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We calculate the shear viscosity and anomalous baryon number violation rate in quantum field theories
at finite temperature having gravity duals with hyperbolic horizons. We find the explicit dependence
of these quantities on the temperature. We show that the ratio of shear viscosity to entropy density is
below 1/(4m) at all temperatures and can be made arbitrarily small in the low temperature limit for
hyperbolic surfaces of sufficiently high genus so that the hydrodynamic limit remains valid.
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In certain finite-temperature quantum field theories having
gravity duals with black brane solutions in higher spacetime di-
mensions, the hydrodynamic behaviour of the thermal field theory
is identified with the hydrodynamic behaviour of the dual gravity
theory [1]. It was shown [2] that for these field theories, the ratio
of the shear viscosity to the volume density of entropy has a uni-
versal value /s =1/(4m) and it was further conjectured that this
is the lowest bound on the ratio n/s for a large class of thermal
quantum field theories.

This conjecture was tested against a wide range of thermal
field theories having gravity duals: in gauge theories with chem-
ical potentials studying their R-charged black hole duals [3], in
field theories with stringy corrections [4] and also in field theories
with gravity duals of Einstein-Born-Infeld gravity [5]. In all these
theories it was found that the lower bound is satisfied. However,
in conformal field theories dual to Einstein gravity with curvature
square corrections it was found that the bound is violated [6] but
the physical implication of the violation of the bound is still not
clear.

In the gravity sector of this gravity/gauge duality, maximally
symmetric spaces naturally arise as the near-horizon region of
black brane geometries [7]. Spherically symmetric spaces have
been extensively investigated. Also hyperbolic geometries involv-
ing n-dimensional hyperboloids H" or H"/I" cosets, where I" is
a discrete subgroup of the isometry group of H", arise naturally
in supergravity as a result of string compactifications [8]. How-
ever, the presence of the discrete group I" introduces another scale
which breaks all supersymmetries. ' = 0 conformal field theo-
ries can be constructed having gravity duals with constant negative
curvature [8,9].
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The hydrodynamic properties of the boundary conformal field
theory can be inferred from the lowest frequency quasinormal
modes of the gravity sector [10]. The lowest-lying gravitational
quasinormal modes for a Schwarzschild-AdS solution were numer-
ically calculated in four and five dimensions and were shown to
be in agreement with hydrodynamic perturbations of the gauge
theory plasma on the AdS boundary [11]. For AdSs this was under-
stood as a finite “conformal soliton flow” after the spherical AdSs
boundary obtained in global coordinates was conformally mapped
to the physically relevant flat Minkowski spacetime. This study was
extended to black holes with a hyperbolic horizon. It was shown
in [12] that the quasinormal modes obtained agreed with the fre-
quencies resulting from considering perturbations of the gauge
theory fluid on the boundary.

Recently, interesting features have shown up in the study of
topological black holes (TBH). The spectrum of the quasinormal
modes of TBH [13] has been studied extensively [14]. For large
black holes this spectrum is similar to the Schwarzschild-AdS
spectrum. For small black holes however the quasinormal modes
spectrum is quite different. It was found [15] that there is a crit-
ical temperature, below which there is a phase transition of the
TBH to AdS space. This has been attributed entirely to the proper-
ties of the hyperbolic geometry.

In this work we will show that the hyperbolic geometry al-
lows us to calculate hydrodynamic transport coefficients like shear
viscocity and the Chern-Simons diffusion rate of the boundary
thermal field theory at any temperature under certain conditions.
This should be contrasted with the case of a spherical black hole
where low temperature is invariably associated with small horizon
area and therefore the hydrodynamic approximation breaks down.
In the hyperbolic case, the area of the horizon can be large even
at low temperatures provided the hyperbolic surface is of high
genus.

