A global best artificial bee colony algorithm for global optimization

Weifeng Gao*, Sanyang Liu, Lingling Huang
Department of Applied Mathematics, Xidian University, Xi'an 710071, China

ARTICLE INFO

Article history:

Received 9 September 2010
Received in revised form 31 October 2011

Keywords:

Artificial bee colony algorithm
Initial population
Variant artificial bee colony algorithm Search strategy

Abstract

The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in the ABC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by differential evolution (DE), we propose a modified ABC algorithm (denoted as ABC/best), which is based on that each bee searches only around the best solution of the previous iteration in order to improve the exploitation. In addition, to enhance the global convergence, when producing the initial population and scout bees, both chaotic systems and opposition-based learning method are employed. Experiments are conducted on a set of 26 benchmark functions. The results demonstrate good performance of $\mathrm{ABC} / \mathrm{best}$ in solving complex numerical optimization problems when compared with two ABC based algorithms.

© 2012 Elsevier B.V. All rights reserved.

Contents

1. Introduction 2741
2. Artificial bee colony algorithm 2742
3. Variant artificial bee colony algorithm 2743
3.1. Initial population 2743
3.2. Two modified search strategies 2744
3.3. Two variant artificial bee colony algorithms (ABC/best). 2745
4. Experiments 2746
4.1. Benchmark functions and parameter settings 2746
4.2. Experimental results 2747
4.2.1. Performance comparison between the proposed initialization with the random initialization 2747
4.2.2. Performance comparison between the proposed algorithms with two ABC based algorithms 2749
4.3. Effects of limit on the performance of $\mathrm{ABC} / \mathrm{best}$ 2751
4.4. Effects of each technique on the performance of $\mathrm{ABC} / \mathrm{best} / 1$ 2752
5. Conclusion 2753
Acknowledgments 2753
References 2753

1. Introduction

Optimization problems arise in a variety of fields, including engineering design, operational research, information science and related areas. Effective and efficient optimization algorithms are always needed to tackle increasingly complex real

[^0]world optimization problems. Stochastic optimization algorithms, such as genetic algorithm (GA) [1], particle swarm optimization (PSO) [2], ant colony optimization (ACO) [3], biogeography-based optimization (BBO) [4], harmony search (HS) [5], and artificial bee colony (ABC) algorithm [6], have been shown to be successful in dealing with many optimization problems.

In this paper, we concentrate on artificial bee colony algorithm, developed by Karaboga [6] based on simulating the foraging behavior of honey bee swarm. Numerical comparisons demonstrated that the performance of ABC algorithm is competitive to other population-based algorithms with an advantage of employing fewer control parameters [7-9]. Due to its simplicity and ease of implementation, ABC algorithm has captured much attention and has been applied to solve many practical optimization problems [10-12] since its invention in 2005.

However, similar to other evolutionary algorithms, $A B C$ algorithm also faces up to some challenging problems. For example, the convergence speed of $A B C$ algorithm is typically slower than those of representative population-based algorithms (e.g., differential evolution (DE) [13] and PSO) when handling those unimodal problems [9]. What is more, ABC algorithm can easily get trapped in the local optima when solving complex multimodal problems [9]. The reasons are as follows [14]. It is well known that both exploration and exploitation are necessary for a population-based optimization algorithm. In practice, the exploration and exploitation contradicts to each other. In order to achieve good performances on problem optimizations, the two abilities should be well balanced. While, we observed that the solution search equation of ABC algorithm which is used to generate new candidate solutions based on the information of previous solutions, is good at exploration but poor at exploitation, which results in the above two insufficiencies.

Therefore, accelerating convergence speed and avoiding the local optima have become two most important and appealing goals in ABC research. A number of variant ABC algorithms have, hence, been proposed to achieve these two goals [14-16]. However, so far, it is seen to be difficult to simultaneously achieve both goals. For example, the chaotic ABC algorithm (CABC3) in [16] focuses on avoiding the local optima, but brings in a more extra function evaluations in chaotic search as a result.

To achieve both goals, inspired by DE, we propose an improved $A B C$ algorithm called $A B C / b e s t$, which is based on that each bee searches only around the best solution of the previous iteration to improve the exploitation. In addition, to enhance the global convergence, when producing the initial population and scout bees, both chaotic systems and opposition-based learning method are employed. The rest of this paper is organized as follows. Section 2 summarizes ABC algorithm. The
 the experimental results. Finally, the conclusion is drawn in Section 5.

2. Artificial bee colony algorithm

The artificial bee colony consists of three groups of bees: employed bees, onlookers and scout bees. All bees which are currently exploiting a food source are known as employed. The employed bees exploit the food source, carry the information about food source back to the hive and share this information with onlooker bees. Onlookers bees are waiting in the hive for the information to be shared by the employed bees about their discovered food sources and scouts bees will always be searching for new food sources near the hive. Employed bees share information about food sources by dancing in the designated dance area inside the hive. The nature of dance is proportional to the nectar content of food source just exploited by the dancing bee. Onlooker bees watch the dance and choose a food source according to the probability proportional to the quality of that food source. Therefore, good food sources attract more onlooker bees compared to bad ones. Whenever a food source is exploited fully, all the employed bees associated with it abandon the food source, and become scout. Scout bees can be visualized as performing the job of exploration, whereas employed and onlooker bees can be visualized as performing the job of exploitation.

In $A B C$ algorithm, each food source is a possible solution for the problem under consideration and the nectar amount of a food source represents the quality of the solution represented by the fitness value. The number of food sources is the same as the number of employed bees and there is exactly one employed bee for every food source.

An onlooker bee chooses a food source depending on the probability value P_{i} associated with that food source,

$$
\begin{equation*}
P_{i}=\frac{f i t_{i}}{\sum_{i=1}^{S N} f i t_{i}} \tag{1}
\end{equation*}
$$

where $f i t_{i}$ is the fitness value of solution $i ; S N$ is the number of food sources which is equal to the number of employed bees or onlooker bees.

In order to produce a candidate food position $\boldsymbol{V}_{i}=\left[v_{i, 1}, v_{i, 2}, \ldots, v_{i, D}\right]$ from the old one $\boldsymbol{X}_{i}=\left[x_{i, 1}, x_{i, 2}, \ldots, x_{i, D}\right]$ in memory, the ABC uses the following expression:

$$
\begin{equation*}
v_{i, j}=x_{i, j}+\Phi_{i, j}\left(x_{i, j}-x_{k, j}\right) \tag{2}
\end{equation*}
$$

where $k \in\{1,2, \ldots, S N\}$ and $j \in\{1,2, \ldots, D\}$ are randomly chosen indexes; k has to be different from $i ; D$ is the number of variables (problem dimension); $\Phi_{i, j}$ is a random number in the range $[-1,1]$.

