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Introduction

It is shown that for every ordinal number © it is consistent that there
is a surictly descending transfinite sequence of models of set theory such
that for every e < ©,

M,y = (HODY™e |

3

n,= 0w
&

if « is a limit ordinal.

A set is ordinal definable if it is definable by a formula with param-
eters ranging over ordinal numbers, and is hereditarily ordinal definable
if, in addition, all its elements, elements of its elements, efc., are ordinal
definable. The class HOD of all hereditarily ordinal definable sets is a
model of ZFC.

Not all sets in HOD are necessarily ordinal definable in the model
HOD. Thus the class HOD? = (HOD)HOP | again a model of ZFC, may
be strictly included in HOD; similarly HOD", forn=1, 2,3, ... . Onz
may or may not be able to define the sequence HOD", n=1, 2, 3, ...

If one can do so, then the intersection N _ HOD?” is amodel of ZF;
call it HOD®. In this fashion, we may be able to proceed and define
the transfinite sequence

HOD®%, ¢ anordinal,
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McAloon in his thesis [ 7] constructed models of ZFC in which HOD # L.
His method can easily be adopted to get an example of a finite descending
sequence VD HOD D ... D HOD" = L. More recently [8], McAloon cor-
structed a descending w-sequence of models HOD? D HOD! > ... > HOD”
D ..., n < w, using the method of [7], showing that AC might hold or
fail in the limit model.

The main result of the present paper is the following.

Theorem 1. Given an ordinal ©, tkere is a model R of ZFC such that for
every a < ©, M = HOD**! .« HOD® In M, the transfinite sequence

HOD® = M, HOD! = HOD, ..., HOD®,..., a< 0,

is strictly decreasing.

The model M in Theorem 1 is a generic extension of the constructible
universe. The basic idea is to add generic branches to trees in L. The re-
sult is obtained by tiie construction of trees in L that have suitable auto-
morphism properties.

In addition to the Main Theorem, we use the same method to give an-
other example of nonabsoluteness of the notion ot ordinal definability.

Theorem 2. There are models W, and M, with the same cardinals as L such
that L C Iy C 9R,, and (HOD)¥: = L whereas (HOD)™ = 1,.

Finally, as a further application of the present methods, we construct
a model of set theory whose degrees of constructibility have order type
1+ w*.

Theorem 3. There is a model M = L{G] and a sequence {G,: n < w}eM
such that Gy =G, G, € LIG,] and G, & LG, ], for all n, and for
every set of ordinals X € W either X € L or there is n such that
Xe€LllG,land G, € L[X].

1. Ordinal definable sets and models HOD*
A set X is ordinal definable if it is definable by a formula
¢(x, py, ..., Py) with ordinal parameters, i.e.
X = {x: &, ay, ..., 2,)}

for some ordinals ay, ..., a,. The notion of ordinal definability was sug-
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gested by Godel in [2], as a natural notion to be used for the construction
of models of set theory. Subsequently, several people have given a for-
mally correct (i.e., expressible in the language of set theory) definition
of ordinal definability and investigated the model HOD of hereditarily
ordinal definable sets. The following definition of ordinal detmable sets
is due to Vopénka:

OD = closure {V : o < e}

= U closure {VpE<al,

a< =

where “closure”™ means the closure under Godel operations, = = On =
the class of all ordinals, and V, = the set of all sets of rank < a.
The class of all hereditarily ordinal definable sets is defined as foliows:

HOD = {x € OD: « € HOD}

= {x: transitive closure of {x} € OD}.

It is easily verified thet HOD is a model of ZF: it is closed under
Godel operations. transitive, and ¥, n HOD is definable from a, thus
€ HOD. Moreover, HOD satisfies the axiom of choice, since the class
HOD has a definable well ordering.

Let us denote HOD! = HOD and consider the relativization of the
definition of HOD inside the model HOD,

HOD? = (HOD)HOD |

HOD? is again a model of ZFC, and may be strictly included in HOD!.
This suggests the following “*definition by induction’:

HOD?*! = (HOD)HOD®

HOD? = ga HOD®, A\ alimit ordinal .
&

If we can express
x € HOD®

in the language of set theory, then HOD? « < =, is a transfinite sequence
of models. Each HOD**! is a model of ZFC, and each HOD?. for a limit
A, is a model of ZF: it is transitive, closed under Godel operations, and

¥, 0 HOD? is definable from « and X in each HODE, ¢ < ; thus - 7
v.n HOD* € HOD, 4
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In general, even the sequence HOD”, n < w, may not be definable in
the language of set theory, since the definition of HOD? is more compli-
cated than that of HOD, etc. In {3], Grigorieff has shown that x € HOD®
is expressible if we assume that ¥V = L[ X], where X is a set, We note that
our proof of Theorem 1 involves a model in which ¥ = L{X]: moreover,
in our case each HOD*® is a model of ZFC (including limit a).