Topological black holes are solutions of the Einstein equations
for vacuum AdS space. Consider the action
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where G is the Newton’s constant, R is the Ricci scalar and I
is the AdS radius. The presence of a negative cosmological con-
stant (A = —%) allows the existence of black holes with
topology R? x X, where X is a (d — 2)-dimensional manifold of
constant negative curvature. These black holes are known as topo-
logical black holes (TBHs) [13]. The simplest solution of this kind
in four dimensions reads

(1)

ds? = —f(r)ydt® + Ldr2 +r2do?,
f

fy=r*—1-2Gu/r, 2)

where we have set the AdS radius [ =1, w is a constant which
is proportional to the mass and do? is the line element of the
two-dimensional manifold X, which is locally isomorphic to the
hyperbolic manifold H? and of the form

Y=H?/I, I'CO(@,1), (3)

where I' is a freely acting discrete subgroup (i.e. without fixed
points) of isometries. The line element do? of ¥ is

do? = d6? + sinh? 6 dg?, (4)

with & > 0 and 0 < ¢ < 27 being the coordinates of the hyper-
bolic space H? or pseudosphere, which is a non-compact two-
dimensional space of constant negative curvature. This space be-
comes a compact space of constant negative curvature with genus
g > 2 by identifying, according to the connection rules of the dis-
crete subgroup I", the opposite edges of a 4g-sided polygon whose
sides are geodesics and is centered at the origin 6 = ¢ =0 of the
pseudosphere [13,17]. An octagon is the simplest such polygon,
yielding a compact surface of genus g =2 under these identifi-
cations. Thus, the two-dimensional manifold X is a compact Rie-
mann 2-surface of genus g > 2. The configuration (2) is an asymp-
totically locally AdS spacetime.

This construction can be generalized to higher dimensions and
our aim in this work is to elucidate the effect of hyperbolic hori-
zons on the gauge theory on the AdS boundary. In five spacetime
dimensions the metric takes the form

dr? 2
ds? = —f(dE® + —— +17dZ3, fO)=r—1-"5 (5)
f r2
where X3 = H3/I". The horizon radius r is found from
4 1
T
+
The Hawking temperature is
2r2 —1
T=—"t—, @
2y

while the mass and entropy of the black hole are given respectively
by
3V |

:mri(ri—l), S:Eri (8)
where V is the volume of the hyperbolic space X3. Note that
in the horizon radius range 1/2 < rf_ < 1 the mass of the black
hole is negative [16]. The lower bound corresponds to its max-
imum negative value where the temperature is zero. The upper
bound corresponds to zero mass, where as shown in [15] there is
a phase transition of the TBH to AdS space, while above that value
the mass takes positive values.

The energy of the dual CFT is [9]

3V 1\?
Er= — (12 — = 9
= 1676 (r+ 2) )

which is shifted with respect to the black hole energy by a positive
amount (Casimir energy due to counterterms one needs to add to
the action to cancel infinities). Notice that the minimum energy
(Ecpr = 0) is at T = 0, therefore the energy of the CFT is never
negative, unlike its dual black hole.

For the study of perturbations, we need the behaviour of har-
monic functions on X3. In general, they obey

(V2 +Kk*)T=0. (10)

Without identifications (i.e., in H?), the spectrum is continuous.
We obtain [14]

K=g>+1+6 (11)

where & is arbitrary and § = 0,1,2 for scalar, vector and ten-
sor perturbations, respectively. When a compactification scheme is
chosen, the spectrum becomes discrete. Depending on the choice
of I', the discretized eigenvalues £2 may be made as small as de-
sired, i.e., zero is an accumulation point of the spectrum of & [17].
We also obtain negative values of £2. As &2 approaches its min-
imum value, the complexity of the set of isometries I increases
and the volume V of the hyperbolic space X3 can be made arbi-
trarily large (hence also the mass and entropy of the black hole).

Using the harmonics on X3, we may write the wave equation
for gravitational perturbations in the general Schrodinger-like form
(18]

2

—F-kv[r(r*)]@:a)sz, (12)

in terms of the tortoise coordinate r, defined by ‘LL; = % where

f(r) is defined in (5). The potential takes different forms for dif-
ferent types of perturbation.

To calculate the Chern-Simons diffusion rate one needs to solve
the wave equation for a massless scalar field. The radial wave
equation is

1 3 n/ w? ké _

By defining @ = raw it can be cast into the Schrodinger-like form
(12) with the potential given by

0. (13)

15 k¥—32 opu
Vs(T)=f(T){Z+ 2 o4 [

(14)

We may solve the wave equation in terms of a Heun function and
use the latter to determine the spectrum exactly albeit numerically
[15]. However, such explicit expressions will not be needed for our
purposes.

