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Abstract

We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order t
the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this a
more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting inf
can be obtained already at first order, such as the identification of the operators which create a mass gap and those wh
the confinement of the massless particles in the perturbed theory.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Given the large number of remarkable results
tained from the study of two-dimensional integrab
quantum field theories (IQFTs), at present one of
most interesting challenges consists of developin
systematic approach to study non-integrable mod
at least when they are deformations of integrable o
For massive field theories a convenient perturba
scheme, based on the exact knowledge of the fo
factors (FFs) of the original integrable theory, was s
gested in[1]. Already at first order, it proved able t
provide a great deal of information, such as the evo
tion of the particle content, the variation of the mas
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and the change of the ground state energy—res
successfully checked by numerical studies.

The main purpose of this Letter is to extend Fo
Factor Perturbation Theory (FFPT) to non-integra
deformations of massless IQFTs. The most fun
mental question that one may ask in this contex
whether a perturbation creates a gap in the excita
spectrum—a problem usually addressed via the re
malisation group (RG) equations near a fixed point[2].
Moreover, if massive particles are created, one wo
like to understand whether they are adiabatically
lated to the original massless excitations or, like
the massive case, confinement takes place. Sinc
RG equations cannot provide a complete answe
any of the above questions, it is worth exploring oth
alternative routes. The FFPT relies directly on the p
ticle description of the unperturbed theory and, for t
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reason, it seems to be the most natural and suit
approach for studying the evolution of the particle co
tent when the perturbation is switched on.

Our analysis is presently limited to the first ord
of FFPT, its extension to higher orders being, as
the massive case, an interesting but non-trivial ma
ematical problem. Despite the fact that one must
careful in handling results at such low order, so
useful conclusions can nevertheless be reached.
instance, it will be possible to discriminate betwe
operators which do not spoil the massless nature o
theory and those which instead induce a mass ga
the spectrum. Moreover, the confinement of the o
inal massless excitations can be traced back to
non-local properties of the perturbing operator with
spect to them. These results provide the first inform
tion on the perturbed theory and may guide a furt
analysis of its properties. It should be stressed that
swering the above questions in their full generality
obviously, a fairly complicated problem since it co
cerns the global structure of the RG flows rather th
their local properties around the fixed points. It is w
known, for instance, that adding a relevant pertur
tion to a massless action does not necessarily im
that the resulting infrared theory will be massive:
deed the perturbing operator may induce a flow i
a new critical point, with some of the massive ex
tations decoupled from the new massless ones[3,4].
An example even more subtle is given by the roa
ing trajectories discovered by Al. Zamolodchikov[5]
(and further analysed in[6,7]), i.e., an infinite cascad
of massless flows finally ending in a massive phas

2. FFPT for massive field theories

Consider non-integrable theories obtained as a
formation of an integrable actionAint

(1)A = Aint + λ

∫
d2x Ψ (x).

The exact knowledge of the FFs of the operatorΨ (x)

on the asymptotic states of the unperturbed theory
lows one to set up an expansion of various phys
quantities of the new theory in powers ofλ, the so-
called FFPT[1]. We present initially some known re
sults of FFPT for massive theories in a way that
more suitable for the extension to the massless c
r

.

It is useful to recall that in most of the cases of
terest, the integrable action of a massive theory
be defined in terms of a deformation of a CFT[8],
Aint = ACFT + g

∫
d2x Φ(x), whereΦ(x) is a rele-

vant scalar field of conformal weights∆Φ = ∆̄Φ < 1.
Let us first assume that the theory has only o

massive particle in the spectrum,A(β), whereβ para-
meterises the dispersion relation:p0 = mcoshβ and
p1 = msinhβ. The integrability of the theory allow
one to compute its exact factorised scattering am
tudes[8], S(β12)(β12 = β1 − β2), and the FFs[9] of
the various operatorsO on the set of asymptotic state

FO(β1, β2, . . . , βn)

(2)= 〈0|O(0)
∣∣A(β1)A(β2) · · ·A(βn)

〉
.

A convenient way to study the mass correction
duced by the non-integrable deformation(1) is to em-
ploy the Hamiltonian formalism, in the same spirit
standard quantum mechanics perturbation theory.
Hamiltonian associated to(1) can be written as

(3)H = 1

2π

∫
dx1 T00

(
x1,0

) − λ

∫
dx1 Ψ

(
x1,0

)
,

whereTµν(x) is the stress–energy tensor of the in
grable theory,Aint. The operatorT00 can be expresse
in terms of its trace,Θ(x), using the conservation law
∂µTµν = 0,

(4)∂2
1Θ

(
x1, x0) = (

∂2
1 − ∂2

0

)
T00

(
x1, x0).

