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I n t r o d u c t i o n  

It is shown that for every ordinal number O it is consistent; that there 
is a s~rictly descending transfinite sequence of  models of  set ~:heory such 
that for every a < O, 

~+I = ( H O D ) ~  ' 

~.~a = N ~ , 

if a is a limit ordinal. 
A set is ordinal definable if it is definable oy a formula with param- 

eters ranging over ordinal numbers, and is hereditarily ordinal definable 
if, in addition, all its elements, elements of its elements, etc., are ordinal 
definable. The class HOD of  all hereditarily ordinal definable sets is a 
model of  ZFC. 

Not all sets in HOD are necessarily ordinal definable in the model 
HOD. Thus the class HOD 2 = (HOD) HOD, again a model  of  ZFC, may 
be strictly included in HOD; similarly HOD n, for n = 1 ,  2, 3, . . . .  On2 
may or may not be able to define the sequence HOD n, n = 1, 2, 3, . . . .  
If  one can do so, then the intersection fl n < o~ HODn is a model of  ZF; 
call it HOD ~, In this fashion, we may be able to proceed and define 
the transfinite sequence 

HOD% a an ordinal. 
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McAloon in his thesis [7] constructed models o f  ZFC in which HOD ~ L. 
His me thod  can easily be adopted to get an example o f  a finite descending 
sequence V ~ HOD ~ ... ~ HOD n = L. !dote recently [81, McAloon con- 
structed a descending to-sequence of  models HOD 0 ~ HOD 1 ~ ... ~ HOI) n 

..., n < W, using the method  of  [71, showing that  AC might hold or 
fail in the limit model. 

The main result o f  the present paper is the following. 

Theorem 1. Given an ordinal (9, tt~ere is a model ~ o f  ZFC such that for  
every ~ < ®, ~l ~ HOD ~+1 ~ HOI~.  In ~ ,  the transfinite sequence 

HOD °=~3I ,HOD 1 = H O D  .. . .  , H O D  a .... , t ~ < O ,  

is strictly decreasing. 

The model ~ in Theorem 1 is a generic extension of  the constructible 
universe. The basic idea is to add generic branches to trees in L. The re- 
sult is obtained by tile construction of  trees in L that have suitable auto- 
morphism properties. 

In addition to the Main Theorem, we use the same method to give an- 
other  example of nonabsoluteness of  the notion oI ordinal definability. 

Theorem 2. There are models ~1 and ~l~ 2 with the same cardinals as L such 
that L c ~'~l c ~2,  and (HOD) s~2 = L whereas ( H O D ) ~  = ~0~ 1. 

Finally, as a further application of  the present methods, we construct  
a model of  set theory whose degrees of  constmctibil i ty have order  type 
1 + co*. 

Theorem 3. There is a model'~2l = L[G] and a sequence (Gn: n < c o } ~  
such that G o = G, Gn+ 1 E L[Gn] and G n q[ L[Gn+l],for all n. and for  
every set o f  ordinals X ~ ~? either X ~ L or there is n such that 
X ~  L[G n] and G n E L[X]. 

1. Ordinal definable sets and models HOD ~ 

A set X is ordinal definable if it is definable by a formula 
~(x, Pl .. . . .  Pn) with ordinal parameters, i.e, 

X = (x: ¢(x, ~l, "", %)} 

for some ordinals a l  . . . . .  ot n. The notion of  ordinal definability was sug- 
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gested by G6del in [21, as a natural notion to be used for the construction 
of models of  set theory. Subsequently, several people have given a for- 
mally correct (i.e., expressible in the language of  set theory) definition 
of ordinal definability and investigated the model HOD of  hereditarily 
ordinal definable sets. The following definition of  ordinal definable sets 
is due to Vop~nka: 

OD = closure {I~:  ¢~ < ~} 

= IJ closure {I~: ~ <  a)  , 
Ot<~ 

where "closure" means the closure under GSdet operations, ~ = On = 
the class of  ~1 ordinals, and lt~ = the set  of  all sets of  rank < a. 

The class of  all hereditarily ordinal definable sets is defined as follows: 

HOD = {x e OD: .c ~ HOD) 

= (x: transitive closure of  {x) c_ O D ) .  

It is easily verified th,~t HOD is a model of  ZF: it is closed under  
G6del operations, transitive, and Va n HOD is definable from ~, thus 

HOD. Moreover, HOD satisfies the axiom of  choice, since the class 
HOD has a definable well ordering. 

Let us denote HOD 1 = HOD and consider th~ relativization of  the 
definition of  HOD inside the model HOD, 

HOD 2 = (HOD) uoD . 

HOD 2 is again a model of  ZFC, and may be strictly included in HOD I. 
This suggests the followiodg "definit ion by induction":  

HODa+I = (HOD)I~OD" , 

HOD x = 13 HOD a, X a l imi t  ordinal.  
a<;k 

If we can express 

x ~ HOD a 

in tile language of  set theory,  then HOD a, t~ < ~*, is a transfinite sequence 
of  models. Each HOD a~q is a model of  ZFC, and each HOD ~'. for a limit 
),, is a model of  ZF: it is transitive, closed under  G~idel operations, and 
t~ n HOD x is definable from e and ;k in each HOD ~, ~ < X; thus 
~ n HOD ~, ~ HOD x. ,:~ 
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In general, even the sequence HOD n, n < t~, may not  be definable in 
the language of  set theory, since the definition of  HOD 2 is more compli- 
cated than that of  HOD, etc. In [3], Grigorieff has shown that x ~ HOD s 
is expressible if we assume that V = L[X], whe~  X is a set. We note that 
our proof o f  Theorem 1 involves a model in which V = L[X]; moreover, 
in our case each HOD s is a model of ZFC (including limit ~). 

We prove the possibility of  an arbitrarily long strictly descending se- 
quence 

HOD ~, a < O .  

[In zn earlier version of  this paper, I have mistakenly claimed a trans- 
finitely long sequence HOI~,  a an ordinal. ] 

This should not  be very surprising since it follows from earlier results 
of McAloon [7], and several later refinements, that the model HOD is 
not a very natural model of  set theory (without additional assumptions). 
As another evidence of  that we shall give an example of  a model ~ 3 L, 
with the same cardinals as L, whose oldy o}dinally definable sets are con- 
structible, but it has a submodel ~, L c ~ c 9~, all of  whose sets are 
ordine~lly definable. 

2. Ordinal definable sets in generic extensions of L 

The proof  of Theorem 1 involves a construction of  a generic extension 
of  the constmctible universe. We will use a correspondence between or- 
dinal definability in generic extensions and automorphism properties o f  
the corresponding complete Boolean algebra. I a the present section we 
recall the (well known) theorems characterizing ordinal definability in 
generic extensions and formulate some lemmas that we shall subsequently 
u s e .  