If the hyperbolic space X5 is infinite, then ké > 1 (Eq. (11)).
However, if X3 is finite, then it is easy to see that the minimum
eigenvalue is ké = 0. The corresponding hyperspherical harmonic
is a constant. Above ké =0, the spectrum is discrete.

For the AdS/CFT correspondence, we need the flux
N2 o PO D

_ - ° 15
F 16”2«/ gg o (15)

r—o0
The imaginary part is independent of r (conserved flux). It is con-

venient to evaluate it at the horizon where the wavefunction be-
haves as

B () ~ (1 - r%) . (16)
We obtain
V=8g"3(0*8,®) = —or>. (17)
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therefore

L L (18)
T I YOS PN

It is related to the imaginary part of the retarded Green function,
3CR(w,k8) = —23F (19)

of some scalar operator O (G(x) = (O(x)O(0)), where x € R x X3).
We readily obtain

N N2r4 &
SGR(w, k) = ————. 20
k) = e eor =
For O = %Ffwﬁ““”, we may define the Chern-Simons diffusion
rate

gm\
r= (&YT_’V;> fdr/d%(@(x)om)). (21)
PX:]

I" determines the rate of anomalous baryon number violation
at high temperatures in the Standard Model. Expanding G(x) in
hyperspherical harmonics, the integral over X3 projects onto the
lowest harmonic (ké = 0). The integral over time then yields the
Fourier transform at w = 0. Using

- 2T .
G(0,k3) = — lim ——3GR(w, k3 22
(0.ks) JmN (o,ks) (22)
we deduce
2 \2 2 \2 3
- N Tr
= Evm G(0,0) = M B S ) (23)
872 2567%  |®(00) | ,—0 420
Evidently,
‘p(r)la):o,l(é:o =1 (24)
at any temperature, therefore
2 \2
N 1
=8N e 1) (25)
25677 2rt

At high temperatures, I" ~ T4 whereas as T — 0, I' ~T — 0, i.e.,
anomalous baryon number violation is suppressed at low temper-
atures.

To calculate the shear viscosity, we need to discuss vector grav-
itational perturbations. The lowest eigenvalue of the angular equa-
tion (10) for a vector harmonic V; (V;V! = 0) on a finite hyperbolic
space X3 is found by observing that

Vi@V —8;V) = (ki +2)V;
where we used R;jj = —2¥;j (y;; being the metric on X3). There-
fore, we have a constant vector harmonic if k& + 2 = 0. The mini-

mum eigenvalue is k3 = —2. Above it, we have a discrete spectrum
of eigenvalues

ki=-24+A, A>0. (26)
The radial wave equation is of the form (12) with potential
2 7
r2 2r4 |’

Vv = F01 2+ (27)
We may solve the radial equation and obtain a solution in terms
of a Heun function. Since we are interested in the hydrodynamic
behaviour, we shall solve the radial equation only for small @ and
A using perturbation theory.

More precisely, the hydrodynamic approximation is valid pro-
vided

o, VAL, (28)

(recall that we are working in units in which the AdS radius [ =1).
At high temperatures, this constraint is equivalent to w, v/A < T.
Also, the area of the horizon (A4 ~ ri) is large and the constraint
(28) is satisfied for eigenvalues A ~ O(1) because then A <« A..
This is similar to the case of a sphere. In both cases, the hydro-
dynamic limit is valid at high temperature (large black hole) [11,
12].

At low temperatures, in the case of a spherical horizon, its
area becomes small. Even with A} ~ O(1), it is no longer possi-
ble to satisfy the constraint (28) because the low-lying eigenvalues
A ~ O(1) regardless of the size of the horizon. Thus, for a small
spherical black hole the hydrodynamic approximation is invalid.

For a hyperbolic horizon at low temperature, we have r; ~
OQ) (ry > 1/+/2 at all temperatures), so the hydrodynamic con-
straint (28) is not always satisfied, as in the case of a spherical
horizon. However, unlike in the case of a sphere, a hyperbolic
space X3 of high genus can have a large volume V > 1. The low
lying eigenvalues are

Jae

~ T (29)

and therefore can be small (vVA < O(1)) if V is large. Thus, for
topological black holes of high genus hyperbolic horizons the hy-
drodynamic approximation is valid even in the low temperature
(small horizon radius) limit owing to the complexity of the hori-
zon surface.