In particular, for the two-particle form factor we hav

〈0|T00
(
x1, x0)∣∣A(βi)A(βj )

〉
(5)= −sinh2 βi + βj

2
〈0|Θ(

x1, x0)∣∣A(βi)A(βj )
〉
.

The essential results of FFPT are easily re-deri
within this formalism. Let us first consider the unpe
turbed integrable case,λ = 0. Evaluating the matrix
element of both sides of Eq.(3) on the asymptotic
states〈A(βi)| and|A(βj )〉, and using the relation(5),
one obtains the usual normalisation condition for
trace of the stress–energy tensor of the massive
grable theory,

(6)
〈
A(β)

∣∣Θ(0)
∣∣A(β)

〉 = FΘ(iπ) = 2πm2,

an equation which shows the relationship between
FF of this operator and the mass scales of the theo
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Repeating the same procedure for the non-in
grable theory(3), one obtains instead the first ord
correction to the mass of the particles, as given in[1],

(7)δm2 � 2λFΨ (iπ).

If the operatorΨ (x) is non-local with respect to th
particlesA(β), FΨ (β) has a pole forβ = iπ and(7)
diverges. This divergent correction to their masses
plies the confinement of the particlesA(β), that are no
longer excitations of the action(1) [1]. This phenom-
enon appears for instance in the magnetic defor
tion of the low-temperature phase of the Ising mo
[1,10,11] as well as in two-frequency sine-Gordo
model[12].

It should be noticed that, since this is a strong c
pling analysis, i.e., carried out in the infrared regi
(IR), if λ in (1) scales under RG, it has to be replac
in (7) by its renormalised value at energy of the ord
of the mass of the theory

(8)λ → λeff � λ
(
m−1).

As a consequence, unless the RG flow is known
actly, quantitative predictions can be made only
universal mass ratios.

If the theory hasn non-degenerate particles,Aa(β),
with massesma (a = 1, . . . , n; ma �= ma′ ) the above
analysis can be easily extended and gives the foll
ing mass variation

(9)δm2
a � 2λFΨ

āa(iπ).

When some of the particles, sayn′ (n′ < n), have the
same mass, this equation has to be generalised lik
quantum mechanics perturbation theory for dege
ate levels, i.e., the perturbed masses are obtaine
diagonalising the matrix{Mk,l} = {FΨ

k,l(iπ)}, where
indicesk, l belong to the degenerate multiplet. If th
symmetry of the perturbing operator is less than
symmetry of the multiplet, the perturbation will typ
cally split it.

3. Massless IQFTs

Massless non-scale invariant IQFTs are associ
to RG flows between two different fixed points. Wi
respect to their ultraviolet fixed point, such theor
admit a well-defined description in terms of the cor
sponding CFT perturbed by a relevant operator. H
ever, from the physical point of view of selecting t
low-energy massless excitations, it is more appro
ate to view them as irrelevant perturbations of their
fixed point action

(10)Amassless= AIR
CFT + g

∫
d2x Φ̂(x) + · · · ,

where the irrelevant field̂Φ(x) specifies the approach
ing direction to the CFT of the IR fixed point. Th
scattering theory of massless IQFTs is discussed in
tail in [4] whereas their form factors in[13], so we
shall outline only some basic facts below. The ex
tations of these theories consist of right (R) and left
(L) moving particles. They are defined asp1 � 0 and
p1 � 0 branches of the relativistic dispersion relati
p0 = |p1|, which can be parameterised asp0 = p1 =
(M/2)eβ for theR movers,AR(β), andp0 = −p1 =
(M/2)e−β for the L movers,AL(β), whereM is a
mass scale. Within this parameterisation, the Man
stam variable for theRL scattering process is give
by: sRL(βij ) = M2eβij . Contrary to the massive cas
where the threshold of the scattering process is g
by βij = 0, for theRL sector of the massless scatt
ing the threshold is reached in the limitβij → −∞.
In theRR andLL sectors the Mandelstam variable
always zero, showing that all analyticity arguments
the S-matrix theory cannot be applied: the scatter
amplitudes in these channels can be properly defi
only as analytic continuation of the massive case[4].
For this purpose, in fact, it is useful to regard the ma
less excitations as a particular limit of the mass
particles.1

Writing theS-matrix in a compact formAα1(β1) ×
Aα2(β2) = Sα1,α2(β12)Aα2(β2)Aα1(β1), (αi = R,L)
the equations satisfied by the FFs can be written
analogy to the massive case[13]. For the two-particle
matrix element FO

