.56e−69

Algorithm Griewank Rastrigin Ackley
D = 30 D = 60 D = 30 D = 60 D = 30 D = 60

GABC (C = 1.5) Mean 2.96e−17 7.54e−16 1.32e−14 3.52e−13 3.21e−14 1.66e−13
SD 4.99e−17 4.12e−16 2.44e−14 1.24e−13 3.25e−15 2.21e−14

E-ABC Mean 4.90e−14 4.19e−14 9.97e−15 7.51e−13 1.22e−10 1.55e−07
SD 7.31e−03 9.05e−03 3.87e−15 6.15e−13 4.86e−11 2.84e−08

ABC/best/2 Mean 0 0 0 0 2.50e−14 7.12e−14
SD 0 0 0 0 3.48e−15 4.14e−15

ABC/best/1 Mean 0 0 0 0 1.72e−14 6.62e−14
SD 0 0 0 0 2.84e−15 1.74e−15

Table 5
Effect of limit on the performance of ABC/best.

Function limit = 0.2 ∗ SN ∗ D limit = 0.6 ∗ SN ∗ D limit = SN ∗ D
ABC/best/2 ABC/best/1 ABC/best/2 ABC/best/1 ABC/best/2 ABC/best/1

Sphere Mean 3.63e−22 2.28e−27 4.37e−22 1.57e−27 5.08e−22 1.30e−27
SD 2.72e−22 1.21e−27 2.14e−22 1.14e−27 3.00e−22 7.44e−28

Griewank Mean 2.46e−04 7.28e−11 4.47e−08 4.23e−11 8.18e−08 2.31e−06
SD 1.33e−03 2.95e−11 1.05e−07 2.16e−11 3.71e−07 5.66e−06

Rastrigin Mean 0 0 0 0 0 5.85e−02
SD 0 0 0 0 0 2.34e−01

Ackley Mean 1.92e−11 1.43e−13 1.89e−11 1.26e−13 1.96e−11 1.28e−13
SD 5.75e−12 1.86e−14 4.75e−12 3.48e−14 6.04e−12 2.66e−14

An interesting result is that all the ABC algorithms have most reliably found the minimum of f4. It is a region rather than
a point in f4 that is the optimum. Hence, this problem may relatively be easy to solve with a 100% success rate. Important
observations about the convergence rate and reliability of different algorithms can be made from the results presented in
Fig. 5 and Table 3. These results suggest that the convergence rate of ABC/best/1 and ABC/best/2 is the best and second
best for the most test functions. In particular, ABC/best/1 offers the highest accuracy on almost all the functions except
f3 with D = 60. The ABC/best/2 ranks first on functions f3 with D = 60, f6, f7 and f9 with D = 30, and ranks second
on functions f1f2, f3 with D = 30, f5, f8 with D = 60, f9 with D = 60, f10–f19, f21 with D = 3, f22 and f24. In the case
of functions f25 and f26, simulation results show that there is no obviously superior algorithm in the means. While, the
ABC/best/1 greatly outperforms ABC and ABC/best/2 with better SD. In a word, the superiority in terms of search ability and
efficiency of ABC/best should be attributed to an appropriate balance between exploration and exploitation.

In Table 4, ABC/best is further comparedwith (GABC) in [14] and E-ABC in [19]. ABC/best and E-ABC follow the parameter
settings in the original paper of GABC [14]. It is clear that ABC/best works best and second best in most cases and achieves
better performance than GABC and E-ABC.

Summarizing the earlier statements, the ability of ABC/best is that it can prevent bees from falling into the localminimum,
reduce evolution process significantly and more efficiently (converges faster), compute with more efficiency, and improve
bees’ searching abilities for ABC algorithms.

4.3. Effects of limit on the performance of ABC/best

In this section, four different kinds of 30-dimensional test functions are used to investigate the impact of limit . They are
Sphere, Griewank, Rastrigin and Ackley. ABC/best is run 30 times on each of these functions, and themean values of the final
results are shown in Table 5. From Table 5, we can observe that limit can influence the results. When limit is 0.6∗ SN ∗D, we
obtain a faster convergence speed and better results on the Griewank function. For the other three test functions, the effect
of limit on the performance of ABC/best is very little except Rastrigin at limit = SN ∗ D. Therefore, in our experiments, the
selective probability limit is set at 0.6 ∗ SN ∗ D for all test functions.

2752 W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753

Table 6
Performance comparison of ABC, ABC1, ABC2 and ABC/best/1.

Fun Accept ABC ABC1 ABC2 ABC/best/1
FEs SR FEs SR FEs SR FEs SR

f1 1e−10 0 0 46985 30 45890 30
f2 1e−10 0 0 73080 30 71815 30
f3 5e−00 0 0 99860 3 90693 20
f4 1e−10 15520 30 15300 30 13957 30 13163 30
f5 1e−01 87497 16 85820 18 35060 30 32207 30
f6 1e−10 0 0 52183 30 51277 30
f7 1e−10 0 0 54067 30 53163 30
f8 1e−10 0 0 57750 30 60383 30
f9 1e−10 0 0 50830 30 48803 30
f10 1e−10 0 0 78030 30 76972 30
f11 1e−10 96571 28 94810 30 40353 30 39477 30
f12 1e−10 0 0 44207 30 43137 30
f13 1e−10 0 0 76367 30 75117 30
f14 1e−10 99840 1 98960 2 44930 30 43897 30
f15 1e−10 0 0 84683 30 83857 30

Fig. 6. Convergence performance of the different ABCs on the 4 test functions.