After each candidate source position is produced and evaluated by the artificial bee, its performance is compared with that of the old one. If the new food source has an equal or better quality than the old source, the old one is replaced by the new one. Otherwise, the old one is retained.

If a position cannot be improved further through a predetermined number of cycles, then the food source is assumed to be abandoned. The value of predetermined number of cycles is an important control parameter of ABC algorithm, which is called limit for abandonment. Assume that the abandoned source is \boldsymbol{X}_{i} and $j \in\{1,2, \ldots, D\}$, then the scout discovers a new food source to be replaced with X_{i}. This operation can be defined as

$$
\begin{equation*}
x_{i, j}=x_{\min , j}+\operatorname{rand}(0,1)\left(x_{\max , j}-x_{\min , j}\right) \tag{3}
\end{equation*}
$$

3. Variant artificial bee colony algorithm

3.1. Initial population

Population initialization is a crucial task in evolutionary algorithms because it can affect the convergence speed and the quality of the final solution. If no information about the solution is available, then random initialization is the most commonly used method to generate candidate solutions (initial population). This paper proposes a novel initialization approach which employs chaotic systems [16] and opposition-based learning method [17] which possess ergodicity, randomness and irregularity to generate initial population. Here, sinusoidal iterator is selected and its equation is defined as follows

$$
\begin{equation*}
c h_{k+1}=\sin \left(\pi c h_{k}\right), \quad c h_{k} \in(0,1), k=0,1,2, \ldots, K \tag{4}
\end{equation*}
$$

where k is the iteration counter, K is the preset maximum number of chaotic iterations.
Based on these operations, Gao and Liu [18] proposed the following algorithm to generate initial population which can be used instead of a pure random initialization.

Algorithm 3.1.

01 Set the maximum number of chaotic iteration $K=300$, the population scale $S N$, and the individual counter $i=1, j=1$.

$$
\text { For } i=1 \text { to } S N
$$

$$
\text { For } j=1 \text { to } D
$$

Randomly initialize variables $c h_{0, j} \in(0,1)$; set iteration counter $k=0$.
For $k=1$ to K

$$
c h_{k+1, j}=\sin \left(\pi c h_{k}\right)
$$

End

$$
P_{i, j}=x_{\min , j}+c h_{k, j}\left(x_{\max , j}-x_{\min , j}\right)
$$

End

End
Set the individual counter $i=1, j=1$.
For $i=1$ to $S N$
For $j=1$ to D $\mathrm{OP}_{i, j}=x_{\min , j}+x_{\max , j}-P_{i, j}$
End
End
Selecting $S N$ fittest individuals from set the $\{P(S N) \cup O P(S N)\}$ as initial population.

Remark 3.1. Algorithm 3.1 is also used by scout bees to discover a new food source.
Note that in order to find the existing region of the optimal solutions faster, the population should cover the whole search space better in the initialization period of the evolutionary algorithms. Specially, the population diversity ("Diversity" for short) is a measurement of the cover degree, which is defined as follows:

$$
\begin{equation*}
\text { Diversity }=\frac{1}{S N} \sum_{i=1}^{S N} \sqrt{\frac{1}{D} \sum_{j=1}^{D}\left(x_{i, j}-\bar{x}_{j}\right)^{2}} \tag{5}
\end{equation*}
$$

where $S N$ denotes the number of food sources which is equal to the number of employed bees or onlooker bees, D is the number of variables (problem dimension), and \bar{x} is the center position of the colony. This definition will be used in Section 4.2.1.

Fig. 1. The convergence characteristics of function f_{1}.

3.2. Two modified search strategies

Differential evolution (DE) [13] has been shown to be a simple yet efficient evolutionary algorithm for many optimization problems in real-world applications. It follows the general procedure of an evolutionary algorithm. After initialization, DE enters a loop of evolutionary operations: mutation, crossover, and selection. There are several variant DE algorithms which are different in that their mutation strategies are adopted differently. The following are different mutation strategies used in the literature:

$$
\begin{align*}
& \text { "DE/best/1" : } \boldsymbol{V}_{i}=\boldsymbol{X}_{\text {best }}+F\left(\boldsymbol{X}_{r 1}-\boldsymbol{X}_{r 2}\right), \tag{6}\\
& \text { "DE/best/2" : } \boldsymbol{V}_{i}=\boldsymbol{X}_{\text {best }}+F\left(\boldsymbol{X}_{r 1}-\boldsymbol{X}_{r 2}\right)+F\left(\boldsymbol{X}_{r 3}-\boldsymbol{X}_{r 4}\right), \tag{7}
\end{align*}
$$

where $i=\{1,2, \ldots, S N\}$ and $r 1, r 2, r 3$ and $r 4$ are mutually different random integer indices selected from $\{1,2, \ldots, S N\}$. F, commonly known as scaling factor or amplification factor, is a positive real number, typically less than 1.0 that controls the rate at which the population evolves.

The best solutions in the current population are very useful sources that can be used to improve the convergence performance. The examples are the " $D E /$ best $/ 1$ " and " $D E /$ best/ 2 ", where the best solutions explored in the history are used to direct the movement of the current population. Based on these two variant DE algorithms and the property of ABC algorithm, the corresponding strategies in ABC algorithm are devised as follows

$$
\begin{align*}
& \text { "ABC/best } / 1 ": v_{i, j}=x_{\text {best }, j}+\Phi_{i, j}\left(x_{r 1, j}-x_{r 2, j}\right), \tag{8}\\
& \text { "ABC/ best } / 2 ": v_{i, j}=x_{\text {best }, j}+\Phi_{i, j}\left(x_{r 1, j}-x_{r 2, j}\right)+\Phi_{i, j}\left(x_{r 3, j}-x_{r 4, j}\right), \tag{9}
\end{align*}
$$

where the indices $r 1, r 2, r 3$ and $r 4$ are mutually exclusive integers randomly chosen from $\{1,2, \ldots, S N\}$, and different from the base index i. $\boldsymbol{X}_{\text {best }}$ is the best individual vector with the best fitness in the current population and $j \in\{1,2, \ldots, D\}$ is randomly chosen indexes. $\Phi_{i, j}$ is a random number in the range $[-1,1]$. In Eq. (2), the coefficient $\Phi_{i, j}$ is a uniform random number in $[-1,1]$ and $x_{k, j}$ is a random individual in the population, therefore, the solution search dominated by Eq. (2) is random enough for exploration. In other words, the solution search equation described by Eq. (2) is good at exploration but poor at exploitation. However, according to Eq. (8) or Eq. (9), "ABC/best" can drive the new candidate solution only around the best solution of the previous iteration. Therefore, the modified solution search equation described by Eq. (8) or Eq. (9) can increase the exploitation of ABC algorithm.