α1,α2
(β12) = 〈0|O(0)|Aα1(β1),

1 For instance, ifA(β) is a massive excitation of massm
with a S-matrix equal toS(β), the massless limit is constructe
by shifting the rapiditiesβ → βR,L ± β0/2 and taking the dou
ble limits β0 → ∞ and m → 0 while M = meβ0 is kept fixed:
AR,L(β) = limβ0→∞ A(β ± β0/2). When one considers theS-
matrix in theRR and LL sectors, the rapidity shifts cancel an
thereforeSRR(β) = SLL(β) = S(β). As functions of the rapidity
variable, these amplitudes are then expected to satisfy the

equations valid for the massive case.
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Aα2(β2)〉, we have for instance

FO
α1,α2

(β) = Sα1,α2(β)FO
α2,α1

(−β),

(11)FO
α1,α2

(β + 2πi) = e−2iπγOFO
α2,α1

(−β),

where γO is the non-locality index of the operato
O with respect to the massless particles. Their a
lytic structure, however, differs from the massive ca
In massive theories, the multi-particle FFs are me
morphic functions in the strip 0� Imβ < 2π and
present simple pole singularities associated eithe
bound states or to particle–antiparticle annihilat
processes. In massless theories the same kinds o
gularities are expected in theRR and LL sectors,
since they formally behave like the massive cases
theRL andLR sectors instead, bound state poles
absent while kinematic poles may appear only if b
particles have vanishing momentum. However, inst
of producing a recursive equation like in the mass
case, here the presence of kinematic poles impos
condition on the asymptotic behaviour of the FFs.
particular, like in the massive case, a pole is presen
the two-particle FF only if the operator is non-local

(12)

lim
βRL→−∞FO

RL(iπ + βRL) = ∞ for O non-local

(an analogous equation can be written for the FF in
LR sector).

4. FFPT for massless field theories

Suppose now that an operatorΨ̂ (x) of the infrared
CFT is added to the effective action(10), so that its
integrability is broken

(13)A = Amassless+ λ

∫
d2x Ψ̂ (x).

Repeating initially the analysis of the previous sect
for the unperturbed caseλ = 0, one finds2 the fol-
lowing normalisation conditions for the trace of t

2 It should be kept in mind that to avoid trivial vanishin
of the RR (LL) FFs in taking the massless limit of(5), one
has to rescale scalar operators by their mass dimensionO(x) →
O(x)/m2∆O and define their FFsFO

α,α(β12) = limm→0
FO(β12)

m2∆O
,

whereFO(β12) is the two-particle form-factor of the massive ve
sion of the theory.
-

stress–energy tensor

(14)FΘ
RR(iπ) = FΘ

LL(iπ) = 2π,

(15)FΘ
RL(β) = 0.

The last equation can be viewed as an essential p
erty of a massless integrable theory, i.e., a non-tri
generalisation to massless non-scale invariant theo
of properties of CFTs.

Consider now the case whenλ is non-zero. If the
perturbing operator̂Ψ (x) has vanishing FF on theRL

(LR) sector, it is easy to see that, at the lowest
der, it does not change the masslessness nature o
theory. Indeed, it does not spoil both the validity
Eq.(15)and the analytic structure of the Green’s fun
tions of the original massless theory. On the contr
if the operatorΨ̂ (x) has non-vanishing FFs in theRL

(LR) sector of the theory, this perturbation imme
ately generates a mass gap, a quantity which ca
estimated by sandwiching Eq.(3) on R andL asymp-
totic states

(16)δm � 2λeff lim
βRL→−∞F Ψ̂

RL(iπ + βRL).

From a kinematical point of view, the above limit
the expectation value of the perturbing operator at
(zero-energy) threshold of the crossedRL channel.
In the above equation the effective coupling const
λeff, is defined like in(8) with m → 0. As a conse-
quence, if the perturbing operator is irrelevant w
respect to the IR CFT,λeff scales to zero, i.e., the a
tual mass gap vanishes in the infrared region altho
it is present at intermediate scales. On the other h
if it is relevant, it will grow to the scale of the mas
being generated. At this level the relevance of an
erator has to be established by scaling argument
summary, two conditions have to be fulfilled for gen
ating, at lowest order, a mass gap in the theory: the
turbing operator has to be relevant with non-vanish
RL (LR) matrix elements.