We prove the possibility of an arbitrarily long strictly descending se-
quence

HOD*=, a<0O.

[In an earlier version of this paper, I have mistakenly claimed a trans-
finitely long sequence HOD®, « an ordinal.]

This should not be very surprising since it follows from earlier results
of McAloon [7], and several later refinements, that the model HOD is
not a very natural model of set theory (without additional assumptions).
As another evidence of that we shall give an example of a model MM D L,
with the same cardinals as L, whose only ordinally definable sets are con-
structible, but it has a submodel N, L ¢ M N, all of whose sets are
ordinally definable.

2. Ordinal definable sets in generic extensions of L

The proof of Theorem 1 involves a construction of a generic extension
of the constructibie universe. We will use a correspondence between or-
dinal definability in generic extensions and automorphism properties of
the corresponding complete Boolean algebra. Ia the present section we
recall the (well known) theorems characterizing ordinal definability in
generic extensions and formulate some lemmas that we shall subsequently
use.

It is convenient to describe the correspondence in a somewhat more
general setting. Let M be an inner model of set theory. Aset X is
M -definable if it is definable by some formula ¢ with parameters in I,

X={x:¢(x, py ... D)}

for some p;, ..., p, € M.

The notion of M-definability is, as in the case of ordinal definability,
expressible in the language of set theory. Note that *L-definable” coin-
cides with OD. Also, we can define the class HDIR of hereditarily
M-definable sets.
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Now let I be a model of ZFC, and let B be a compiete Boolean algebra
inM. Let G be an M-generic ultrafilter on B. The HDIR sets of M [G] are
characterized in the following theorem of Vopénka (for a procf, see [9] or

(3.

Let (in WX, of course)

B* = {b € B: b is fixed under all automorphisms of B} .

Theorem (Vopénka).
HDMPCY =M[G n B*].
A complete Boolean algebra B is rigid if it has no nontrivial automor-

phisms. B is homogeneous if for all nonzero b, ¢ € B thers exists an auto-
morphism = of B such thatwd- ¢ # 0.

Corollary 1. If B is rigid, then HDIR®IC! = M{G].
Corollary 2. if B is homogeneous, then HDIMTG] =,

In our proof we shall not apply Vopénka’s Theorem directly but
rather use the following two lemmas that say more or less the same as
the theorem.

If b is a nonzero element of B then B, denotes the complete Boolean
algebra {u € B: u < b} endowed with the induced Boolean operations.

Lemma 2.1, Let G, and G be two generic ultrafilters on B and let
MG, = M[G,). Then ther: is an automorphism n of B such that
m " Gl = GZ. '

Lemma 2.2. Let A € WM{G] be an M-definable set of ordinals, let A be
its name. Then there is p € G such that for every automorphism n of B,,
every q < p and every ordinal « we have

gi~a€Ad iff mql-ac€A.

Lemma 2.1 is due to Vopénka; for its proof, consult [9] or {3].
Proof of Lemma 2.2, There is p € G such that for some formula ¢ with

parameters py, ..., b, € M, p I 4is the unique sets.t. ¢(4, py. ..., P,
Then if np = p, we have 74 = 4 and the lemma follows,
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3. Forcing with trees and construction of trees in L

The main tool we shall use in the proof of Theorem 1 is the Suslin tree,
and its generalization, the x-Suslin tree, It will be these trees, with cer-
tain automorphism properties, that will provide us with complete
Boolean algebras that we shall use to construct a generic extension of L.

Jensen [6] has shown that Suslin trees exist in L, and, moreover, that
we may require further automorphism properties, e.g. that the tree is
rigid. In this section we recall the constmction of such trees in L, and
describe the complete Boolean algebras associated with such trees.