It is convenient to describe the correspondence in a somewhat more 
general setting. Let ~t be an inner model of set theory. A set X is 

-definable if it is definable by some formula ~ with parameters in ~.~?, 

X = (X: dp(X, PV .... Pn ))  

for some Pl, .... Pn E ~ .  
The notion of  W-definability is, as in the case of ordinal definability, 

expressible in the language of  set theory. Note that "L~definable" coin- 
cides with OD. Also, we can define the class HD~t of  hereditarily 
~-definable sets. 
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Now let ~2 be a model  of  ZFC, and let B be a comple te  Boolean algebra 
in ~.'~. Let  G be an ~-gener ic  ultrafilter on B. The  HD9.12 sets o f  ~.r/[G] are 
characterized in the following theorem of  Vop~nka (for a proof,  see [91 or 
[3]). 

Let (in ~l, of  course) 

B* --- {b ~ B: b is fixed under  all au tomorphisms of  B ) .  

Theorem ( V o p t n k a )  

HD,~0t-~lal = ~rt[G n B*].  

A complete  Boolean 'algebra B is rigid if it has no nontrivial automor-  
phisms. B is homoget~eous if for all nonzero b, c ~ B there exists an auto- 
morphism ~r o f  B such that  ~rb. c ¢ O. 

Corollary 1, !I"B is rigid, then HD'3-~ '~[cl = 9.~[G]. 

Corollary 2 . / f  B is homogeneous, then HD~q ~[GI = ~ .  

In our p roof  we shall not  apply Vop~nka's  Theorem directly but  
rather use the following two lemmas that  say more or less the same as 
the theorem. 

If b is a nonzero  e lement  o f  B then B b denotes  the complete  Boolean 
algebra ~u ~ B: u < b)  endowed with the induced Boolean operations. 

Lemma 2.1. Let  G i and G~ be two generic ultrafilters on B and let 
~.ll[G 1 ] = 9.~[G21. Then ther ,  is an automorphism lr o f  B such that 
rt " G 1 = G 2. 

l . emma 2.2. Let  A ~ 9.~[G] be an~-de f inab le  set o f  ordinals, let A b e  
its name. Then there is p E G such that for  every automorphisrn 7r o f  Bp, 
every q < p and every ordinal ~ we have 

q lt- ~ ~_A iJf 7rq It-- ~ ~ A .  

Lemma 2.1 is due to Vop~nka; for its proof,  consult  [9] or [3]. 

Proof of Lemma 2.2, There is p ~ G such that  for some formula  ~ with 
parameters Pt  . . . . .  Pn ~ 2~, P It- _A is the unique set s.t. ~(_A_, Pl . . . . .  pn). 
Then  if ~rp = p, we have 7rA = A and the l emma follows. 
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3. Forcing with trees and construction of  trees in L 

The main tool we shall use in the p roo f  o f T h e o r e m  I is tile Suslin tree, 
and its generalization, the r-Suslin tree. It  will be t h e ~  trees, with cer- 
tain au tomorphism properties,  that  will provide us with complete  
Boolean algebras that  we shall use to construct  a generic extension of  L. 

Jensen [6] has shown that  Suslin trees exist in L, and, moreover,  that  
we may require fur ther  au tomorph ism properties,  e.g. that  the tree is 
rigid. In this section we recall the cons tvmt ion  of  such trees in L, and 
describe the complete  Boolean algebras associated with such trees. 

A tree is a partially ordered set such that  the predecessors o f  any ele- 
men t  are well ordered. For  fur ther  terminology and nota t ion  we refer 
the reader to [4]. We shall be dealing with •+-trees, where r is a regular 
cardinal. We give the cons t ruc t ion  only in case K = co, for tile general 
case is a straightforward generalization. We assume that  all trees we deal 
with are normal, i.e., (i) every branch of  limit length has at most  one 
L-nmediate successor, (ii) every e lement  has ~ immediate  successcrs, and 
(iii) every element  has K + successors. Moreover, in case ~: > co we assume 
that  every branch of  cofinality < ~: has a successor. 

A normal ~:+-tree is Suslin if it has no antichain of  cardinality ~:+. 
The well-known construct ion of  a Suslin tree in L uses 3ensen's prin- 

ciple 

(<)) There exists a sequence <S,~: a < col ) such that  for ever), 
X _.c 601, the set {a: X n a = Sa) is stationary. 

[If x > 60, replace 601 by K+; the set (a: c f a  = ~: and X n a = S~) is 
stationary. ] 

Sketch of  the construct ion:  T is const ructed by ivduct ion,  level by 
level. The only problem is how to construct  limit levels Ta. [If  h: > 60, 
only limit levels of  cofinality ~:. ] For  every x we pick an a-branch b x 
through x. In the good case we extend all bx's, In the bad case, ifS~ is 
a maximal antichain then we extend only those bx's that  go through Sa. 
Since S~ is maximal,  we preserve normal i ty  of  T. An argm'nent using (<)) 
then shows that  every antichain in T is at mos t  countable [at most  o f  car- 
dinality K]. 

If  we want  T to be rigid, then we destroy all potent ia l  au tomorphisms  
in the same fashion. If~r = S~ is a nontrivial au tomorph i sm of  T t a,  
then we pick a branch b x such that  rr " b  x ~ b x and extend it. Then  we 
extend only those by's  that  are distinct f rom 7r " b  x. Then  rr does no t  ex- 
tend to an au tomorphism o f  T r a + 1 and a (<))-argument completes  the 
proof.  
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We will use a variation of  this argument  to control  definability in 
models  constructed by forcing wi 'h  trees. 

If  T is a normal  ~+-tre~ then  w~ may consider it as a set of  forcing 
conditions,  with i,werse ordering. That  is, x is a stronger condi t ion  than 
y just  in case x Za y. It is obvious that  if G c T is generic then G is a 
r+-branct~ through T. In case that  T is a Suslin tree, then if b is a ~:+- 
branch through T and b is no t  in the ground model,  then b is generic. 
Hence if T is a Suslin tree, then generic sets and brahches coincide. 
Moreover, T satisfies the ~:+-chain condition.  

The complete  Boolean algebra associated with T consists of subsets 
of  T. In case of  a Suslin tree, the description of  B is particularly simple: 
we can represent each u ~ B as u = ~ {x: x ~ U} where U c T is a set of  
e lements  of  the same level of  T (for details, see [5]). 

Also, if T is Suslin, then there is a nice represent, , t ion of  automorphisms 
of  the Boolean algebra, Obviously, every au tomorphism of  T induces a 
unique au tomorphism of  B: bu t  the inverse direction is more interesting. 

Let C be a closed unbounded  subset of ~:+. By T c we denote  the set 
of  all x ~ T lying on level~ ~ ~ C T c is a normal Susiin tree and it is 
easy to see that  T c is dense in T, hence in B. Thus  every au tomorphism 
of  T c induces a unique au tomorphism of  B. On the other  hand. we have 

Lemma 3.1. f f  ~r is an automorphism o r B ,  then there exists a c losed  un- 
bounded set C such that 7r ~ T c is an automorphism o f  T c. 

