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Abstract

We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order to address
the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this approach is
more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting information
can be obtained already at first order, such as the identification of the operators which create a mass gap and those which induc
the confinement of the massless particles in the perturbed theory.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction and the change of the ground state energy—results
successfully checked by numerical studies.

Given the large number of remarkable results ob- _ 1N€ Main purpose of this Letter is to extend Form
tained from the study of two-dimensional integrable Factor Perturbation Theory (FFPT) to non-integrable
quantum field theories (IQFTS), at present one of the deformations of massless IQFTs. The most funda-
most interesting challenges consists of developing a Mental question that one may ask in this context is
systematic approach to study non-integrable models, whether a perturbation creates a gap in the excitation

at least when they are deformations of integrable ones. SPeCtrum—a problem usually addressed via the renor-
For massive field theories a convenient perturbative Malisation group (RG) equations near a fixed pfitiut
scheme, based on the exact knowledge of the form- Moreover, if massive particles are created, one would
factors (FFs) of the original integrable theory, was sug- 'Ik€ t0 understand whether they are adiabatically re-
gested in[1]. Already at first order, it proved able to lated to the original mqssless excitations or, I_|ke in
provide a great deal of information, such as the evolu- the massive case, confinement takes place. Since the

tion of the particle content, the variation of the masses RC €quations cannot provide a complete answer to
any of the above questions, it is worth exploring other

alternative routes. The FFPT relies directly on the par-
E-mail address: mussardo@he.sissa@. Mussardo). ticle description of the unperturbed theory and, for this
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reason, it seems to be the most natural and suitablelt is useful to recall that in most of the cases of in-
approach for studying the evolution of the particle con- terest, the integrable action of a massive theory can
tent when the perturbation is switched on. be defined in terms of a deformation of a CHj,

Our analysis is presently limited to the first order Ajnt = Acet + gfdzx @ (x), where®d(x) is a rele-
of FFPT, its extension to higher orders being, as in vant scalar field of conformal weighte = Ag < 1.
the massive case, an interesting but non-trivial math-  Let us first assume that the theory has only one
ematical problem. Despite the fact that one must be massive particle in the spectrum(g), whereg para-
careful in handling results at such low order, some meterises the dispersion relationg = m coshs and
useful conclusions can nevertheless be reached. Forp; = m sinh8. The integrability of the theory allows
instance, it will be possible to discriminate between one to compute its exact factorised scattering ampli-
operators which do not spoil the massless nature of thetudes[8], S(812) (812 = B1 — B2), and the FF$9] of
theory and those which instead induce a mass gap inthe various operator® on the set of asymptotic states
the spectrum. Moreover, the confinement of the orig- o
inal massless excitations can be traced back to the £~ (81, B2. ..., Bn)
non-local properties of the perturbi_ng opergtor_with re- = (0|0(0) |A(ﬂ1)A(ﬁz) - ABn)). (2)
spect to them. These results provide the first informa-
tion on the perturbed theory and may guide a further A convenient way to study the mass correction in-
analysis of its properties. It should be stressed that an- duced by the non-integrable deformatid) is to em-
swering the above questions in their full generality is, Ploy the Hamiltonian formalism, in the same spirit of
obviously, a fairly complicated problem since it con- standard quantum mechanics perturbation theory. The
cerns the global structure of the RG flows rather than Hamiltonian associated {d) can be written as
their local properties around the fixed points. It is well
known, for instance, that adding a relevant perturba- H = E/dxl Too(xl, 0) —?»fdxl‘l’(xl, 0, ()
tion to a massless action does not necessarily imply
that the resulting infrared theory will be massive: in- WhereT,, (x) is the stress—energy tensor of the inte-
deed the perturbing operator may induce a flow into grable theoryAir;. The operatoffpo can be expressed
a new critical point, with some of the massive exci- N terms of its trace® (x), using the conservation law
tations decoupled from the new massless dBe4. " Ty =0,
An example even more subtle is given by the roam-
ing trajectories discovered by Al. Zamolodchikf5] 870 (x*. x°) = (9f — 85) Too(x". x°). )

(and further analysed ii,7]), i.e., an infinite cascade  |n particular, for the two-particle form factor we have
of massless flows finally ending in a massive phase.
(0Too(x ", x%)|A(B)AB)))

. i+ B
2. FFPT for massive field theories _ _sint?? 2’3] e (xhx°)|ABHAB)). (5)

The essential results of FFPT are easily re-derived
within this formalism. Let us first consider the unper-
turbed integrable case,= 0. Evaluating the matrix
1) element of both sides of Eq3) on the asymptotic

states(A(8;)| and|A(B;)), and using the relatio(b),
one obtains the usual normalisation condition for the
| trace of the stress—energy tensor of the massive inte-

Consider non-integrable theories obtained as a de-
formation of an integrable actiaAjny

A = Aint +A/d2x W (x).