A tree is a partially ordered set such that the predecessors of any ele-
ment are well ordered. For further terminology and notation we refer
the reader to [4]. We shall be dealing with k*-trees, where k is a regular
cardinal. We give the construction only in case k = w, for the general
case is a straightforward generalization. We assume that all trees we deal
with are normal, i.e., (i) every branch of limit length has at most one
immediate successor, (ii) every element has ¥ immediate successcrs, and
(iii) every element has k* successors, Moreover, in case k¥ > w we assume
that every branch of cofinality < & has a successor.

A normal x*-tree is Suslin if it has no antichain of cardinality x*.

The well-known coristruction of a Suslin tree in L uses jensen’s prin-
ciple

©) There exists a sequence (S, a < w;) such that for every
X € w,, the set {a: X N a =S,} is stationary.

[If k > w, replace w,; by k*;theset {a: cfa=kand XN a = S,}is
stationary.]

Sketch of the construction: T is constructed by induction, level by
level. The only problem is how to construct limit levels 7. [If k > ¢,
only limit levels of cofinality x.] For every x we pick an a-branch b,
through x. In the good case we extend all b,’s. In the bad case, if S, is
a maximal antichain then we extend only those b,’s that go through §,,.
Since S, is maximal, we preserve normality of 7. An argument using (¢)
then shows that every antichain in 7 is at most countable [at most of car-
dinality x].

If we want T to be rigid, then we destroy all potential automorphisms
in the same fashion. If # = S is a nontrivial automorphism of 7' I «,
then we pick a branch b, such thatw " b, # b, and extend it. Then we
extend only those b,’s that are distinct from # " b,.. Then 7 does not ex-
tend to an automorphism of 77 I a + 1 and a (¢)-argument completes the
proof,
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We will use a variation of this argument to control definability in
maodels constructed by forcing wi‘h trees.

If T is a normal k*-tres then we may consider it as a set of forcing
conditions, with inverse ordering. 'that is, x is a stronger condition than
¥ just in case x = p. It is obvious that if G C T is genericthen G is a
kt-branch through 7. In case that 7 is a Suslin tree, then if b is a x*-
branch through T and 5 is not in the ground model, then b is generic.
Hence if 7 is a Suslin tree, then genearic sets and branches coincide.
Moreover, T satisfies the x*-chain condition.

The complete Boolean algebra associated with T consists of subsets
of T. In case of a Suslin tree, the description of B is particularly simple;
we can represent eachu € Basu =X {x: x € U} where U C T is a set of
elements of the same level of T (for details, see [5]).

Also, if T is Suslin, then there is a nice representution of automorphisms
of the Boolean algebra. Obviously, every automorphism of T induces a
unique automorphism of B; but the inverse direction is more interesting,

Let C be a closed unbounded subset of k*. By 7€ we denote the set
of all x € T lying on levels « € C. T¢ is a normal Suslin tree and it is
easy to see that 7C is dense in T, hence in B. Thus every automorphism
of T¢ induces a unique automorphism of B. On the other hand. we have

Lemma 3.1. If  is an automorphism of B, then there exists a closed un-
bounded set C such that = 1 T€ is an automorphism of T€.

Proof. Let

C= {a: for every x on the o't level of 7, 7x is an element of
the o™ level of 7).

All we have to do is to show tha: C is closed and unbounded. It is easy
to verify that C is closed; we have t¢ show that C is unbounded, or, what
is equally difficult (or easy) that C is nonempty. Given 8, consider

(mx:xe€TIBIU {rlx:x€TIB}EB;

we can represent all these elements of B by subsets of T, and indeed, by
subseis of some T' I ay, «; > . In a similar way we find ay > a5, a3, a4, ...
and then let @ = lim,,_, , a,,. The rest is easy: « is a member of C

This representation of automorphisms of B is very useful; especially
so because an obvious modification of the argument above allows us to
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destroy potential automorphisms of B in the course of construction of
T (compare with the construction of a simple complete Boolean algebra
in [SD.

In view of Lemma 2.1 we have the following useful lemma about
forcing with Suslin trees:

Lemma 3.2. Let T be a Suslin tree. Let by and b, be generic branches
through T such that M[b,] = M[b,cl Then there exists a closed unbounded
set Cand an automorphzsm 7 of T such that =" by = b,. (Strictly
speaking: n " by = b, TC.)