Proof. Let 

C = {a: for every x o~ the eth level of  T, rrx is an e lement  of  
the t~ th level c f  T}. 

All we have to do  is to show tha~: C is closed and unbounded.  It  is easy 
to verify that  C is closed; we have tt> show that  C is unbounded ,  or, what  
is equally difficult (or  easy) that  C is nonempty .  Given ~, consider 

( ~ r x : x E T t ~ } U  ( ~ r - l x : x ~ T t ~ } C - - B ;  

we can represent all these elements of  B by subsets of  T, and indeed, by 
subsets of  some T T al ,  ~ > ~. In a similar way we find t~ 2 > a 1, a 3, ~ ,  ... 
and then  let ~ = l i m n , , j  an. The rest is easy: ~ is a member  of  C 

This representat ion of  au tomorphisms of  B is very useful; especially 
so because an obvious modif icat ion of  the argument  above allows us to 
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destroy potential automorphisms of  B in the course of  construction of  
T (compare with the construction of  a simple complete Boolean algebra 
in [51). 

In view of  Lemma 2.1 we have the following useful lemma about 
forcing with Suslin trees: 

l .emma 3.2. Let  T be a Suslin tree. Let  b 1 and b 2 be generic branches 
through T such that - -  Then there e;rists a closed unbounded 
set C and an automorphism ~r o f  T ~" such that rr b I = b 2. (Strictly 
speaking: ~r " b I = b 2 r C. ) 

4. A descending sequence of  HOD n, n < 

As a first step towards Theorem 1, we shall prove the following: 

Theorem ~ (V = L). There exists a complete Boolean algebra B such that 
the Boolean valued model  L B satisfies the following: The sequence 

HOD, HOD 2, ..., HOD n, . . . .  n < w 

is strictly descending 

We assume V = L (in the ground model) from now on. In this section, 
we construct a Suslin coctree whose corresponding complete Boolean 
algebra (cBa) satisfies the statement of Theorem 3- 

Before giving the construction, we consider the following situation 
which is crucial in the subsequent considerations. If T is a tree, and x ~ T. 
we let T x denote the tree consisting of  all y ~ x;  o(x)  denotes the order 
type of  {y: y < x} (thus x is on the o(x)  th level). 

Let T °, T 1 be normal ~l-trees. Consider the following situation. 
(I) We have a projection h : T O on~ T1 such that 

(1)o(hx)=o(x), 
(2 )x  < y ~ h x  < h y ,  
(3) i fx  ~ T O a n d y  > x, then there isz > x, z ~ y such that 

h z = h y .  
(II) T o is Suslin (hence T 1 is Suslin). 

(III) I f h x  = h y ,  then T ° and T o are isomorphic. 
(IV) If o(x) = o ( y )  and h x  ~ h y ,  then there is no closed unbounded 

set C and no automorphism Tt of  (T°)  c such that ~r" T ° c~ T ° q, ~. 
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(Note that  (IV) states that  then  there is no  au tomorphism 7r of  the com- 
plete Boolean algebra such that  l rx.  y ¢ 0.) 

Let  B °, B 1 be the complete  Boolean algebras associated with the 
Suslin trees T °, T t. The  project ion h : T O -* T 1 induces a comple te  em- 
bedding of  B: into B°: i f u  ¢ B l,  then u c T:  and we let e(u) = h_l[u]. 
It is easily verified that  e is a comple te  one-to-one homomorph i sm.  Thus 
B 1 can be considered a complete  subaigebra of  B °. 

We note  in passing that  no t  every, complete  subalgebra of  B ° can be 
obtained this way. The  algebra B: has the following property:  For  
x ~ T °, denote  2 = H (u ~ B:: x ~< u).  I f x  ~ T O is on a l imit level and 
ifx~ < x~ < ... < x n < ... are such that  lim x n = x ,  then-.~ = H.2t~, namely 

= {y:  h x  = b y ) .  [In general, o n e c a n  only prove X <~ H~n.] 

Lemma 4.1. Let  T °, T:sat is fv  ( I ) - ( I V ) .  Let  b o be a generic branch 
through T 0, let b I = h "  b o. Then 

(a) L[b 0] ~ HOD = Lib: ] ,  
(b) b 0 q~ L[b 0` 

Proof. Let b 0 be a branch threugh T °. We shaU prove first that  b: is de- 
finable in L[b0], Namely,  b l is the unique element  of  the set 

{h "b :  b is a branch through T O s.t. L[b] = V) .  

To verify this, let b be a branch through T °, and let Lib]  = Lib0]. By 
Lemma 3.2, there is a closed unbounded  set C and an au t~morphism 7r 
of  ( T ° )  ¢ such that  7r" b0= b. Let us assume that  h "  b 4: b: = h "b0 .Then  
there are x ~ b 0 and y ~ b such that  o(x)  = o ( y )  and h x  ~ hy .  However, 
the existence of rr contradicts  (IV) because 7rx' = y '  for some x '  ~ x and 
y'  ~ y. 

Next  we prove that  i fA is a set of  ordinal,  ordinal definable in Lib0], 
t h e n A  ~ L[bl l .  That  proves (a). Let_A be a name of  A. B7 Lemma  2.2, 
pick x ~ b 0 such that  every au tomorphism o? B x preserves the forcing 
re la t iony  i~  ~ ~ A, f o r y  ;~ x. We will construct  a new name A' fo rA,  
such that  A' E Ll3r(where B 1 corresponds to T1). For  every ~, let 
u a = Ua ~ A] be a subset of  some leve l>  a(x) .  I f u a  n T x = 0, we let 
v~ = t~. Otherwise, look at all y ~ u~ c~ Tx, and let 

oc, = {z: h z --- h y  for some such y } .  
• • t It is easy to see that  each oa belongs to  BI; thus we defin,. A by 

~a ~ ,_4"] -- o~, for e : ch  a. We have only to verify that  A'  is a name forA.  
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If  ~ ~ A, then there is some y ~ x such that y ~ u a, and hence 
y I1-- a c A ' .  On the other  hand, i r a  ~ A' ,  then b o t3 o~ ~ [}; let 
z ~ b 0 n oa. Since z ~ bo, we have z ~ x; also, h z  = h y  for s o m e y  ~ x 
such t h a t y  II--- a ~ __A. By (III), T ° and T ° are isomorphic, and so one 
can get an automorphism lr o f  B x such that ~v = z. By the choice of  x 
this means that z II-- a ~ A also, and hence ~ ~ A. 