The exact knowledge of the FFs of the operakdix)

on the asymptotic states of the unperturbed theory a
lows one to set up an expansion of various physical 9rable theory,

quantities of the new theory in powers bf the so- @ 2

called FFPT[1]. We present initially some known re- (AB|OO]AB)= FOlm) = 2mm”, ©)
sults of FFPT for massive theories in a way that is an equation which shows the relationship between the
more suitable for the extension to the massless case.FF of this operator and the mass scales of the theory.
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Repeating the same procedure for the non-inte- admit a well-defined description in terms of the corre-
grable theory(3), one obtains instead the first order sponding CFT perturbed by a relevant operator. How-

correction to the mass of the particles, as givefiin ever, from the physical point of view of selecting the
low-energy massless excitations, it is more appropri-
§m? ~ 20 FY (ir). (7) ate to view them as irrelevant perturbations of their IR

. . fixed point action
If the operatord (x) is non-local with respect to the P

particlesA (), F¥ (B) has a pole fop = iz and(7) Amasslese= A'CRFT—l—g/dzxé(x) T (10)
diverges. This divergent correction to their masses im-
plies the confinement of the particldsp), thatareno  where the irrelevant field (x) specifies the approach-
longer excitations of the actiofl) [1]. This phenom-  ing direction to the CFT of the IR fixed point. The
enon appears for instance in the magnetic deforma- scattering theory of massless IQFTs is discussed in de-
tion of the low-temperature phase of the Ising model taij| in [4] whereas their form factors ifi13], so we
[1,10,11] as well as in two-frequency sine-Gordon shall outline only some basic facts below. The exci-
model[12]. tations of these theories consist of rigtk)(and left

It should be noticed that, since this is a strong cou- (L) moving partic|es_ They are defined AS> 0 and
pling analysis, i.e., carried out in the infrared region ,, < 0 branches of the relativistic dispersion relation
(IR), if A in (1) scales under RG, it has to be replaced ,; = |p,|, which can be parameterised pag= p1 =
in (7) by its renormalised value at energy of the order (M/2)€? for the R movers,Az(B), andpg = —p1 =

of the mass of the theory (M/2)e P for the L movers, Ay (8), where M is a
off 4 mass scale. Within this parameterisation, the Mandel-
A AT K(m ) (8) stam variable for theR L scattering process is given

by: sgL(Bij) = M?€Pii. Contrary to the massive case,
where the threshold of the scattering process is given
by Bi; =0, for the RL sector of the massless scatter-
ing the threshold is reached in the linfif; — —oo.
In the RR and LL sectors the Mandelstam variable is
always zero, showing that all analyticity arguments of
the S-matrix theory cannot be applied: the scattering
amplitudes in these channels can be properly defined
Smg ~ 2. FY (i). ©) only as analytic c.ontinue}ti.on of the massive cpfe

For this purpose, in fact, it is useful to regard the mass-
When some of the particles, say(n’ < n), have the less excitations as a particular limit of the massive
same mass, this equation has to be generalised like inparticlest
guantum mechanics perturbation theory for degener-  Writing the S-matrix in a compact forna,, (81) x
ate levels, i.e., the perturbed masses are obtained byA,,(82) = Su;.a,(812) Aa, (B2) Aay (B1), (@i = R, L)
diagonalising the matriXM; ;} = {Fk‘lfl(in)}, where the equations satisfied by the FFs can be written in
indicesk, I belong to the degenerate multiplet. If the analogy to the massive cafS]. For the two-particle
symmetry of the perturbing operator is less than the matrix element Fg,az(ﬁlz) = (0]0(0)|Ae, (B1).
symmetry of the multiplet, the perturbation will typi-
cally split it.

As a consequence, unless the RG flow is known ex-
actly, quantitative predictions can be made only on
universal mass ratios.