4. A descending sequence of HOD”, n < w
As a first step towards Theorem 1, we shall prove the following:

Theorem } (V = L). There exists a complete Boolean algebra B such that
the Boolean valued model LB satisfies the following: The sequence

HOD, HOD?, ..., HOD", ..., n< w

is strictly descending.

We assume V = L (in the ground model) from now on. In this section,
we construct a Suslin w, -tree whose corresponding complete Boolean
algebra (cBa) satisfies the statement of Theorem 1.

Before giving the construction, we consider the following situation
which is crucial in the subsequent considerations. If 7 is a tree,and x € T,
we let T, denote the tree consisting of all y > x; o(x) denotes the order
type of { y: y < x} (thus x is on the o(x)® level).

Let 7% T be normal w,-trees. Consxder the following situation,

(I) We have a projection 4 : 70 22 71 such that
(1) o(hx) = o(x),
@Qx<y—-hx<hy,
(3)if x € T% and y > x, then there is z > x, z # y such that
hz=hy.
(1 70 is Suslin (hence T is Suslin).

(IDIfhx=hy, then TQ and T are isomorphic.

(V) Ifo(x)=o0(y) and A x # hy, then there is no closed unbounded
set C and no automorphism # of (T%)° such that " T2 T # .
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(Note that (IV) states that then there is no automorphism 7 of the com-
plete Boolean algebra such that wx - y 5+ 0.)

Let BY, B! be the complete Boolean algebras associated with the
Suslin trees T°, T, The projection # : 7% » T induces a complete em-
bedding of B! into B®: if w € B!, then u € T'! and we let e(u) = h_,[ul.
It is easily verified that e is a complete one-to-one homomorphism. Thus
B! can be considered a complete subalgebra of BO,

We note in passing that not everv complete subalgebra of B? can be
obtained this way. The algebra B! has the following property: For
x € TO denoteX =M {ue& B: x < u). If x € T is on a limit level and
if x; <xq < ... <X, <.. are such that lim x,, = x, then® =Tix,, namely
£ ={y: hx=hy}. [In general, one can only prove ¥ < [IX,,.}

Lemma 4.1, Let T, Tlsatisfy (D—(V). Let by be a generic branch
through TY, ler by = h" by. Then

(a) L{by] = HOD = L[d,],

(b) by ¢ LIb,]

Proof. Let by be a branch through T°, We shall prove first that by is de-
finable in L{b,}. Namely, b, is the unique element of the set

{h" b: b is a branch through T%s.t. L[b] = V}.

To verify this, let b be a branch through 79, and let L[5] = L{b,]. By
Lemma 3.2, there is a closed unbounded set C and an automorphism 7
of (T®) such that 7" b= b. Let us assume thath" b # b, =h" by Then
there are x € b, and y € b such that o(x) = o(y) and hx = hy. However,
the existence of  contradicts (IV) because mx’ = y' for some x’ > x and
y' =y

Next we prove that if 4 is a set of ordinals ordinal definable in L{b],
then 4 € L[b,]. That proves (a). Let 4 be a name of 4, By Lemma 2.2,
pick x € b, such that every automorphism o B, preserves the forcing
relation y 1 « € 4, fory > x. We will construct a new name 4’ for 4,
such that A’ € LB' (where B! corresponds to T1). For every a, let
u, = [a € 4] be asubset of some level > a(x). f u, 0 T, = P, we let
v, = 0. Otherwise, look at all y € u, N T, and let

v, = {z: hz=hy for some such y}.

It is easy to see that each v, belongs to B!; thus we define 4’ by
la € A4'] = v, for eich «. We have only to verify that 4" is a name for A.
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If « € A4, then there is some y > x such that y € u,, and hence
y - a € 4'. On the other hand, if « € 4’, then by N v, + @; let
Z € by N v, Since z € by, we have z > x; also, hz = hy for some y > x
such thaty I-a € 4. By (III), T, }‘,’ and T,o are isomorphic, and so one
can get an automorphism = of B, such that 7y = z. By the choice of x
this means that 2 |- a € 4 also, and hence a € A.

Finally, we show that b, is not definable in L[], and hence
by ¢ L[b,]. Here we argue in the same way as above. First find x € b
by Lemma 2.2. Then choose arbitrary distinct y, z € T2 such that
Y € by and hz =hy (by (I)(3)). Then by (III) get an automorphism =
of B, such that 7y =z and by Lemma 2.2 argue that also z € b; a con-
tradiction.