Finally, we show that b 0 is not  definable in Lib0], and hence 
b 0 q~ L[bl] .  Here we argue in the same way as above. First find x ~ b 0 
by Lemma 2.2. Then choose arbitrary distinct y, z ~ Tx ° such that 
y ~ b o and h z = h y  (by (1)(3)). Then by (III) get an automorphism rr 
o f  B x such that Try = z and by  Lemma 2.2 argue that also z ~ bo; a con- 
tradiction. 

As the next step we will show that there are T ° T l and h that satisfy 
(1 ) - ( lV) .  

I .emma 4.2 (V = L). There exist ¢Ol-trees T 0, T 1 and a homomorphism 
h such that T °, T l and h satisfy ( I ) - ( I V ) .  

Proof. Actually, (<>) is the only proper ty  o f  L we use in the construction. 
Our construction follows the outline of  the construction of  a Suslin tree 
in Section 3. 

We construct  T O and h by  induction, level by level (and T 1 = h "  T°). 
In the course of  the construction, we keep the following condit ions 
satisfied: 

(i) Fo r  each x ~ T °, for each a > o(x), there is a y > x on the a th 
level. 

(ii) Every x ~ T O has infinitely many immediate successors; more- 
over, there is an infinite set Y of  immediate successors o f x  such that 

~Yl  ~ hY2 whenever Y l, Y2 E Y a n d y  1 ~Y2-  
(iii) I f x  ~ T o a n d y  > x, then there is z > x, z ~ y such that h z = hy.  
Notice that the condit ions (i) and (ii) will guarantee that both  T o and 

T 1 are normal trees. The condition (iii) is the same as (I) (3). 
Along with h, we construct  by induction a collection of  isomorphisms 

~x 
: For  each pair x, y such that h x = h y ,  ~rx~. is an ~.somorphism between 

and T o. In addition to ( i ) - ( i i i ) ,  we keep the following condit ion 
satisfied: 

(iv) For  each pair x, y such that h x  = h y ,  and each u ~ T x, 

h(%y u) -- h u. 
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~ o n ~  
Before we start, w" fix a mapping]  : ...... .~ w such that ] - l (n )  is in- 

finite, for all r~ We construct  the tree T O as a collection of  functions 
x : a ~ w, a < 6ol, ordered by ~ and closed under initial segments. The 
ath level o f  T O then consists o f  x with domain a. Having constructed 
the a th level, we construct  the (a + 1) th level as follows: For  each x ~ T °, 
x : a ~ o~, we adjoin all x '~ n. n < to. We let 

h(x n n) = (hx )  n ( /  n) (x : a ~ ~,  x ~ T O , ~2 ~ ~o) , 

~ x y ( z n n )  =(lrxyz) n n  (x, y E T  °1 a + l ,  z ' a - ~ 6 0 )  

(and lrxy ( x ) = y  for a, y on the (a + 1)th level, h x = h y). 
One can verity that (i) and (ii) are satisfied, and that T O and T 1 stay 

being normal. 

Now assume that a is a limit ordinal and that we have constructed T °, 
h and ~r,:y below level c~. We recall that at a limit stage of  the construction 
of  a Suslin tree one in, okes <> to make sure that the result'uag tree is Suslin. 
Here we need a Sus!in tree which, in addition, has the proper ty  (IV). 
Thus we distinguish 3 cases: when Sa (of  the O sequence) codes a maxi- 
mal antichain, when S~ codes an isomorphism to be destroyed,  and the 
easy case (the "otherwise"  case). 

Case I. The easy case. Let G be the set of  all finite composit ions of  
the 7rz, o's, for ~1 u, v E T O t a such that h u = h v. For  each x E T O I" a 
pick an a-branch b x. Extend all these bx's tc3ether with all p "  b x, p E G. 
Since G is countable,  this set o f  all extended branches is countable;  
moreover, il is closed u;ader ali ~ruo'S. We define h and the rru,'S in the ob- 
vious way, and the condit ions ( i ) - ( i v )  are satisfied. 

Case II. S~, codes a maxiraal antichain A in T O t a and we wish to 
construct  the a th level such t h a t A  remains maximal in T O ~ (r, + 1). We 
want to extend a branch through every x ~ T o t a, have the a th level 
closed under  all ~'t:o's and, moreover, we also want to  have all the 
branches on the a th level to go through the antichain. Thus for  every 
x ~ T O t a we construct  a branch b x in such a way that each p "  b~, p ~ G, 
meets the antichain. This can be done since it involves satisfying only 
a countable number of  conditions. 

Case III. The S~, g~ven oy (<>) is an isomorphism ~t between (TO) c and 
(TO) c, where C is a closed unbounded  subset o f  a, and h x ~ h y. This 7r 
is to be destroyed,  so that  when the construction of  T O is completed,  
the (<~) is recalled to show that T O satisfies (IV). We are going to extend 
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branches b z ,  for all z ~ T O ~ a,  but  the branches will be chosen such that 
b x is extended while ~r" b x is not. Hence rt will be destroyed as a potential 
isomorphism. 

First pick b x arbitrary. Notice that  since hOruvb) = h b, we have 
h ( p b  x)  = h b x for all p E G, while h(~tbx) ~ h b x,  because h x ~ h(rtx).  

Hence pb  x ~: rib x for all p ~ G. We extend all pb x,  p ~ G. 

Then for every z :~ x we find, by diagonalization, a branch b z sudl  
that pb x ~ 7rb x for all p ~ G. And we extend all pb  z (z  E T o t a,  p ~ G). 

When the construction is completed, a standard <>-argument shows 
that T o is a Suslin tree and that  (IV) holds: Case II takes care o f  the 
antichains, and Case III takes care of  potential isomorphisms. The projee- 
t i onh  satisfies (I), and T 1 = h "  T O is a eormal Suslin tree. The lruo's 
witness to (III), and so the trees T °, T l satisfy ( I ) - ( I V ) .  

Now we are ready to prove Theorem ~. In view of  Lemma 4.1 it is ob- 
vious that  it is sufficient to construct  a sequence of  trees with the fol- 
lowing properties. 

Lemma 4.3 (V = L). There  ex is t s  a s equence  T °. T 1 . . . . .  T"  . . . . .  n < co, 

o f  normal  Suslin co l- trees such  that  f o r  every  n = O, 1, ... there  ex i s t s  a 
pro jec t ion  h n : T n ont~ ~ T n +1 which  satisf ies ( I ) -  (IV). 

ProoL We construct all T n at once, by induction on levels. As in 
Lemma 4.2, we construct also the hn's,  and all the lruo'S (for u, o E T n 

such that h n u = hnO); also, we keep ( i ) - ( i v )  satisfied. 
The successor step is exactly as in Lemma 4.2. So let a be limit. We 

will construct  a countable set B of  a-branches through the tree T O t a 
(B will serve as the ath level of  T °) such that  the following two condi- 
tions are satisfied: 

(1) For  each x ~ T O r a there is b ~ B that goes through x. 
(2) If  b E B and u, o ~ T m are such that h m u  = h m o and if (b)  rn (the 

image o f b  in T rn, i.e., (b)  m = h m _  1 ... h o b )  goes through u, then there 
is b 1 ~ B such that  (b l )  m = ~ruo(b) m. 