If the theory hasa non-degenerate particle$, (8),
with massesn, (¢ =1,...,n; m, # my) the above
analysis can be easily extended and gives the follow-
ing mass variation

1 For instance, ifA(B) is a massive excitation of mass
with a S-matrix equal toS(8), the massless limit is constructed
by shifting the rapiditiess — Bg 1 & Bo/2 and taking the dou-
3. MasdessIQFTs ble limits By — oo andm — 0 while M = mefo is kept fixed:
AR, L(B) = limg, 00 A(B £ Bo/2). When one considers thg-

Massless non-scale invariant IQFTs are aSSOCiatedmatriX in the RR and LL sectors, the rapidity shifts cancel and
thereforeSgr(B) = S.1.(B) = S(B). As functions of the rapidity

to RG flows be_tween t_WO di_ﬁerent f_iXEd points. Wi_th variable, these amplitudes are then expected to satisfy the same
respect to their ultraviolet fixed point, such theories equations valid for the massive case.
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Aq,(B2)), we have for instance stress—energy tensor
FE 0, (B) = Sar.ar (BYFS 0y (—B), FRelim) = Fy (im) = 27, (14)
Fapar (B +270) =€ 2O, (=P), 1y Fr®=o. (15)

where yo is the non-locality index of the operator The last equation can be viewed as an essential prop-
O with respect to the massless particles. Their ana- €Y of a massless integrable theory, i.e., a non-trivial
lytic structure, however, differs from the massive case. 9eneralisation to massless non-scale invariant theories

In massive theories, the multi-particle FFs are mero- Of properties of CFTs. _
morphic functions in the strip & Img < 27 and Consider now the case whenis non-zero. If the

present simple pole singularities associated either to Perturbing operatow (x) has vanishing FF on theL

bound states or to particle—antiparticle annihilation (LR) sector, it is easy to see that, at the lowest or-
processes. In massless theories the same kinds of sinder, it does not change the masslessness nature of the
gularities are expected in th8R and LL sectors, theory. Indeed, it doe_s not spoil both the validity of
since they formally behave like the massive cases. In Ed-(15)and the analytic structure of the Green's func-
the RL and LR sectors instead, bound state poles are tions of the original massless theory. On the contrary,
absent while kinematic poles may appear only if both if the operator” (x) has non-vanishing FFs in tiel.
particles have vanishing momentum. However, instead (L R) sector of the theory, this perturbation immedi-
of producing a recursive equation like in the massive ately generates a mass gap, a quantity which can be
case, here the presence of kinematic poles imposes Stimated by sandwiching E¢g) on R and L asymp-

condition on the asymptotic behaviour of the FFs. In totiC states

particular, I|I§e in the massive case, a pple ispresentin g oeff  |im F}?L 7 + BrL). (16)

the two-particle FF only if the operator is non-local BrL——00
. . From a kinematical point of view, the above limit is
lim F$ =00 for © non-local ) ™

BrL—>—00 rLUT + Pr) the expectation value of the perturbing operator at the

(12) (zero-energy) threshold of the cross&d. channel.
(an analogous equation can be written for the FF inthe |4 the above equation the effective coupling constant,
LR sector). 16 is defined like in(8) with m — 0. As a conse-
quence, if the perturbing operator is irrelevant with
respect to the IR CFT,¢" scales to zero, i.e., the ac-
4. FFPT for masslessfield theories tual mass gap vanishes in the infrared region although
R it is present at intermediate scales. On the other hand,
Suppose now that an operatdix) of the infrared i it is relevant, it will grow to the scale of the mass
CFT is added to the effective acti¢ft0), so thatits  peing generated. At this level the relevance of an op-

integrability is broken erator has to be established by scaling arguments. In
by - summary, two conditions have to be fulfilled for gener-
A= Amasslesst- A / dx ¥ (x). (13) ating, at lowest order, a mass gap in the theory: the per-

o . . _ turbing operator has to be relevant with non-vanishing
Repeating initially the analysis of the previous section (LR) matrix elements.