Fig. 1 graphically presents the convergence characteristics of function f_{1} obtained in the 30 independent runs by ABC and $A B C 2$ ($A B C$ only combined with the search strategies). It can be seen from Fig. 1 that in the later stage of evolution, $A B C$ enters a long period of stagnation. While, $A B C 2$ always keeps convergent fast. The reason is that the search equation of $A B C$ is good at exploration but poor at exploitation. Exploitation ability is important for an optimization or search algorithm to converge fast and to refine the solution for high accuracy, especially in the later stage of evolution. The best solution $X_{\text {best }}$ in the current population is very useful source which can be used to improve the convergence performance. That is the motivation why we propose the new search equations. With the help of $X_{\text {best }}$, the rest of the bees will follow it and converge to the near region of $X_{\text {best }}$. Therefore, we modify the solution search equation by applying the global best solution to guide the search of new candidate solutions in order to improve the exploitation. Fig. 2 shows the population distribution observed at various stages of $A B C$ and $A B C 2$, respectively. We can directly see from Fig. 2 that compared to $A B C, A B C 2$ with the help of $X_{\text {best }}$ can converge to global optimum rapidly. Specially, following the initialization, the bees of ABC start to explore throughout the search space. Then, the bees converge to the best solution very slowly. However, with the guidance of $X_{\text {best }}$,

Fig. 2. Population distribution observed at various stages in $A B C$ and $A B C 2$.
ABC2 pull many bees to swarm together toward the optimal region. Then, the population converges to the global optimum quickly.

3.3. Two variant artificial bee colony algorithms (ABC/best)

Having discussed the proposed initialization and the search equations, we combine them and propose Algorithm 3.2. Due to the search equations play the crucial role in the algorithms, so we name the relevant algorithms after the
search equations. The complete computational procedure is outlined as follows:
Algorithm 3.2 (ABC/Best Algorithm).
01 Initialization: Preset population size $S N$ and limit.
02 Perform Algorithm 3.1 to create an initial population
$\boldsymbol{P}=\left\{\boldsymbol{X}_{i} \mid i=1,2, \ldots, S N\right\}$, calculate the function
values of the population $F=\left\{F_{i} \mid i=1,2, \ldots, S N\right\}$.
03 For $g=1$ to G
04 For $i=1$ to $S N$
05 Randomly choose $\boldsymbol{X}_{r 1} \neq \boldsymbol{X}_{i}, \boldsymbol{X}_{r 2} \neq \boldsymbol{X}_{i}, \boldsymbol{X}_{r 2} \neq \boldsymbol{X}_{r 1}$ from current
population \boldsymbol{P}.
06 Randomly choose j from $\{1,2, \ldots, D\}$.
$07 \quad v_{i, j}=x_{\text {best }, j}+\Phi_{i, j}\left(x_{r 1, j}-x_{r 2, j}\right)$
08 If $F\left(\boldsymbol{V}_{i}\right) \leq F\left(\boldsymbol{X}_{i}\right)$
$09 \quad \boldsymbol{X}_{i}=\boldsymbol{V}_{i}$, trial $_{i}=1$
10 Else
$11 \quad$ trial $_{i}=$ trial $_{i}+1$
12 End
13 If $F>0$
$14 \quad$ fit $_{i}=1 /\left(1+F_{i}\right)$
15 Else
$16 \quad$ fit $_{i}=1+\operatorname{abs}\left(F_{i}\right)$
17 End
18 End
19 Calculate the probability values P_{i} for the solutions \boldsymbol{X}_{i} by (1)
$(i=1,2, \ldots, S N)$.
20 Apply roulette wheel selection method to select $S N$ onlookers
$\boldsymbol{P} \mathbf{1}=\left\{\boldsymbol{X}_{s(i)} \mid i=1,2, \ldots, S N\right\}$
from the employed bees \boldsymbol{P}.
21 For $i=1$ to $S N$
22 Randomly choose $\boldsymbol{X}_{r 1} \neq \boldsymbol{X}_{s(i)}, \boldsymbol{X}_{r 2} \neq \boldsymbol{X}_{s(i)}, \boldsymbol{X}_{r 2} \neq \boldsymbol{X}_{r 1}$ from current
population $\boldsymbol{P} 1$.
23 Randomly choose j from $\{1,2, \ldots, D\}$.
$24 \quad v_{i, j}=x_{\text {best }, j}+\Phi_{i, j}\left(x_{r 1, j}-x_{r 2, j}\right)$
25 If $F\left(\boldsymbol{V}_{i}\right) \leq F\left(\boldsymbol{X}_{s(i)}\right)$
$26 \quad \boldsymbol{X}_{s(i)}=\boldsymbol{V}_{i}$, trial $_{s(i)}=1$
27 Else
$28 \quad \operatorname{trial}_{s(i)}=\operatorname{trial}_{s(i)}+1$
29 End
30 End
31 If $\max \left(\right.$ trial $\left._{i}\right)>$ limit
Replace \boldsymbol{X}_{i} with a new produced solution by Algorithm 3.1.
End
Memorize the best solution achieved so far.
End

Remark 3.2. The solution search equation of $A B C / b e s t / 1$ algorithm is described by Eq. (7). While, that of $A B C / b e s t / 2$ algorithm is described by Eq. (8).

4. Experiments

4.1. Benchmark functions and parameter settings

In order to test the performance of $\mathrm{ABC} /$ best algorithm, it is applied to minimize a set of 15 scalable benchmark functions of dimensions $D=30$ or 60 [9,15], 2 functions of dimensions $D=100$ or 200 [17] and a set of functions of lower dimensions $D=3$ or 4 [9], as shown in Table 1.

Some comparative experiments on numerical function optimization have been conducted for $A B C$ algorithm in [7-9]. The experimental results show that ABC algorithm is competitive with some conventional optimization algorithms, such as GA ,

Table 1
Benchmark functions used in experiments.