To solve the radial wave equation, it is convenient to introduce
the coordinate

2
. (r_+) , (30)
.

In terms of the wavefunction F(u) defined by

W) =(1—u)"# Fu) 31)
we have
AF" + BF' +CF =0, (32)
where
A=uf, B:uf‘/-l—%f—i-%]uju,
- \A/A_’_ilufq—%f o uf
au2f 4nT 1-u 47T (1 —u)?
+ O(w?/T?), (33)

where prime denotes differentiation with respect to u and we have
defined

fo SO 11

fa= 2w 2o

S W) . 3, AR a7,

Vv(u) = ri —f(u){z‘l‘ Tu— Eu } (34)

We obtain the zeroth order equation by setting w =0, A =0. The
acceptable solution is

Fo=u’/4 (35)

independent of the temperature.
Expanding the wavefunction,

F=Fy+F1+---, (36)
at first order the wave equation reads

HoF1 = —H1Fo, (37)
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Fig. 1. The imaginary part of the lowest, purely dissipative, mode versus r;. The
continuous line and the points represent the perturbative and numerical results,
respectively.

where
iw [2 1 A
HiFp=—31—-+3(1- = Fo — Fop. (38)
4anT |u r2 artu
The solution may be written as
W [ FoH1Fp

F1=F — | —, 39

! 0/ F2 / AW (39)

where W =1/u3/2f) is the Wronskian. The limits of the inner in-
tegral may be adjusted at will because this amounts to adding an
arbitrary amount of the unacceptable zeroth-order wavefunction.
To ensure regularity at the horizon, we should choose one of the
limits of integration at u = 1. Then by demanding that the singu-
larity vanish at the boundary (u = 0), we arrive at the first-order
constraint

1
FoH1 1 Fo
du——— =0. 40
/“ AW (40)
0

After some straightforward algebra, this leads to the dispersion re-
lation
A

w=—i—o (41)

4r+
in agreement with Ref. [12] at high temperatures and matching
numerical results at all temperatures (Fig. 1). From (41) we read
off the diffusion coefficient

1
=— (42)
4T+
which is related to the viscosity coefficient via
n
= . 43
€+p “3)

This is known to be valid in flat space. It is also valid in our case,
as can be seen by writing the hydrodynamic equations vV, T#*" =0
for a static fluid of constant pressure perturbed by a small veloc-
ity field u' = eV, The conservation law of the hydrodynamic
equations yields [12]

—4iwp + n (ki +2) =0. (44)

Eq. (43) then follows if we use (41), (42) together with € = 3p
which is valid for a conformal fluid.

From the expression for the energy (9), we obtain the energy
density € = Ecpr/V and the shear viscosity coefficient

4 1 , 1\?
]”:—ED:4 r+—— . (45)
3 16w Gr4 2

Dividing by the entropy density (s = S/V, where the entropy is
given by (8)), we obtain

2
1 1
s 4r 2ry

At high temperature (large r}.), 2~ ;L. As T — 0, 2~ T2 — 0. At

all temperatures, the ratio is below %.

In flat spacetime, one also obtains the viscosity coefficient from
the Kubo formula [1], which agrees with the result obtained via
the diffusion coefficient. The former is derived by considering ten-
sor perturbations. This is not possible in our case, because tensor
perturbations of the static fluid in hyperbolic space do not exist
due to their being traceless and divergenceless [12].

In conclusion. Using the AdS/CFT correspondence we have cal-
culated the anomalous baryon number violation rate and the ratio
of shear viscosity to entropy density in thermal field theories hav-
ing gravity duals with hyperbolic horizons. We found the explicit
temperature dependence of the anomalous baryon number viola-
tion and we showed that it is suppressed at low temperatures.
For high genus hyperbolic spaces the hydrodynamic approxima-
tion is valid at low temperatures, and the ratio of shear viscosity
to entropy density is found to be below 1/(4w) at all temper-
atures. It can be made arbitrarily small in the low temperature
limit.
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