Moreover, like in the massive case, the mass c
rection δm may be a finite or a divergent quantit
depending on the locality properties of the pertu
ing operator with respect to the fields that gener
the massless particles. If the operatorΨ̂ (x) is local,
δm is finite and the massive excitations of the p
turbed theory are adiabatically related to the mass
particles of the original one. If, instead,Ψ̂ (x) is a non-
local operator, it follows from Eqs.(12) and (16)that
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δm diverges: in this case, the original massless e
tations are confined as soon asλ is switched on. In
other words, the massive particles of the perturbed
ory are not associated, in this case, to the opera
that create the original massless ones. The exam
discussed below should help in clarifying these t
situations.

If the theory contains more than one type of ma
less particleAa,R/L (a = 1, . . . , n) the previous ap
proach has to be generalised in analogy with per
bation theory for degenerate levels. Since the parti
Aa,α form a complete basis for the scattering theo
by using FFPT it should be possible, in principle,
predict whetherany massless excitations survive, a
this is a clear advantage with respect to the RG.
though a complete answer to this question involves
entire series inλ, nevertheless the first order of FFP
may provide useful hints on the decoupling of mass
and massless modes of the theory under investiga

5. Massless flows between minimal models

Let us now apply the above methods to some s
cific examples, starting from the massless flow
tween the tricritical Ising model (TIM) and the critic
Ising model (CIM). The quantum field theory asso
ated to this RG flow can either be seen as TIM p
turbed by its sub-leading energy operatorε′ of confor-
mal dimensions∆ε′ = ∆̄ε′ = 3/5 or as CIM perturbed
by the irrelevant operatorT T̄ (see[4] and reference
therein). The factorised scattering theory for this ma
less flow was first proposed in[4] and the basic FF
calculated in[13]. The spectrum consists of massle
neutral fermions, withS-matrix SRR(β) = SLL(β) =
−1, while SRL(β) = tanh(β/2 − iπ/4). As well as
studying the non-integrable theory obtained by the
sertion of the energy operatorε(x) of the CIM, we will
also consider the deformation of the massless ac
by the disorder operatorµ(x). The latter is non-local
γµ = 1/2, with respect to the massless fermion ex
tations. The energy operator has two particle FFs o
in theRL sector of the form[13]

(17)Fε
RL(β) = Zε exp

(
β

4
−

∫
dt

t

sin2(
(iπ−β)

2π
)

sinht cosht
2

)
,

whereZε is a normalisation constant. The disorder o
erator, on the other side, has also FFs in theRR and
LL sectors, of the formFµ
RR(β) = Z′

µ tanh(β/2). For
the FFs in theRL sector we find

(18)F
µ
RL(β) = Zµ exp

(
−β

4
−

∫
dt

t

sin2(
(iπ−β)

2π
)

sinht cosht
2

)
.

The above results agree with the roaming limit
the FFs of the sinh-Gordon theory[15]—a limit in
which the sinh-Gordon model corresponds to
above massless flow[5,7,13].

Using now (16) and (17), it is easy to see tha
the perturbation byε(x) induces a finite mass in th
system, as it could have been expected on diffe
grounds. At the critical point, in fact,ε(x) is bilinear
in the fermionic operators that generate the mass
particles,ε ∼ ψ̄ψ , and therefore the perturbed theo
describes massive fermions in the presence of an i
evant perturbationT T̄ .

Consider now the perturbation of the massless
tion by the non-local operatorµ(x). By computing the
limit (16) of the two-particle FF(18) of this operator,
one sees that in this caseδm diverges, i.e., the ini
tial excitations can no longer propagate as asympt
states in the new vacuum of the theory created by
insertion of this field. Like in the massive case, ther
a simple explanation of this confinement phenome
in terms of the LG effective description of the theo
[1]. Indeed, in the unperturbed theory the elemen
excitations can be equivalently considered as mass
kinks interpolating between two degenerate minima
the LG potential[14]. However the insertion of th
disorder magnetic operatorµ(x) lifts the degeneracy
between the minima, thus making the kinks unstab

As a matter of fact, the flow between the TIM a
the CIM is the simplest example of a one-parame
family of RG trajectories interpolating between t
conformal minimal modelsAp, with central charge
cp = 1 − 6/p(p + 1) (p = 3,4 describe the CIM
and TIM respectively). The flows start fromA∞ and
pass close to all the other minimal models, rema
ing massless all the way down to the very last fix
point,p = 3, after which they become massive[5–7].
The trajectories going out from each critical point a
described asAp perturbed by the operatorφ13 [3]:
Aeff

p = Ap + λ
∫

d2x φ
p

13 (where the upper index i
φ13 indicates the relative CFT) and the excitations
massless kinks interpolating between the(p − 2) de-
generate vacua of the effective LG potential[14]. An
interesting problem consists of predicting the evo
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tion of the spectrum along these flows, in particu
the successive decoupling of the massless modes i
cascade of massless RG flows, by applying FFPT.
analysis of this problem is however beyond the sc
of the present Letter.