Test functions	D	Search range	Optimum value
$f_{1}(X)=\sum_{i=1}^{D} x_{i}{ }^{2}$	30 and 60	$(-100,100)^{D}$	0
$f_{2}(X)=\sum_{i=1}^{D}\left\|x_{i}\right\|+\prod_{i=1}^{D}\left\|x_{i}\right\|$	30 and 60	$(-10,10)^{D}$	0
$f_{3}(X)=\max _{i}\left\{\left\|x_{i}\right\|, 1 \leq i \leq D\right\}$	30 and 60	$(-100,100)^{D}$	0
$f_{4}(X)=\sum_{i=1}^{D}\left(\left\lfloor x_{i}+0.5\right\rfloor\right)^{2}$	30 and 60	$(-100,100)^{D}$	0
$f_{5}(X)=\sum_{i=1}^{D} i x_{i}+\operatorname{rand}[0,1)$	30 and 60	$(-1.28,1.28)^{D}$	0
$f_{6}(X)=\sum_{i=1}^{D}\left[x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right]$	30 and 60	$(-5.12,5.12)^{D}$	0
$f_{7}(X)=\sum_{i=1}^{D}\left[y_{i}^{2}-10 \cos \left(2 \pi y_{i}\right)+10\right]$ where	30 and 60	$(-5.12,5.12)^{D}$	0
$y_{i}= \begin{cases}x_{i} & \left\|x_{i}\right\|<0.5 \\ \frac{\operatorname{round}\left(2 x_{i}\right)}{2} & \left\|x_{i}\right\| \geq 0.5\end{cases}$			
$f_{8}(X)=\frac{1}{4000} \sum_{i=1}^{D} x_{i}^{2}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1$	30 and 60	$(-600,600)^{D}$	0
$f_{9}(X)=D * 418.982887-\sum_{i=1}^{D}\left(x_{i} \sin \left(\sqrt{\left\|x_{i}\right\|}\right)\right)$	30 and 60	$(-500,500)^{D}$	0
$f_{10}(X)=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos 2 \pi x_{i}\right)+20+e$	30 and 60	$(-32,32)^{D}$	0
$f_{11}(X)=$	30 and 60	$(-50,50)^{D}$	0
$\frac{\pi}{D}\left\{10 \sin ^{2}\left(\pi y_{1}\right)+\sum_{i=1}^{D-1}\left(y_{i}-1\right)^{2}\left[1+\sin ^{2}\left(\pi y_{i+1}\right)\right]+\left(y_{D}-1\right)^{2}\right\}+$			
$f_{12}(X)=0.1\left\{\sin ^{2}\left(3 \pi x_{1}\right)+\sum_{i=1}^{D-1}\left(x_{i}-1\right)^{2}\left[1+\sin ^{2}\left(3 \pi x_{i+1}\right)\right]\right.$	30 and 60	$(-50,50)^{D}$	0
$\left.+\left(x_{D}-1\right)^{2}\left[1+\sin ^{2}\left(3 \pi x_{D}\right)\right]\right\}+\sum_{i=1}^{D} u\left(x_{i}, 5,100,4\right)$			
$f_{13}(X)=\sum_{i=1}^{D}\left\|x_{i} \cdot \sin \left(x_{i}\right)+0.1 \cdot x_{i}\right\|$	30 and 60	$(-10,10)^{D}$	0
$\begin{aligned} & f_{14}(X)=\sum_{i=1}^{D-1}\left(x_{i}-1\right)^{2}\left[1+\sin ^{2}\left(3 \pi x_{i+1}\right)\right]+\sin ^{2}\left(3 \pi x_{1}\right)+ \\ & \left\|x_{D}-1\right\|\left[1+\sin ^{2}\left(3 \pi x_{D}\right)\right] \end{aligned}$	30 and 60	$(-10,10)^{D}$	0
$f_{15}(X)=\sum_{i=1}^{D}\left(\sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(x_{i}+0.5\right)\right)\right]\right)-$	30 and 60	$(-0.5,0.5)^{D}$	0
$\begin{aligned} & D \sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(x_{i}+0.5\right)\right)\right] \text { where } a=0.5, b=3, \text { kamx }=20 . \\ & f_{16}(X)=\frac{1}{n} \sum_{i=1}^{D}\left(x_{i}^{4}-16 x_{i}^{2}+5 x_{i}\right) \end{aligned}$	100 and 200	$(-5,5)^{D}$	-78.33236 for $D=100$
$f_{17}(X)=-\sum_{i=1}^{D} \sin \left(x_{i}\right) \sin ^{20}\left(\frac{i \times x_{i}^{2}}{\pi}\right)$	100 and 200	$(0, \pi)^{D}$	-99.2084 for $D=100$
$f_{18}(X)=\sum_{i=1}^{10}\left(a_{i}-\frac{x_{1}\left(b_{i}^{2}+b_{i} x_{2}\right)}{b_{i}^{2}+b_{i} x_{3}+x_{4}}\right)^{2}$	4	$(-5,5)^{D}$	0.0003075
$\begin{aligned} & f_{19}(X)=100\left(x_{1}^{2}-x_{2}\right)^{2}+\left(x_{1}-1\right)^{2}+\left(x_{3}-1\right)^{2}+90\left(x_{3}^{2}-x_{4}\right)^{2}+ \\ & 10.1\left(\left(x_{2}-1\right)^{2}+\left(x_{4}-1\right)^{2}\right)+19.8\left(x_{2}-1\right)\left(x_{4}-1\right) \end{aligned}$	4	$(-10,10)^{D}$	0
$f_{20}(X)=\sum_{k=1}^{D}\left[\left(\sum_{i=1}^{D} x_{i}^{k}\right)-b_{k}\right]^{2}$	4	$(-0, D)^{D}$	0
$f_{21}(X)=\left(\sum_{i=1}^{D} x_{j}^{2}\right)+\left(\sum_{i=1}^{D} 0.5 i x_{i}\right)^{2}+\left(\sum_{i=1}^{D} 0.5 i x_{i}\right)^{4}$	3 and 4	$(-5,5)^{D}$	0
$f_{22}(X)=0.5+\frac{\sin ^{2}\left(\sqrt{\sum_{i=1}^{D} x_{i}^{2}}\right)-0.5}{\left(1+0.001\left(\sum_{i=1}^{D} x_{i}^{2}\right)\right)^{2}}$	3 and 4	$(-100,100)^{D}$	0
$f_{23}(X)=\cos \left(2 \pi \sqrt{\sum_{i=1}^{N} x_{i}^{2}}\right)+0.1 \sqrt{\sum_{i=1}^{N} x_{i}^{2}}+1$	3 and 4	$(-100,100)^{D}$	0
$f_{24}(X)=\sum_{i=1}^{D-1}\left[100\left(x_{i}^{2}-x_{i+1}\right)^{2}+\left(x_{i}-1\right)^{2}\right]$	3 and 4	$(-30,30)^{D}$	0
$f_{25}(X)=-\sum_{i=1}^{D}\left[\left(X-a_{i}\right)\left(X-a_{i}\right)^{T}+c_{i}\right]^{-1}$	7 and 10	$(0,10)^{D}$	-10.4 and 10.5
$f_{26}(X)=-\sum_{i=1}^{4} c_{i} \exp \left[\sum_{j=1}^{D} a_{i j}\left(x_{j}-p_{i j}\right)^{2}\right]$	3 and 6	$(0,1)^{D}$	-3.86 and -3.32

DE and PSO. In this section, a set of experiments tested on 26 numerical benchmark function are performed to compare the
 limit is $0.6 * S N * D$ and the maximum number of generations is listed in Table 3. Each of the experiments is repeated 30 times independently. And the reported results are the means and standard deviations of the statistical experimental data. For clarity, the results of the best algorithm are marked in boldface, respectively; if not all algorithms produce identical results. All the algorithms are coded in Matlab 7.0 and the simulations are run on a Pentium IV 2.4 GHz with 512 MB memory capacity. And you can get the source code of $\mathrm{ABC} /$ best from me by Email.