for the unperturbed case = 0, one find$ the fol- Moreover, like in the massive case, the mass cor-
lowing normalisation conditions for the trace of the action sm may be a finite or a divergent quantity
depending on the locality properties of the perturb-
2 |t should be kept in mind that to avoid trivial vanishing 1N operator with respect to the fields th_at generate
of the RR (LL) FFs in taking the massless limit @b), one the massless particles. If the operato(x) is local,

has to rescale scalar operators by their mass dimeri%i(or) - dm is finite and the massive excitations of the per-
O(x)/m?40 and define their FFEC, (B12) = lim,,_.0 F_zg,ﬂ_év, turbed theory are adiabatically related to the massless
’ m

where FO (B15) is the two-particle form-factor of the massive ver-  particles of the original one. If, instead,(x) is a non-
sion of the theory. local operator, it follows from Eqg12) and (16that
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sdm diverges: in this case, the original massless exci- LL sectors, of the fornF,’,fR(ﬁ) = Z;L tanh(8/2). For
tations are confined as soon &ds switched on. In the FFs in theR L sector we find
other words, the massive particles of the perturbed the- 8 di sirA(iz=5)
i in thi I -
ory are not associated, in this case, to the operatorsFy,, (8) = Z, exp(—— — / —%t) (18)
that create the original massless ones. The examples 4 ¢ sinhr cosh;
discussed below should help in clarifying these two The above results agree with the roaming limit of
situations. the FFs of the sinh-Gordon theof§5]—a limit in
If the theory contains more than one type of mass- which the sinh-Gordon model corresponds to the
less particleA, r/. (@ =1,...,n) the previous ap-  above massless flof§,7,13]
proach has to be generalised in analogy with pertur-  Using now (16) and (17), it is easy to see that
bation theory for degenerate levels. Since the particles the perturbation by (x) induces a finite mass in the
Aq.o form a complete basis for the scattering theory, system, as it could have been expected on different
by using FFPT it should be possible, in principle, to grounds. At the critical point, in fact(x) is bilinear
predict whetheany massless excitations survive, and in the fermionic operators that generate the massless
this is a clear advantage with respect to the RG. Al- particles,e ~ vy, and therefore the perturbed theory
though a complete answer to this question involves the describes massive fermions in the presence of an irrel-
entire series in., nevertheless the first order of FFPT evant perturbatiof 7.
may provide useful hints on the decoupling of massive ~ Consider now the perturbation of the massless ac-
and massless modes of the theory under investigation.tion by the non-local operater(x). By computing the
limit (16) of the two-particle FK18) of this operator,
one sees that in this cage: diverges, i.e., the ini-
5. Massless flows between minimal models tial excitations can no longer propagate as asymptotic
states in the new vacuum of the theory created by the
Let us now apply the above methods to some spe- insertion of this field. Like in the massive case, there is
cific examples, starting from the massless flow be- a simple explanation of this confinement phenomenon
tween the tricritical Ising model (TIM) and the critical  in terms of the LG effective description of the theory
Ising model (CIM). The quantum field theory associ- [1]. Indeed, in the unperturbed theory the elementary
ated to this RG flow can either be seen as TIM per- excitations can be equivalently considered as massless
turbed by its sub-leading energy operatoof confor- kinks interpolating between two degenerate minima of
mal dimensionsA. = A = 3/5 or as CIM perturbed  the LG potential[14]. However the insertion of the
by the irrelevant operatdf T’ (see[4] and references  disorder magnetic operater(x) lifts the degeneracy
therein). The factorised scattering theory for this mass- between the minima, thus making the kinks unstable.

less flow was first proposed id] and the basic FFs As a matter of fact, the flow between the TIM and
calculated in13]. The spectrum consists of massless the CIM is the simplest example of a one-parameter
neutral fermions, withS-matrix Sgr(8) = SrL(B) = family of RG trajectories interpolating between the

—1, while Sgr(B) =tanhB/2 — in/4). As well as conformal minimal models4,,, with central charge
studying the non-integrable theory obtained by the in- ¢, =1 — 6/p(p + 1) (p = 3,4 describe the CIM

sertion of the energy operategx) of the CIM, we will and TIM respectively). The flows start from., and
also consider the deformation of the massless action pass close to all the other minimal models, remain-
by the disorder operatqr(x). The latter is non-local,  ing massless all the way down to the very last fixed

yu = 1/2, with respect to the massless fermion exci- point, p = 3, after which they become massife-7].

tations. The energy operator has two particle FFs only The trajectories going out from each critical point are

in the RL sector of the fornj13] described as4,, perturbed by the operataps [3]:

) p dr SiP(U3=8)) Af,“.z Ap + 3 [ d’x ¢{5 (where the upper index in

Frp (B)=Z. exp(— - / _-71)’ a7) ¢13 indicates the relative CFT) and the excitations are
4 1 sinhz cosh; massless kinks interpolating between tipe— 2) de-

whereZ, is a normalisation constant. The disorder op- generate vacua of the effective LG potenfid]. An

erator, on the other side, has also FFs in & and interesting problem consists of predicting the evolu-
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tion of the spectrum along these flows, in particular
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that breaks parity. Thus, in the vicinity 6f= r, the

the successive decoupling of the massless modes in themodel is described by the effective action

cascade of massless RG flows, by applying FFPT. The
analysis of this problem is however beyond the scope A% = A" 4

of the present Letter.