If ( 1 ) and (2) are satisfied, then, after defining h n 's  and ~ruo's in the 
obviou~ way, the trees T n t (a + 1) satisfy the conditions ( i ) - ( iv ) .  

Having in mind that T o is supposed to be Suslin, and that  the trees 
T n should satisfy (IV), we construct  B such that, in addition to (1) and 
(2), we take care of  the S~ o f  the <>-sequence. Thus the three cases. 

Case I. The easy case. We fix an increasing sequence {a n: n < co} 
such that  a = l i m a  n. We further  fix an enumerat ion (x , :  n < co} of  
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T o f" ¢~. Finally, we enumerate  all rtuo's, where u, o E T m, m < 6o and 
h m u = h m o :  (Trn: n <  to}. 

We construct  B in to steps. After  n steps, we will have constructed 
initial segments of finitely many branches i~ B. We construct  
B --- {bi: i < to} as follows. At step n, we have initial segments of 
b0, ..., bkn, and each initial segment has length at least a,z and has a maxi- 
mal element. To make sure that B satisfies (1), we simply require, at each 
step n, that 

(A) for each ] < n there is i < k n such that  b i goes through x/. 
To satisfy (2), let us enumerate  all pairs (L k). Let b t "- rr/b k denote 

(bl)  m = lri(bk) m, where re i is an isomorphism in the tree T m. At step n, 
assuming that at previous steps we have assigned to each (], k) among 
the first n pairs some l, we require that the initial segments of  these b e 's  
and bz's satisfy 

(B) b t ~- rt i b k. 
Furthermore,  if (], k) is the next pair in the enumeration, we add one 

more (initial segment of) branch, b t, to B,, so that b I ~ lr/b k (and assign 
/ to (L k)). 

Case II. S a codes a maximal antichain A in T O t a. In addition to ( I )  
and (2) we require that each b ~ B meets A. We proceed as in Case I, and 
have to make sure that every time we add a new branch to our collection, 
it has to go through A. 

We are adding a new branch at step n either to satisfy (A), that is, to 
have a branch through every .v/, or to satisfy (B), .o h~ve b t such that 
b I ~ 7rib k. In both cases we make sure, by taking a sufficiently long ini- 
tial segment, that the new branch meets the antichain. 

Case III. S a codes an isomorphism rr between ( T ~ )  c and (T~m,) c such 
that h m x = hrn y,  and we wish to destroy 7r, in addition to satisfying (1) 
and (21. 

Let x 0 ~ T O be such that x = h m_l  ... hoxo.  We will construct, as in 
Case I, a countable set of  a-branches B = (b/: i < w) satisfying (1) and (2), 
and, moreover, such that b 0 goes through x 0, and far all b E B, 
(b)" '  ~ 7r(bo) '~. 

Thus we have to make sure that when adding a new branch b either to 
satisfy (A) or (B), we have (b)  m ~ ~r(bo) m (once the initial segments are 
unequal they stay unequal). ~1 his is easy to arrange if a new branch is added 
to go through some "ci" If a new branch b: is added in order  to have 
b l "" ~r/bjt, then ~'i is an isomorphism in T r and we may have r < m, r = m 
or r > m, I f r  < m, then rti(bk) m = (bk)  m ¢ rt(bo) rn and (bl) m =/= rr(bo )m 
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is easily arranged. I f r  = m and k = 0 then lri(bo) m ~ lr(bo) m because 
hmOr/(bo) ra) = hrn(bo) m while hrn(lt(bo) m) :b hm(bo) m. I f r  = m and 
k :/: 0, then we have the choice of  extending b 0 and b k somewhat to 
have lr/(bk) rn ~ rt(bo) m. In any ease, i f r  = m, then b t can be obtained s~ 
that (bl) m ~ lr(bo) rn. The  case r > m is handled similarly. 

When the construction is completed, a C-argument shows that  T O is 
a Suslin tree and that  (IV) holds for each T m . This completes the proof  
of  Lemma 4.3 and also the proof  of  Theorem t 

5. Proof of the Main Theorem 

We will use the technique introduced in Section 4 to construct,  for 
each ®, a model  of  ZFC in which the sequence HOI~,  ~ < ®, is strictly 
decreasing. 

The construction in Section 4 involves projections o f  trees. We wish 
to get a g-sequence o f  trees such that each successive tree is a projection 
of  its predecessor and the tree on a limit stage is a limit o f  these projec- 
tions. The construction will basically be the same as in Section 4 but  we 
need a nice sequeoce o f  projections to work with (in place of  the projec- 
tion ] in the proof  o f  Lemma 4.2). Note that  projections are the same 
as equivalence relations. 

Lemma 5.1. Let  ~ be a cardinal. There e.vists a sequence ( - a :  a < ~:) o f  
equivalence relations on ~ such that 

(0) =--o is the identity, 
(1). each =~ has s. equivalence classes, 
(2) each =~+1 equivalence class is the union o f  ~ - ~  equi,~,,lence 

classes, 
(3) i f  ~, is a l imit ordinal  =x is the l imit  o f=a ,  a < ?~; i.e. s =x t i f f  

s - ~  t f o r  some ~ < ~, 
(4) lima_,~ - a  is trivial i.e. i f  x, y ~ K, then x - ~  y fo r  some ~. 

Proof. We identify t¢ with ~-sequences s : ~: ~ ~: such that s~ ~ 0 for 
only finitely many a < ~. We define, for each c~ < ~:, 

s = t ~ s(/3) = t(/3) for all/3 ;a ~. 

It is easy to verify that the sequence - a ,  ~ < ~:, satisfies ( 0 ) -  (4). 



T.Z J~ch, Forcing v~lth trees and ordinal de]inability 401 

The main problem we encounter  in the generalization of  Theorem ~- 
is how to  handle the limit steps, i.e., how to  show that  if k is a limit 
ordinal, then  the X t~ model  is tim intersection of  the previous models. 
We will need the following lemma. 

If B is a complete  Boolean algebra and ~: a cardinal, then B is x-distri- 
butive if B satisfies the following distributivity law: 

ct i~.I lt°ti f ~ I  ~ a" 

The significance of this proper ty  in forcing is that  when forcing via B, 
one does not add m y  new ~:-sequence of ordinals. 

Lemma 5.2. Let ~ be a cardinal and let B be a g-distributive complete 
Boolean algebra. Let 

B 0, B l . . . .  , B~ ,  . . . .  ~ < ~ ,  

be a ~:-sequence o f  complete Boolean algebras such that B 0 = B, Ba+ 1 
~s a complete subaigebra o f  B~ for  each a < ~, and B x = f la<xB a if~. 
is limit. Let  all this be in a ground model ~ ,  let G be an 9J~-generic ultra- 
filter on B and let G a = G c~ Bafor  all ~ <<. ~. I r A  is a set o f  ordinals and 
A ~ ~l~l[G,]foraii ~ < ~, then A ~ ~[G~] .  