4.2. Experimental results

4.2.1. Performance comparison between the proposed initialization with the random initialization

In order to illustrate the randomness and sensitivity dependence on the initial conditions of Eq. (4), we present Figs. 3 and 4 , which show the distribution of the chaotic sequence. As is shown in Fig. 3, the chaotic sequence is relatively scattered,

Fig. 3. The relationship between k and $c h_{k}$.

Fig. 4. The sensitivity to initial condition.

Table 2
Performance comparison of random initialization and proposed initialization.

Fun	Random initialization			Proposed initialization	
	Fitness	Diversity		Fitness	Diversity
f_{1}	$1.0254 \mathrm{e}+05$	56.7520		$8.6928 \mathrm{e}+04$	67.8944
f_{2}	$9.3031 \mathrm{e}+19$	5.7977		$5.4117 \mathrm{e}+15$	6.8821
f_{3}	97.5630	58.3586		94.0856	69.9976
f_{4}	$1.0042 \mathrm{e}+05$	56.6417		$9.1010 \mathrm{e}+04$	67.9087
f_{5}	256.4803	0.7280		190.4312	0.8618
f_{6}	549.4686	2.9257		518.3174	3.5084
f_{7}	563.2750	2.9521		483.3585	3.5343
f_{8}	898.7446	342.3789		812.9512	405.7734
f_{9}	$1.2830 \mathrm{e}+04$	281.3224		$1.1720 \mathrm{e}+04$	352.6507
f_{10}	21.1550	18.1921		21.0200	22.2830
f_{11}	$6.2992 \mathrm{e}+08$	28.7773		$3.7820 \mathrm{e}+08$	34.0883
f_{12}	$1.1253 \mathrm{e}+09$	28.2784		$8.0963 \mathrm{e}+08$	34.2690
f_{13}	85.3119	5.4509		77.4637	6.8258
f_{14}	$1.4741 \mathrm{e}+03$	5.6438		$1.2560 \mathrm{e}+03$	6.9533
f_{15}	30.1261	0.2819		28.2750	0.3349

and almost traverses the whole interval [0,1] when k gets big enough. In Fig. $4, ~ ‘+$ ' indicates the initial value of the sequence is set to 0.7 . While '. ' stands for the initial value of the sequence is set to 0.700001 . It can be seen from Fig. 4 that even a small difference between the initial values (only 0.000001) can exert non-ignorable influence on the sequence.

Next, we compare the performance of the proposed initialization with the random initialization in terms of Fitness and Diversity. As all test functions are minimization problems, the smaller the Fitness, the better it is. While Diversity is the opposite. The results are shown in Table 2. So, it can be seen from Table 2 that the Mean and Diversity of the proposed

Table 3
Performance comparison of $\mathrm{ABC}, \mathrm{ABC} / \mathrm{best} / 2$ and $\mathrm{ABC} /$ best/1.