6. Spinon confinement in sigma models

Another important application of FFPT is in th
study of the mass spectrum of theO(3) non-linear
sigma-model with a topological term

Aθ = 1

2f 2

∫
d2x (∂µnα)2 + iθT ,

(19)
(
α = 1,2,3; n2

α = 1
)

wheref andθ are dimensionless coupling consta
and T is the integer-valued topological term relat
to the instanton solutions of the model. The two v
uesθ = (0,π) are the only ones for which the actio
(19) is known to be integrable. Atθ = 0 the exci-
tations form a massiveO(3) triplet whose scattering
theory was constructed in[8,16]. At θ = π the the-
ory is instead massless[17–20] and corresponds t
the RG flow between thec = 2 CFT and theSU(2)1
Wess–Zumino–Witten (WZW) model. The factoris
scattering theory was suggested in[17]: it consists of
right and left doublets,Aa,R andAa,L (a = 1,2), that
transform according to thes = 1/2 representation o
SU(2) (spinons). However, as soon as one moves a
from θ = π , the spinons confine[21,22]and the actua
spectrum of the theory in the vicinity of this point h
been determined in[22]. Let us discuss in some deta
how the spinon confinement takes place. In the FF
this amounts to show that the topological term is n
local wrt the fields that create the spinons, a prope
that can be easily checked by looking at the CFT li
of these operators.

ConsiderAπ as our unperturbed IQFT. Close
the IR fixed point the massless flow can be
scribed as aSU(2)1 WZW model perturbed by th
marginally irrelevant perturbation(Trg)2 [17–19],
Aeff

π = ASU(2)1 + γ
∫

d2x (Trg)2 (γ > 0), whereg is
the SU(2) matrix field. In terms of this formulation
the perturbation that moves the topological term aw
from θ = π is proportional to Trg [18], i.e., to the
only relevantSU(2) invariant operator in the theor
that breaks parity. Thus, in the vicinity ofθ = π , the
model is described by the effective action

(20)Aeff = Aeff
π + η

∫
d2x Trg,

whereη is a function3 of (θ − π) that vanishes whe
θ = π .

As discussed in Ref.[25], the spinons are create
by the primary operatorφ±(z) (φ̄±(z̄)) with scaling
dimensionh = (1/4,0) (h̄ = (0,1/4)). They enter the
operator product expansion (OPE)

φα(z)φβ(w) = (−)q(z − w)−1/2εαβ

× (
1+ 1/2(z − w)2T (w) · · ·)

− (−)q(z − w)1/2(ta)
αβ

(21)

× (
J a(w) + 1/2(z − w)∂J a(w) · · ·),

whereε+− = −ε−+ = 1, (ta)
αβ are the generators o

the algebra, andq takes the valuesq = 0 for states tha
are created by an even number of spinons andq = 1
if the number of spinons is odd. The OPE betwe
the spinon operator and theSU(2) currentsJ a(z) is
standard:J a(z)φα(w) = (ta)αβφβ(w)/(z − w) + · · ·.
From these OPEs it follows thatJ a andφα are mutu-
ally local whileφα andφβ are not. In fact takingφα(z)

aroundφβ(w) by sendingz → ze2πi it produces a fac
tor e2πiγφ with γφ = 1/2.

Therefore(Trg)2 � J̄ aJ a is local with respect to
the spinons and this explains why they are the fun
mental excitations ofAπ , regardless of whether th
perturbation is marginally relevant or irrelevant. Sin
Trg is proportional to(φ+φ̄− +φ−φ̄+), the OPE(21)
implies that this operator is instead non-local with
spect to the spinons. Hence they get confined as s
as the operator Trg is added toAπ , i.e., the perturbed
model(20)has no longer spin 1/2 excitations. As dis-
cussed in[22], the actual massive excitations of t
O(3) sigma model withθ -term consists of a triplet o
particles and a singlet, the former stable for all value
θ whereas the latter stable only in an interval of valu
of θ nearθ = π .

3 The form of this function determines the dependence on(θ −
π) of the mass gapm, since it scales asm ∼ η2/3, up to logarithmic
correction[23]. In a recent paper[24] it has been suggested that t
gap behaves like(θ − π)1/2, which would imply a dependence ofη

on (θ − π) that it is not linear, as usually assumed.
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