4.4. Effects of each technique on the performance of ABC/best/1

We compare the ABC/best/1 with ABC, ABC1 (ABC only combined with the initialization) and ABC2 (ABC only combined
with the search strategies). The computational results are summarized in Table 6. The results given there are the average
FEs needed to reach the threshold expressed as acceptable solutions (column 2) specified in Table 6. In addition, successful
runs (SR) of the 30 independent runs for each function are also compared. Fig. 6 presents the convergence performance of
the different ABCs on the 4 test functions.

W. Gao et al. / Journal of Computational and Applied Mathematics 236 (2012) 2741–2753 2753

It can be observed from Table 6 that, both in the aspects of FEs and SR, ABC1 and ABC2 are superior to ABC, which
implies that both the initialization and the search strategies have positive effect on the performance of the algorithm.
Specifically, ABC2 greatly outperforms ABC on all the 15 functions. On the other hand, the performance comparisons of
ABC2 and ABC/best/1 are not so apparent as those of ABC1 and ABC/best/1, which means that the search strategies play
a pivotal role in the proposed algorithm. However, though the contribution of the initialization is far less than the search
strategies, the comparison of ABC/best/1 and ABC2 show the initialization is at work. At the same time, it can be seen from
Fig. 6 that both the initialization and search equations can increase the performance of the algorithm. Furthermore, we can
see that how much they make contribution to improving the performance of the algorithm respectively.

5. Conclusion

In this paper, we have developed a novel algorithm to solve global optimization problems, called ABC/best in which
the initial population and scout bees are generated by combining chaotic systems with opposition-based learning method,
and the solution search equation is based on that each bee searches only around the best solution of the previous iteration
to improve the exploitation. The experimental results tested on 26 benchmark functions show that ABC/best/1 algorithm
outperforms ABC and GABC algorithms.

Since the performance of ABC/best/2 algorithm is not as good as that of ABC/best/1 algorithm, ameliorating ABC/best/2
algorithm is our future work. Practical applications of this hybrid approach in areas of clustering, data mining, design and
optimization of communication networks, would also be worth studying.

Acknowledgments

The authors are grateful to the editor and two anonymous reviewers for their valuable comments and suggestions on
this paper. This work is supported by National Nature Science Foundation of China (Grant Nos. 60974082, 11126287),
Fundamental Research Funds for the Central Universities (Grant Nos. JY10000970006) and Foundation of State Key
Laboratory of Integrated Service Networks of China.

References

[1] K.S. Tang, K.F. Man, S. Kwong, Q. He, Genetic algorithms and their applications, IEEE Signal Processing Magazine 13 (1996) 22–37.
[2] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Networks, vol. 4, 1995, pp. 1942–1948.
[3] M. Dorigo, T. Stutzle, Ant Colony Optimization, MIT Press, Cambridge, MA, 2004.
[4] D. Simon, Biogeography-based optimization, IEEE Transactions on Evolutionary Computation 12 (2008) 702–713.
[5] Z. Geem, J. Kim, G. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation 76 (2001) 60–68.
[6] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Erciyes University, Technical Report-TR06, Kayseri, Turkey, 2005.
[7] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global

Optimization 39 (2007) 459–471.
[8] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm, Applied Soft Computing 8 (2008) 687–697.
[9] D. Karaboga, B. Basturk, A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation 214 (2009) 108–132.

[10] A. Singh, An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem, Applied Soft Computing 9 (2009) 625–631.
[11] F. Kang, et al., Structural inverse analysis by hybrid simplex artificial bee colony algorithms, Computers & Sturctures 87 (2009) 861–870.
[12] L. Samrat, et al., Artificial bee colony algorithm for small signal model parameter extraction of MESFET, Engineering Applications of Artificial

Intelligence 11 (2010) 1573–2916.
[13] R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization

23 (2010) 689–694.
[14] G.P. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied Mathematics and Computation 217

(2010) 3166–3173.
[15] B. Akay, D. Karaboga, A modified artificial bee colony algorithm for real-parameter optimization, Information Sciences (2010)

doi:10.1016/j.ins.2010.07.015.
[16] B. Alatas, Chaotic bee colony algorithms for global numerical optimization, Expert Systems with Applications 37 (2010) 5682–5687.
[17] S. Rahnamayan, et al., Opposition-based differential evolution, IEEE Transactions on Evolutionary Computation 12 (2008) 64–79.
[18] W.F. Gao, S.Y. Liu, A modified artificial bee colony algorithm, Computers & Operations Research 39 (2012) 687–697.
[19] E.M. Montes, et al., Elitist artificial bee colony for constrained real-parameter optimization, IEEE Congress on Evolutionary Computation 11 (2010)

1–8.

http://dx.doi.org/doi:10.1016/j.ins.2010.07.015

	A global best artificial bee colony algorithm for global optimization
	Introduction
	Artificial bee colony algorithm
	Variant artificial bee colony algorithm
	Initial population
	Two modified search strategies
	Two variant artificial bee colony algorithms (ABC/best)

	Experiments
	Benchmark functions and parameter settings
	Experimental results
	Performance comparison between the proposed initialization with the random initialization
	Performance comparison between the proposed algorithms with two ABC based algorithms

	Effects of limit on the performance of ABC/best
	Effects of each technique on the performance of ABC/best/1

	Conclusion
	Acknowledgments
	References