Fun	D	G	ABC		ABC/best/2		ABC/best/1	
			Mean	SD	Mean	SD	Mean	SD
f_{1}	30	1000	$6.99 \mathrm{e}-10$	$5.91 \mathrm{e}-10$	4.37e-22	$2.14 \mathrm{e}-22$	1.57e-27	1.14e-27
	60	2000	1.94e-09	$8.33 \mathrm{e}-10$	$1.57 \mathrm{e}-20$	4.90e-21	2.42e-25	1.09e-25
f_{2}	30	1000	$2.36 \mathrm{e}-06$	$8.32 \mathrm{e}-07$	$2.73 \mathrm{e}-12$	$4.61 \mathrm{e}-13$	3.45e-15	8.79e-16
	60	2000	$8.30 \mathrm{e}-06$	$8.93 \mathrm{e}-07$	$2.14 \mathrm{e}-11$	$4.39 \mathrm{e}-12$	5.94e-14	1.28e-14
f_{3}	30	1000	$1.70 \mathrm{e}+01$	$1.95 \mathrm{e}-00$	7.89e-00	$1.77 \mathrm{e}-00$	7.02e-00	9.94e-01
	60	2000	$3.79 \mathrm{e}+01$	3.66e-00	$3.34 \mathrm{e}+01$	2.45e-00	$3.41 \mathrm{e}+01$	2.89e-00
f_{4}	30	1000	0	0	0	0	0	0
	60	2000	0	0	0	0	0	0
f_{5}	30	1000	1.01e-01	$2.44 \mathrm{e}-02$	$3.72 \mathrm{e}-02$	$1.73 \mathrm{e}-02$	3.20e-02	6.03e-03
	60	2000	$2.58 \mathrm{e}-01$	$2.92 \mathrm{e}-02$	$1.02 \mathrm{e}-01$	$1.35 \mathrm{e}-02$	9.91e-02	1.07e-02
f_{6}	30	1000	$6.63 \mathrm{e}-03$	$1.71 \mathrm{e}-02$	0	0	0	0
	60	2000	$3.03 \mathrm{e}-01$	$4.53 \mathrm{e}-01$	0	0	0	0
f_{7}	30	1000	4.12e-01	$4.81 \mathrm{e}-01$	0	0	0	0
	60	2000	$2.55 \mathrm{e}-00$	$1.45 \mathrm{e}-00$	0	0	0	0
f_{8}	30	1000	$8.73 \mathrm{e}-09$	$1.47 \mathrm{e}-08$	$4.47 \mathrm{e}-08$	$1.05 \mathrm{e}-07$	4.23e-11	2.16e-11
	60	2000	4.46e-09	$6.68 \mathrm{e}-09$	2.18e-10	$4.33 \mathrm{e}-10$	0	0
f_{9}	30	1000	$2.05 \mathrm{e}+02$	$1.63 \mathrm{e}+02$	0	0	0	0
	60	2000	$6.93 \mathrm{e}+02$	$1.39 \mathrm{e}+02$	$3.67 \mathrm{e}-11$	$3.17 \mathrm{e}-12$	3.74e-11	$2.59 \mathrm{e}-12$
f_{10}	30	1000	$1.02 \mathrm{e}-05$	$4.15 \mathrm{e}-06$	$1.89 \mathrm{e}-11$	$4.75 \mathrm{e}-12$	1.26e-13	3.48e-14
	60	2000	$2.05 \mathrm{e}-05$	$5.54 \mathrm{e}-06$	$1.08 \mathrm{e}-10$	$4.97 \mathrm{e}-12$	3.40e-13	6.35e-14
f_{11}	30	1000	$1.60 \mathrm{e}-11$	$1.95 \mathrm{e}-11$	$9.84 \mathrm{e}-24$	9.84e-24	2.85e-30	2.19e-30
	60	2000	$1.18 \mathrm{e}-10$	$8.99 \mathrm{e}-11$	9.92e-23	$2.82 \mathrm{e}-23$	2.89e-28	1.54e-28
f_{12}	30	1000	3.72e-09	$1.79 \mathrm{e}-09$	2.17e-22	$1.55 \mathrm{e}-22$	3.88e-29	1.57e-29
	60	2000	$1.06 \mathrm{e}-08$	$6.25 \mathrm{e}-09$	$5.54 \mathrm{e}-21$	$1.35 \mathrm{e}-21$	2.06e-26	5.74e-27
f_{13}	30	1000	1.38e-04	$6.38 \mathrm{e}-05$	$7.34 \mathrm{e}-10$	$1.01 \mathrm{e}-09$	1.32e-14	5.04e-15
	60	2000	$1.32 \mathrm{e}-03$	$1.21 \mathrm{e}-03$	$2.68 \mathrm{e}-08$	$1.84 \mathrm{e}-08$	$4.46 \mathrm{e}-13$	$4.13 \mathrm{e}-13$
f_{14}	30	1000	3.21e-09	$4.41 \mathrm{e}-09$	3.58e-21	5.69e-21	6.05e-28	3.30e-28
	60	2000	2.35e-09	$2.35 \mathrm{e}-09$	$5.28 \mathrm{e}-21$	$2.64 \mathrm{e}-21$	3.29e-26	1.29e-26
f_{15}	30	1000	1.52e-01	$2.65 \mathrm{e}-02$	$6.32 \mathrm{e}-05$	$4.44 \mathrm{e}-05$	2.84e-15	2.13e-15
	60	2000	4.32e-01	$3.33 \mathrm{e}-02$	7.76e-04	4.28e-04	3.17e-12	4.59e-12
f_{16}	100	1000	-77.3547	$1.59 \mathrm{e}-01$	-78.3323	$1.13 \mathrm{e}-05$	-78.3323	9.77e-07
	200	2000	-77.1908	$2.64 \mathrm{e}-01$	-78.3322	$2.23 \mathrm{e}-05$	-78.3323	2.50e-06
f_{17}	100	1000	-83.3160	$2.90 \mathrm{e}-01$	-84.9950	$4.40 \mathrm{e}-01$	-90.3619	3.54e-01
	200	2000	-163.4126	$9.91 \mathrm{e}-01$	-165.5409	7.12e-01	-174.0796	8.74e-01
f_{18}	4	2000	4.31e-04	$4.51 \mathrm{e}-05$	4.13e-04	$7.48 \mathrm{e}-05$	3.16e-04	5.33e-06
f_{19}	4	2000	$1.17 \mathrm{e}-01$	$6.94 \mathrm{e}-02$	$2.41 \mathrm{e}-02$	$2.18 \mathrm{e}-02$	2.14e-03	2.21e-03
f_{20}	4	2000	$6.67 \mathrm{e}-03$	$5.98 \mathrm{e}-03$	$9.24 \mathrm{e}-03$	$5.21 \mathrm{e}-03$	3.22e-03	3.01e-03
f_{21}	3	1000	$9.65 \mathrm{e}-74$	$1.93 \mathrm{e}-73$	7.1e-120	$1.4 \mathrm{e}-119$	4.9e-216	0
	4	2000	5.03e-61	$9.96 \mathrm{e}-61$	5.87e-06	$1.17 \mathrm{e}-06$	2.04e-63	6.11e-63
f_{22}	3	1000	2.07e-03	$3.91 \mathrm{e}-03$	3.55e-05	5.63e-05	2.57e-12	1.12e-11
	4	2000	$4.06 \mathrm{e}-02$	$4.84 \mathrm{e}-02$	$1.35 \mathrm{e}-03$	$3.27 \mathrm{e}-03$	2.51e-06	7.54e-06
f_{23}	3	1000	$1.28 \mathrm{e}-06$	$3.79 \mathrm{e}-06$	$5.75 \mathrm{e}-05$	$3.92 \mathrm{e}-05$	0	0
	4	2000	$3.39 \mathrm{e}-05$	$2.80 \mathrm{e}-04$	3.92e-04	$7.70 \mathrm{e}-05$	0	0
f_{24}	3	1000	$3.93 \mathrm{e}-02$	$3.11 \mathrm{e}-02$	1.95e-03	$1.52 \mathrm{e}-03$	9.06e-06	1.41e-05
	4	2000	$3.21 \mathrm{e}-02$	$3.26 \mathrm{e}-02$	1.86e-03	$1.03 \mathrm{e}-03$	1.29e-07	3.83e-07
f_{25}	4	1000	-10.4029	$1.58 \mathrm{e}-15$	-10.4029	$1.77 \mathrm{e}-15$	-10.4029	1.12e-15
	4	1000	-10.5364	$3.39 \mathrm{e}-14$	-10.5364	$1.65 \mathrm{e}-15$	-10.5364	1.58e-15
f_{26}	3	1000	-3.8628	2.11e-15	-3.8628	8.88e-16	-3.8628	8.88e-16
	6	1000	-3.3220	$4.44 \mathrm{e}-16$	-3.3220	$4.44 \mathrm{e}-16$	-3.3220	$4.44 \mathrm{e}-16$

initialization is better than the random initialization for all the test functions. In a word, by combining the advantages of chaotic systems and opposition-based learning method, the proposed initialization can increase the population diversity and obtain good initial solutions.
4.2.2. Performance comparison between the proposed algorithms with two ABC based algorithms

The performance on the solution accuracy of $A B C$ is compared with $A B C / b e s t$. The results are shown in Table 3 in terms of the mean and SD of the solutions obtained in the 30 independent runs by each algorithm. Fig. 5 graphically

Fig. 5. Convergence performance of the different $A B C$ s on the 10 test functions.
presents the comparison in terms of convergence characteristics of the evolutionary processes in solving the 10 different problems.

Table 4
Performance comparison of GABC, E-ABC, ABC/best/2 and ABC/best/1.