This lemma will be used to show that ~2l[GK] = N~<~ ~[G~] .  This is 
not  necessarily true in general; cf. [8]. 

Proof. Work in ':}.li[G]. Since A e ~2[G,] for all a < ~:, it has a Ba-valued 
name ._At,, for each a. Since B is ~:.distributive, it follows that  the sequence 
{A_s: a < h:} is in ~ .  Thus  work in ~ .  We are going to define a B~-valued 
name of  A. Fix an ordinal }. For  each ~ < ~:, let uc, = II} e Aa~ e Ba. 
By ~:-distributivity, there exists a part i t ion (pi:  i e I} of  B such that  for 
each ~ < ~:, each i ~ / ,  either p~ ~< ua or Pi" ua = O. Hence for each a, 
ua = l~{pt: i ~ J }  for s o m e J ~  L Now we let 

w = ~ {p~: 3 % V  ~ ;~ ~o Pi < u~}.  

We will show that  
( a )  w e B, , ,  
( b ) w ~  G i f f ~ e  A. 

Thus,  if we call w~ this w obtained for ~, and let A be such that  
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[ ~  A / =  w~, then_A is a BK-valued name forA. Thus doing this for 
each ~, we get a B~-valued name for A. 

To show that w ~ B~, we show that w ~ B a for each 0t < ~:. Let a < K. 
It suffices to show that i fp i  < w, then ~" < w, where~/~. = Z{p/ :  / ~ J}, 
where J -  C / i s  the least J such that i ~ J  and Z(p t :  ] ~ J )  ~ B~,. Let 
Pi < w. Then there is a0 ~ a such that Pi < ua for all/~ ;a a0. Let 
u = H{ut~: ~ t~0}. Clearly u ~ B~; also u = ~ { P i : / ~ J }  for s o m e J  C_C_ I. 
It follows that for e a c h / ~  J, pj < w and hence u < w. However, ~ < u 
and so ~ < w. 

To show that w ~ G iff/j E A, let Pi be the unique pi which is in G. 
Then w ~ G iffpt  < w. I f ~  A, then ua ~ G andp i  -<< ua for each a, 
and hence p~ < w. On the other hand, if p / <  w, then p~ ~< u~ for even- 
tually all a; hence u~, ~ G and so ~ ~ A. 

Another  problem at limit steps is the following: We want tile ath 
model to be given by a tree T a. Thus we wan t ,  for a limit a, fL~<c,B 7 
to be a cBa associated with a tree T a, a "limit" of  the trees TL "r < a. The 
following theorem (or rather its proof) suggests hew to handle .*his 
problem. 

Theorem ] (V = L). There e.xists a sequence T °, T 1 .....  T n . . . .  , n < ~o, 
o f  normal Suslin col-trees such that  for  ever), n there is a pro/ectzon 
hn : T n on~ T,+I and i f  b 0 is a generic branch through T 0, b 1 = hob 0, 
b 2 = h i b  p etc., then 

(a) L[b n/ ~ HOD = L[b,+l], 
(b) b n ~ L[bn+l], 
. (c)n; '= o L [ b . ]  = L. 

We can see that Theorem ~ is just  Lemma 4.3 with the clause (c) added. 
Thus the proof of Theorem ] is like the proof of Lemma 4.3 but  extra 
care is needed to satisfy condition (c). 

Let B n be the cBa associated with T n. Since each B n is So-distributive 
(a known property of  normal Suslin trees when used to force with), 
Lemma 5.2 tells us that fin_- 0 L[b n ] is given by the cBa fin= o B n. Thus we 
wish to construct the Tn's  so that tin= o B n is the trivial algebra. 

Proof of Theorem ~. Let us follow the proof  o f  Lemma 4.3. We make a 
slight change of  rotat ion,  namely to call h m the projection of  T o onto 
T m (what we called then h m - l  ... ho). We construct T n, n < co to satisfy 
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the condit ions ( I ) - ( I V )  of  Lemma 4.3 (with the notational change), 
and in addition, the condition 

(V) i fx ,  y ~ T o are such that o(x)  = o ( y ) ,  then there is k such that 

h k x  = hkY.  
A typical element of  the ~dgebra B 0 is a subset of  a level o f  T °. A 

typical element o f  B m is a subset u of  an a th level of  T O such dlat if 
o(x)  = o ( y )  = a, x ~ u and h m x = h m y ,  t h e n y  ~ u. Hence if u ~ B m "for 
all m < co, it follows from (V) that u = 1 o l  u = 0, and so 13 n=0 Bn is the 
trivial algebra. Thus a sequence o f  trees satisfying ( I ) - ( V )  is enough to 
prove Theorem 4. 

We will follow closely the p roof  of  Lemma 4.3. Instead of  the projec- 
t ion]  (defined in the p roof  of  Lemma 4.27, we use project ions/k,  k < w, 
ga 'en by  Lemma 5.1; tile proper ty  we need is that for every n 1, n 2 there; 
is k such that ]k(n l) = j k ( n 2  ) • 

In Le1;una 5. l, let ~: = So and let - k  be the k th equivalence relation 
on co (k < co). We define Jk by 

jk(n) = m ,  

where n is in the mth equivale~lce class of  -k .  
We construct  the trees T t~ by induction on a. As in Lemma 4.3 (or 

4.2), we construct  also the hk's, and the rruo's. We make sure that tile 
c o n d i t i o ~  ( i ) - ( i v )  (with the notational change) are satisfied, and more- 
o v e r ,  

(v) if o(x)  = oO')  = (~, then there is k such tha. h k x = hky .  
As before, it is obvious (at limit steps) or easy to define the hk'S and 

the ~'uo s at each step. In particular, we define 

hk(z n n)= (hkz) ~ ( /kn)  

at successor steps, and 

hk(b) = (hk(b(~/)): 7 < t~) 

at a limit step a. 
At successor steps, the condit ion (V) remains satisfied: I f x  = z c~ n and 

y = w n m, then first there is k t such that hk(Z) = hk(w) for all k ~ k 1 
and second there is k 2 such that Jk(n) = i t ( m )  for all k > k 2. Thus for 
some k, 

hk (x ) = (hkz)  f~ (]k n) = (hk w) c~ ( /kin)  = hk(Y) . 