6. Spinon confinement in sigma models

Another important application of FFPT is in the
study of the mass spectrum of th@(3) non-linear
sigma-model with a topological term

1
Ay /dzx (Ouna)? +i6T,

T 2p?

(@=1,2,3 n2=1) (19)

where f and6 are dimensionless coupling constants
and T is the integer-valued topological term related
to the instanton solutions of the model. The two val-
uesd = (0, ) are the only ones for which the action
(19) is known to be integrable. A# = 0 the exci-
tations form a massiv® (3) triplet whose scattering
theory was constructed if8,16]. At & = = the the-
ory is instead massle447-20] and corresponds to
the RG flow between the =2 CFT and theSU(2),
Wess—Zumino-Witten (WZW) model. The factorised
scattering theory was suggested1]: it consists of
right and left doubletsA, g andA, 1, (a =1, 2), that
transform according to the= 1/2 representation of

/dzx Trg,

wherey is a functiorf of (9 — ) that vanishes when
0=m.

As discussed in Ref25], the spinons are created
by the primary operatop®(z) ($*(2)) with scaling
dimension: = (1/4,0) (h = (0, 1/4)). They enter the
operator product expansion (OPE)

¢ (@) (w) = (=) (z — w) 2P
x (14 1/2(z — w)?T (w) - --)
— ()1 —w) )™
X (J“(w) +1/2(z — w)dJ*(w) - - o),

(21)
whereet™ = —e~+ =1, (1,)*¥ are the generators of
the algebra, ang takes the valueg = 0 for states that
are created by an even number of spinons @ard1
if the number of spinons is odd. The OPE between
the spinon operator and tHf&J(2) currentsJ4(z) is
standard:J? (z)¢% (w) = (l‘a)(é(f)ﬁ(w)/(z —w) 4+
From these OPEs it follows that® and¢® are mutu-
ally local whileg¢® and¢? are not. In fact taking® (z)
aroundg? (w) by sending; — ze%*! it produces a fac-
tor €1 with y, = 1/2.

Therefore(Trg)2 ~ J%J¢ is local with respect to
the spinons and this explains why they are the funda-

(20)

SU(2) (spinons). However, as soon as one moves away mental excitations ofd,, regardless of whether the

from 6 = =, the spinons confinR1,22]and the actual
spectrum of the theory in the vicinity of this point has
been determined if22]. Let us discuss in some detalil

perturbation is marginally relevant or irrelevant. Since
Tr g is proportional tagp™ ¢~ + ¢~ ¢™), the OPE21)
implies that this operator is instead non-local with re-

this amounts to show that the topological term is non-
local wrt the fields that create the spinons, a property
that can be easily checked by looking at the CFT limit
of these operators.

Consider A, as our unperturbed IQFT. Close to
the IR fixed point the massless flow can be de-
scribed as &8U(2)1 WZW model perturbed by the
marginally irrelevant perturbationTr g)2 [17-19]
A = Aqy), + vy [d?x (Trg)? (y > 0), whereg is
the SU(2) matrix field. In terms of this formulation
the perturbation that moves the topological term away
from 6 = r is proportional to Tg [18], i.e., to the
only relevantSU(2) invariant operator in the theory

as the operator Tg is added ta4,, i.e., the perturbed
model(20) has no longer spin/R excitations. As dis-
cussed in[22], the actual massive excitations of the
0(3) sigma model witho-term consists of a triplet of
particles and a singlet, the former stable for all value of
0 whereas the latter stable only in an interval of values
of 6 nearf = .

3 The form of this function determines the dependencefon
) of the mass gap, since it scales as ~ n2/3, up to logarithmic
correction[23]. In a recent papg@4] it has been suggested that the
gap behaves lik¢p — 7)1/2, which would imply a dependence gf
on (6 — m) that it is not linear, as usually assumed.
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