Algorithm		Schaffer		Rosenbrock		Sphere	
		$D=2$	$D=3$	$D=2$	$D=3$	$D=30$	$D=60$
$\operatorname{GABC}(C=1.5)$	Mean	0	$1.85 \mathrm{e}-18$	$1.68 \mathrm{e}-04$	2.65e-03	4.17e-16	1.43e-15
	SD	0	$1.01 \mathrm{e}-17$	4.42e-04	2.22e-03	7.36e-17	$1.37 \mathrm{e}-16$
E-ABC	Mean	0	$2.79 \mathrm{e}-07$	4.63e-04	$1.20 \mathrm{e}-02$	$1.67 \mathrm{e}-16$	$1.41 \mathrm{e}-15$
	SD	0	$2.24 \mathrm{e}-07$	4.57e-04	7.06e-03	$2.70 \mathrm{e}-16$	$1.82 \mathrm{e}-15$
ABC/best/2	Mean	0	3.56e-06	4.42e-04	$9.90 \mathrm{e}-04$	$1.7 \mathrm{e}-126$	3.72e-58
	SD	0	1.27e-06	2.39e-04	6.92e-04	2.7e-126	$2.67 \mathrm{e}-58$
ABC/best/1	Mean	0	0	4.99e-06	5.52e-06	1.1e-150	4.40e-69
	SD	0	0	8.22e-06	3.03e-06	1.4e-150	2.56e-69
Algorithm		Griewank		Rastrigin		Ackley	
		$D=30$	$D=60$	$D=30$	$D=60$	$D=30$	$D=60$
$\operatorname{GABC}(C=1.5)$	Mean	2.96e-17	$7.54 \mathrm{e}-16$	$1.32 \mathrm{e}-14$	3.52e-13	3.21e-14	1.66e-13
	SD	$4.99 \mathrm{e}-17$	4.12e-16	$2.44 \mathrm{e}-14$	$1.24 \mathrm{e}-13$	$3.25 \mathrm{e}-15$	$2.21 \mathrm{e}-14$
E-ABC	Mean	$4.90 \mathrm{e}-14$	$4.19 \mathrm{e}-14$	$9.97 e-15$	$7.51 \mathrm{e}-13$	$1.22 \mathrm{e}-10$	$1.55 \mathrm{e}-07$
	SD	$7.31 \mathrm{e}-03$	$9.05 \mathrm{e}-03$	$3.87 e-15$	$6.15 e-13$	$4.86 e-11$	$2.84 \mathrm{e}-08$
ABC/best/2	Mean	0	0	$\mathbf{0}$	0	$2.50 \mathrm{e}-14$	$7.12 \mathrm{e}-14$
	SD	0	0	0	0	$3.48 \mathrm{e}-15$	$4.14 e-15$
ABC/best/1	Mean	$\mathbf{0}$	0	$\mathbf{0}$	0	1.72e-14	
	SD	0	0	0	0	2.84e-15	$1.74 e-15$

Table 5
Effect of limit on the performance of $\mathrm{ABC} /$ best.

Function		limit $=0.2 * S N * D$		$\underline{\text { limit }}=0.6 * S N * D$		limit $=S N * D$	
		ABC/best/2	ABC/best/1	ABC/best/2	ABC/best/1	ABC/best/2	ABC/best/1
Sphere	Mean	3.63e-22	$2.28 \mathrm{e}-27$	4.37e-22	1.57e-27	5.08e-22	$1.30 \mathrm{e}-27$
	SD	$2.72 \mathrm{e}-22$	$1.21 \mathrm{e}-27$	$2.14 \mathrm{e}-22$	$1.14 \mathrm{e}-27$	$3.00 \mathrm{e}-22$	7.44e-28
Griewank	Mean	2.46e-04	$7.28 \mathrm{e}-11$	$4.47 \mathrm{e}-08$	4.23e-11	$8.18 \mathrm{e}-08$	$2.31 \mathrm{e}-06$
	SD	$1.33 \mathrm{e}-03$	$2.95 \mathrm{e}-11$	$1.05 \mathrm{e}-07$	$2.16 \mathrm{e}-11$	$3.71 \mathrm{e}-07$	5.66e-06
Rastrigin	Mean	0	0	0	0	0	$5.85 \mathrm{e}-02$
	SD	0	0	0	0	0	$2.34 \mathrm{e}-01$
Ackley	Mean	$1.92 \mathrm{e}-11$	$1.43 \mathrm{e}-13$	$1.89 \mathrm{e}-11$	$1.26 \mathrm{e}-13$	$1.96 \mathrm{e}-11$	$1.28 \mathrm{e}-13$
	SD	$5.75 \mathrm{e}-12$	$1.86 \mathrm{e}-14$	$4.75 \mathrm{e}-12$	$3.48 \mathrm{e}-14$	$6.04 \mathrm{e}-12$	$2.66 \mathrm{e}-14$

An interesting result is that all the ABC algorithms have most reliably found the minimum of f_{4}. It is a region rather than a point in f_{4} that is the optimum. Hence, this problem may relatively be easy to solve with a 100% success rate. Important observations about the convergence rate and reliability of different algorithms can be made from the results presented in Fig. 5 and Table 3. These results suggest that the convergence rate of $A B C / b e s t / 1$ and $A B C / b e s t / 2$ is the best and second best for the most test functions. In particular, $\mathrm{ABC} / \mathrm{best} / 1$ offers the highest accuracy on almost all the functions except f_{3} with $D=60$. The $\mathrm{ABC} / \mathrm{best} / 2$ ranks first on functions f_{3} with $D=60, f_{6}, f_{7}$ and f_{9} with $D=30$, and ranks second on functions $f_{1} f_{2}, f_{3}$ with $D=30, f_{5}, f_{8}$ with $D=60, f_{9}$ with $D=60, f_{10}-f_{19}, f_{21}$ with $D=3, f_{22}$ and f_{24}. In the case of functions f_{25} and f_{26}, simulation results show that there is no obviously superior algorithm in the means. While, the $\mathrm{ABC} / \mathrm{best} / 1$ greatly outperforms ABC and $\mathrm{ABC} /$ best/ 2 with better SD. In a word, the superiority in terms of search ability and efficiency of $\mathrm{ABC} /$ best should be attributed to an appropriate balance between exploration and exploitation.

In Table 4, ABC/best is further compared with (GABC) in [14] and E-ABC in [19]. ABC/best and E-ABC follow the parameter settings in the original paper of GABC [14]. It is clear that ABC/best works best and second best in most cases and achieves better performance than GABC and E-ABC.

Summarizing the earlier statements, the ability of $\mathrm{ABC} / \mathrm{best}$ is that it can prevent bees from falling into the local minimum, reduce evolution process significantly and more efficiently (converges faster), compute with more efficiency, and improve bees' searching abilities for ABC algorithms.

4.3. Effects of limit on the performance of $A B C /$ best

In this section, four different kinds of 30 -dimensional test functions are used to investigate the impact of limit. They are Sphere, Griewank, Rastrigin and Ackley. $\mathrm{ABC} /$ best is run 30 times on each of these functions, and the mean values of the final results are shown in Table 5. From Table 5, we can observe that limit can influence the results. When limit is $0.6 * S N * D$, we obtain a faster convergence speed and better results on the Griewank function. For the other three test functions, the effect of limit on the performance of $\mathrm{ABC} / \mathrm{best}$ is very little except Rastrigin at limit $=S N * D$. Therefore, in our experiments, the selective probability limit is set at $0.6 * S N * D$ for all test functions.