At a limit step, following Lemma 4.3, it suffices to satisfy 
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(1) for each x ~ T O f a there i sb  ~ B that  goes through x, 
(2) if b ~ B and u, v ~ T m are such that  h u = h v, then there is b I ~ B 

such that  h m b 1 = lruo(h m b). 
[Recall that  B const i tutes  the a m level of  TO; h in (2) is the project ion 
of  T m onto  Tra+l.] And,  th~ additional condi t ion 

(3) i f b  I and b 2 are in B, then for  some k, hkb  1 = h~b 2. 
In addit ion to  (1), (2), (3), we are also destroying an antichain or an 

isomorphism, if so required by <>. We shall only describe the easy case 
(Case I), since Case II (antichain) and Case III ( isomorphism) are handled 
as in Lemma  4.3 with the additional requirement  of  (3). 

Case I. We proceed as in the p roof  o f  Lemma  4.3. In addit ion,  at 
step n we assume that  we have assigned to each (r, s) among the first n 
pairs, some t, and require that  the initial segments of  these br 's  aad b s's 
satisfy 

(C) htb r = b s. 
Furthermore ,  if (r, s) is the next  pair in the enumerat ion,  we find t < co 
such that  htb  r = b s and add this condit ion to (c) to  keep it satisfied at 
further  steps. 

Now we are ready to prove the Main Theorem.  

Theorem 1 (V = L). L e t  ~ be a regular cardinal. There is a ~-sequence o f  
normal Suslin r+-trees, 

T ~, ~ I < ~  , 

such that  the corresponding cBa's Bs,  "y < to, f o r m  a descending sequence 
B0 3__ BI ~ ... D__ B~ ~ .... ~ < ~, and B~ = fl ,<~ B~ i f  ~l < ~ is a l imi t  ordinal. 
and i f  G c_C_ B 0/s  generic, then 

L[G] ~ H O D  v =  L[G ~'~ B~], 
and 

I1 L[G,'~ By] = L .  

Proof. (Sketch). The p roof  of  Theorem 1 is a more or less straightforward 
generalization of  Theorem I ,  but  with some caution. We shall first point  
out  the pitfalls. 

A Suslin r+-tree T is normal  if, in addi t ion to obvious ~nera l i za t ion  
of  properties of  normal  Suslin col"trees, it has tl~e proper ty  that  for every 
limit a of cofinality < ~:, every a-branch in T is extended.  One constructs  
such trees with the aid of  a <>-sequence {S~: a < K + and cf a = ~:), and 
the induct ion step at limit a o f  cofinality < ~: is trivial: one extends  all 
a-branches. 
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The corresponding cBa is ~-distributive, and so by Lemma  5.2, 
Ns< ~ L[G n Bs] = L[G c~ B.~], i f 7  < ~ is limit. Thus  it would be suffi- 

cient to  construct  a ~-sequence of  trees T ~, 7 < ~:, ,along with projec- 
t ions h~ : T o ~ T "~, wifll properties analogous to ( I ) - ( V )  of  
Theorem 2, However, if 3" < ~: is a limit ordinal,  then B~ - CI a <~ B a and 
so we would require that  h.rx = h,~y jus t  in case h~x = h~y for some 
8 < 7. But let a = c f T .  We can easily find two a-branche~ b~ and b 2 
such that  for every ~ < 7, ha "b l  q: ha "b2 but  h.f "b  t = h. r "b  2. Since 
every a-branch has to  be extended,  this cannot  be avoided. 

Here we remark that  this is becaase the ,algebra fl~<~ B~, al though a 
complete  subalgebra o f  B 0, cannot  be obtained by means o f  a project ion 
of  To; see our  remark preceding Lemma 4.1. 

This difficulty can be avoided by considering the mappings h~ not  to 
be prqiect ions.of  T °, but  rather defined on a subtree of  T °. Let 

= (a  < ~:+: a is a successor or cf  a = ~}.  

We construct  the trees T ~', and the mappings h. t, as follows: 
I. h. t is a project ion of (T°)  a onto  (T~) a .  For  each 7 < ~, let 

h : (T~) a -~ (T'r~/) a be the unique h such that  h~+ 1 = h o h~. 
(1) o(h~x)  = o(x). 
(2) x < y ~ h~,x < h~, y. 
(3) l f x  E T "t and y > x, o(x) ~ ~2, then there is z > x, z q: y, such that  

h z = h y ,  
(4) If  3' < ~ is a limit ordinal, and o(x) = o(y~ =-- ~2, then h~ x = h~ y 

if and only if b for some 5 < 7, h6 x = h,  y. 
II. T O is Sustin. 

IlL If  x, y ~ (T~) n and h.¢ = b y ,  then Tx • and T~7 are isomorphic.  
IV. I fx ,  y E (T~) n,  o(x) = o (y ) ,  and h x  --b h y  then there is no closed 

unbounded  set C and no au tomorphism lr o f  (T°) c such that  

V. l f o ( x )  = o ( y )  ~ ~ ,  then there is 3' < ~: such that  h.rx = hry.  
Let T ~, 7 < ~:, be a sequence of  normal ~:*-trees satisfying I - V .  Let  

b 0 be a generic branch through T °, and let b~ = h.r(bo). The same argu- 
ment  as in Lemma  4.1 shows that  

L[b~] ~ HOD = I. [b~+~] 

and that  b., ~ L[b~÷~] for all q¢ < u. 
In view of  V, the intersection fl ~< ~ B~ is the trivial algebra. Thus  to  

prove Theorem 1, it suffices to show tha t  for  each limit ordinal ), < ~, 
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fl L [b . ]  = L[b x] 
r,<~, 

(where b~ = 0). 
We do that  by induct ion on X < ~:. At  stage ~,, we already k n o w  that 

each L i b ] ,  a < ;k, is HCD a in L[b0]; thus the intersection is a model  of  
ZF. To show that it is equal to L[bx], it suffices to show that it has the 
same sets of  ordinals (by a theorem of  Vop~.nka and Balcar). Obviously, 
L[bx] c L [ b J  for each a < X. Thus  let A be a set of  ordinals, A ~ L[b~] 
for each a < k. The algebra B 0 is K-distributive, so that  we may invoke 
Lemma 5.2, by which A ~ L[bx]. 

To construct  a sequence T ~, 3' < ~:, satisfying ( I ) - ( V ) ,  we follow the 
constructions in Lemmas  4.2 and 4.3 and Theorem I. By induct ion on 
a < r+, we construct  the Ot th level of  all T ~'s, the mappings h.~ and the 
isomorphisms ~r u o's. 

If a is limit and cf a < ~, then we extend all branches, define 7t,~,'s 
in the obvious way, and do not  care about  the h~'s. 

If a is limit and cf a = ~:, then we construct  a set c f  a-branches in 
T O t a in very much  the same way as before, paying a t tent ion to ~, and 
distinguishing 3 cases. The h~'s and rtuv s are defined in the obvious way. 
We also verify I (4). 