Table 6
Performance comparison of $\mathrm{ABC}, \mathrm{ABC} 1, \mathrm{ABC2}$ and $\mathrm{ABC} / \mathrm{best} / 1$.

Fun	Accept	ABC		ABC1		ABC2		ABC/best/1	
		FEs	SR	FEs	SR	FEs	SR	FEs	SR
f_{1}	1e-10		0		0	46985	30	45890	30
f_{2}	1e-10		0		0	73080	30	71815	30
f_{3}	$5 \mathrm{e}-00$		0		0	99860	3	90693	20
f_{4}	1e-10	15520	30	15300	30	13957	30	13163	30
f_{5}	1e-01	87497	16	85820	18	35060	30	32207	30
f_{6}	1e-10		0		0	52183	30	51277	30
f_{7}	1e-10		0		0	54067	30	53163	30
f_{8}	1e-10		0		0	57750	30	60383	30
f_{9}	1e-10		0		0	50830	30	48803	30
f_{10}	1e-10		0		0	78030	30	76972	30
f_{11}	1e-10	96571	28	94810	30	40353	30	39477	30
f_{12}	1e-10		0		0	44207	30	43137	30
f_{13}	1e-10		0		0	76367	30	75117	30
f_{14}	1e-10	99840	1	98960	2	44930	30	43897	30
f_{15}	1e-10		0		0	84683	30	83857	30

Fig. 6. Convergence performance of the different ABCs on the 4 test functions.

4.4. Effects of each technique on the performance of $A B C /$ best/ 1

We compare the $\mathrm{ABC} / \mathrm{best} / 1$ with $\mathrm{ABC}, \mathrm{ABC} 1$ (ABC only combined with the initialization) and ABC 2 (ABC only combined with the search strategies). The computational results are summarized in Table 6. The results given there are the average FEs needed to reach the threshold expressed as acceptable solutions (column 2) specified in Table 6. In addition, successful runs (SR) of the 30 independent runs for each function are also compared. Fig. 6 presents the convergence performance of the different ABCs on the 4 test functions.

It can be observed from Table 6 that, both in the aspects of $F E s$ and $S R, A B C 1$ and $A B C 2$ are superior to $A B C$, which implies that both the initialization and the search strategies have positive effect on the performance of the algorithm. Specifically, ABC2 greatly outperforms ABC on all the 15 functions. On the other hand, the performance comparisons of $A B C 2$ and $A B C / b e s t / 1$ are not so apparent as those of $A B C 1$ and $A B C / b e s t / 1$, which means that the search strategies play a pivotal role in the proposed algorithm. However, though the contribution of the initialization is far less than the search strategies, the comparison of $A B C / b e s t / 1$ and $A B C 2$ show the initialization is at work. At the same time, it can be seen from Fig. 6 that both the initialization and search equations can increase the performance of the algorithm. Furthermore, we can see that how much they make contribution to improving the performance of the algorithm respectively.

5. Conclusion

In this paper, we have developed a novel algorithm to solve global optimization problems, called $A B C / b e s t ~ i n ~ w h i c h ~$ the initial population and scout bees are generated by combining chaotic systems with opposition-based learning method, and the solution search equation is based on that each bee searches only around the best solution of the previous iteration to improve the exploitation. The experimental results tested on 26 benchmark functions show that $\mathrm{ABC} / \mathrm{best} / 1$ algorithm outperforms ABC and GABC algorithms.

Since the performance of $A B C / b e s t / 2$ algorithm is not as good as that of $\mathrm{ABC} / \mathrm{best} / 1$ algorithm, ameliorating $\mathrm{ABC} / \mathrm{best} / 2$ algorithm is our future work. Practical applications of this hybrid approach in areas of clustering, data mining, design and optimization of communication networks, would also be worth studying.

Acknowledgments

The authors are grateful to the editor and two anonymous reviewers for their valuable comments and suggestions on this paper. This work is supported by National Nature Science Foundation of China (Grant Nos. 60974082, 11126287), Fundamental Research Funds for the Central Universities (Grant Nos. JY10000970006) and Foundation of State Key Laboratory of Integrated Service Networks of China.

References

[1] K.S. Tang, K.F. Man, S. Kwong, Q. He, Genetic algorithms and their applications, IEEE Signal Processing Magazine 13 (1996) 22-37.
[2] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Networks, vol. 4, 1995, pp. 1942-1948.
[3] M. Dorigo, T. Stutzle, Ant Colony Optimization, MIT Press, Cambridge, MA, 2004.
[4] D. Simon, Biogeography-based optimization, IEEE Transactions on Evolutionary Computation 12 (2008) 702-713.
[5] Z. Geem, J. Kim, G. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation 76 (2001) 60-68.
[6] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Erciyes University, Technical Report-TR06, Kayseri, Turkey, 2005.
[7] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization 39 (2007) 459-471.
[8] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm, Applied Soft Computing 8 (2008) 687-697.
[9] D. Karaboga, B. Basturk, A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation 214 (2009) 108-132.
[10] A. Singh, An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem, Applied Soft Computing 9 (2009) 625-631.
[11] F. Kang, et al., Structural inverse analysis by hybrid simplex artificial bee colony algorithms, Computers \& Sturctures 87 (2009) 861-870.
[12] L. Samrat, et al., Artificial bee colony algorithm for small signal model parameter extraction of MESFET, Engineering Applications of Artificial Intelligence 11 (2010) 1573-2916.
[13] R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization 23 (2010) 689-694.
[14] G.P. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied Mathematics and Computation 217 (2010) 3166-3173.
[15] B. Akay, D. Karaboga, A modified artificial bee colony algorithm for real-parameter optimization, Information Sciences (2010) doi:10.1016/j.ins.2010.07.015.
[16] B. Alatas, Chaotic bee colony algorithms for global numerical optimization, Expert Systems with Applications 37 (2010) $5682-5687$.
[17] S. Rahnamayan, et al., Opposition-based differential evolution, IEEE Transactions on Evolutionary Computation 12 (2008) 64-79.
[18] W.F. Gao, S.Y. Liu, A modified artificial bee colony algorithm, Computers \& Operations Research 39 (2012) 687-697.
[19] E.M. Montes, et al., Elitist artificial bee colony for constrained real-parameter optimization, IEEE Congress on Evolutionary Computation 11 (2010) 1-8.

[^0]: * Corresponding author. Tel.: +86 02988201214; fax: +86 02988204396.

 E-mail address: gaoweifeng2004@126.com (W. Gao).
 0377-0427/\$ - see front matter © 2012 Elsevier B.V. All rights reserved.
 doi:10.1016/j.cam.2012.01.013