If a ~ ~2, then the h. r 's  are defined for all x ~ T O with o(x) = a. To 
define the h.~'s on  the next  level, we use the cont inuous  system of  pro- 
jections/'.r, 3' < ~, given by Lemma  5.1. We let 

h (zn i)= (h z) n (]~i), 

for all z with o(z) = a and i < ~. Since for every i l, i 2 < ~ there is 3' such 
that  l-ril = ]~ i2, this helps to satisfy V. 

If a is limit and cf a < K, then we define the h , ' s  on the (a + l)St level. 
We define the h. t (z n i), where z is an a-branch and i < K, by induct ion  
on 3'. I f  3' is limit, then we define h~ so as to  satisfy condi t ion I (4). 
Otherwise we define h., more or less arbitrarily, except  for h., ÷l, where 
3 ' i s l imi t ; t hen ,  i fh .  r z l - h  ~ z2, weleth.r+l(zl q)-h~÷t(-2 t2), 
which guarantees that  condi t ion V is satisfied for elements of  the (a + 1)~t 
level. 

This sketch of  the proof  of  Theorem 1 describes all tile departures  
f rom a straightforward generalization of  tile construct ions in Sect ion 4 
and Theorem _a 4, 
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6. Proof of Theorem 2 

In view of existing counterexamples, including the results above, it 
seems that one cannot  expect  any absoluteness of  the notion of  ordinal 
definability. The scope of  HOD in one model does not  seem to depend 
on the scope of HOD in another  model. In view of  the fact that there is a 
very strong relation between definability and automorphism properties in 
the models constructed above, the method presented in Section 4 is 
particularly suitable for getting all sorts of  counterexamples. The com- 
binatorial properties o f  L give us a very good control o f  automorphisms 
of  tree, s. 

As an example we sketch the proof  of  the following, 

Theorem 2. There exist models 9.~ l and ~21t 2 such that 
(a) L c ~l~ 2 c 9~t and L, ~ll2, ~1 have the same cardinals, 
(b) ~ 1  ~ HO'D-  L ,  
(c) ~2  ~ HOD = V. 

In view of the lemmas in Sections 3 and 4, it suffices to construct  
Suslin trees T 1 and T 2 such that T l is homogeneous and (T2) c is rigid 
for every closed unbounded set (7, and T 2 is a homomorphic  image of  T 1. 

Thus we construct  T l and T 2 along with h : T 1 --> T 2, make both 
trees Suslin and homogenize T 1 while keeping T 1 rigid. The construction 
is very much like in Lemma 4.2. By induction, we construct  T l, T 2, h, 
and %0 for any u, v ~- T on the same level. We keep the following condi- 
tions satisfied: 

(i) For each x E T l, each a > o(x), there are infinitely many y > x 
on the ~tl~ level with the same hy. 

(ii) If h u = h o and x > u, then h0ru, , x)  = hx. 
(iii) l f h  u 4: h v and x > u then for each a > o(x) there are z v z 2 > x 

on the a th level such that h z I = tt z 2 and h(rtuoZl) 4= h(rruoz2). 
The last condition enables us to anniLilate every potential automorphism 
of  (T2) c while keeping the ,ru~'s going (because then h[,ruo] is not  an 
automorphism if h u q: h o). 

7. Proof of Theorem 3 

As another  example of  forcing with Suslin trees we construct  a model 
whose constructibility degrees of nonconsttuctibAe sets have order-type 
co*. The theorem follows from this (V = L): 
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There is a sequence o f  Suslin trees T n, n < w, and projections 
h n : T n ~ T n+l such that  if  b 0 is a branch in T ° b I = hob 0, b 2 = h l b  1, 
etc., then 

(1) b. ¢ L[b.+l]. 
(2) I fA  is a set o f  ordinals in L[bo], then either A ~ L or there- is n 

such t ha tA  e L[b n] and b n E L [ A ] .  
We sketch the construction of  a pair of  trees T °, T l, with the projection 
/~ : T O -> T l, such that i r a  e L[bo], then either b 0 ~ L[A] o r A  E L[bl]. 
This combined with the proof  of  Theorem ~ (to make N n<~ L[bn] = L) 
gives the theorem. 

To arrange matters so that b o q~ L[bl],  we construct  T ° T 1 such lhat 

~.) I f x ,  y ~ T ° a r e s u c h t h a t h x = h y a n d i f u > x ,  then there is a 
v 4: u, v >  y, such that h u = hv .  

Let B o and B 1 be the cBa's associated with T o and T 1. We want to con- 
struct T °, T 1 such that i f D  is a complete subalgebra of  B 0' then for 
s o m e a G  Bo, D r a = B  o I ' a a n d D  t - a =  B l t - c t  

L e t D  be a complete subalgebra o r b  0. We recall (cf. [5])  that D is rep- 
resented by partitions o f  levels of  T °. We say that x, y in the same level 
of  T o are D-separated if they belong to different parts of  the partit ion 
of  that  level. Let  a ~- B o be defined as follows: 

- a = ~ [ u : D r u c B  1 ~u} .  

For each u < a, D ~ u ~ B: r tt 

Lemma. Tlzere is a closed unbounded  set o f  a's such that f o r  each u < b 
there are x, y ~ T °, o (x)  = o ( y )  = e,  h x = h y, and x, y are D-separated. 

This Lemma is proved using the fact that  T O satisfies (*). 

Proof. We construct T °, T 1 and h by induction on a, using (>. We keep 
the condition (*) satisfied. If (O) commands the destruction o f  an anti- 
chain, we do it. To ensure- that for every D _c B there is an a such that 
D t a = B 0 t a and D t - a = B 1 t - a ,  we use the lemma, and destroy 
a potential counterexample D in a manner  similar to the construction 
of  a simple cBa in [ 5 ]. 

If  the Sa of  O codes D t (T O t e)  which satisfies the lemma, we con- 
struct the e ta level o f  T o such that it contains a branch b that is D-separ- 
ated from all o ther  elements o f  the e th level. (cf. the argument  in [5].) 
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We also keep the condi t ion (*) satisfied on a t" level. This is done roughly 
as follows: we construct  countably many a-branches throught  T O r t~; 
first the "mas te r"  branch b, and then the others in such a way that  if 
x, y e T O r c~, h x = h y, and b goes through x, then there is another  
b'. ~: b through y such that  h b = h b', and b and b' are D-separated. 
This is done usfi~g (*). 

8. Final remarks 

Since ordinal definability depends on the model  of ZF in question,  it 
is natural to  ask: 

(i) What can we say about  HOD, if we add further axioms? 
(ii) What is HOD in "natura l"  models? 
In particular, these questions might be interesting in connect ion with 

large cardin-~s. It is known  ~hat virtually every large cardinal axiom is 
consistent with HOD = V. Moreover, the natural model  for a measurable 
cardinal, L[',~I 1, satisfies HOD = V. And it is expected that  the natural 
models  for o ther  large cardiuals, when discovered, will satisfy the same. 

One problem that might  be of some interest is what  can we say a~out 
HOD if we assume the axiom of  determinacy? 
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