As the next step we will show that there are T° T! and h that satisfy
@O-av).

Lemma 4.2 (V = L). There exist wy-trees T C Tlanda homonmiorphism
h such that TS, T and h satisfy (D—(IV).

Proof. Actually, (©) is the only property of L. we use in the construction.
Our construction follows the outline of the construction of a Suslin tree
in Section 3.

We construct 70 and A by induction, level by level (and T! =& " T?).
In the course of the construction, we keep the following conditions
satisfied:

(i) For each x € T, for each & > o(x), there is ay > x on the ath
level.

(ii) Every x € T9 has infinitely many immediate successors; more-
over, there is an infinite set Y of immediate successors of x such that
%y, # hy, whenevery,, y, € Yand y; # y,.

(i) If x € T% and y > x, then there isz > x, z # y such thathz=hy.

Notice that the conditions (i) and (ii) will guarantee that both 7% and
T! are normal trees. The condition (iii) is the same as (I) (3).

Along with A, we construct by induction a collection of isomorphisms
T,y : For each pairx, y such thathx=hy, Ty, is an isomorphism between
7¥y and TJ?. In addition to (i)—(iii), we keep the following condition
satisfied:

(iv) For each pair x, y such thatAx=hy, and eachu € T,

h(vrxv Ww=hu.
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Before we start, we fix a mapping; : w2, ¢ such that i~ is in-
finite, for all . We construct the tree T0 as a collection of functions
X :1a > w, a < wy, ordered by € and closed under initial segments. The
ath level of T9 then consists of x with domain «. Having constructed
the ath level, we construct the (@ + 1) level as follows: For each x € 79,
X e w, weadjoin allx © n, n < w. We let

hix®"m)y=hx)" G xia»w x€T° new),

T, (z”n)=(1rw~)” x,yveTllatl, z:a->w)

tand 7., {x) =y for x, y on the (a + )" level, hx = h y).
One can verify that (i) and (ii) are satisfied, and that T? and T?! stay
being normal.

Now assume that a is a limit ordinal and that we have constructed 70,
I and m,.,, below level . We recall that at alimit stage of the construction
of a Suslin tree one in okes ¢ to make sure that the resulting tree is Suslin.
Here we need a Suslin tree which, in addition, has the property (IV).
Thus we distinguish 3 cases: when S, (of the ¢ sequence) codes a maxi-
mal antichain, when S, codes an isomorphism to be destroyed, and the
easy case (the “otherwise’ case).

Case 1. The easy case. Let G be the set of all finite compositions of
the m,,’s, forallu, v€ TO I a such that hu = hv. Foreachx € 70 I o
pick an a-branch b,. Extend all these b,’s tc jether with allp" b, p € G.
Since G is countable, this set of all extended branches is countable;
moreover, it is closed under ali 7, ,’s. We define # and the m,,’s in the ob-
vious way, and the conditions (i)~ (iv) are satisfied.

Case 11. §, codes a maxiral antichain 4 in T0 ! « and we wish to
construct the ot? level such that 4 remains maximal in 70 ! (@ +1). We
want to extend a branch through every x € T0 1 a, have the at? level
closed under all 7, ,'s and, moreover, we also want to have all the
branches on the o™ level to go through the antichain. Thus for every
x € T% I « we construct a branch b, in such a way that eachp” b, , p € G,
meets the antichain. This can be done since it involves satisfying oniy
a countable number of conditions,

Case 1I1. The S, given oy () is an isomorphism 7 between (TO)C and
(TN, where C is a closed unbounded subset of @, and h x # i y. This 7
is to be destroyed, so that when the construction of T is completed,
the (©) is recalled to show that T'0 satisfies (IV). We are going to extend
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branches b,, for all z € T? I a, but the branches will be chosen such that
b, is extended while 7" b, is not. Hence m will be destroyed as a potential
isomorphism.

First pick b, arbitrary. Notice that since k(w, ,b) = h b, we have
h(pb,)=hb, for all p € G, while i(nd,) #+ h b,, because 4 x # h(nx).
Hence pb, + wb, for all p € G. We extend all pb,, p € G.

Then for every z # x we find, by diagenalization, a branch b, such
that pb, # wb, for all p < G. And we extend all pb, (z € T0t a, p € G).

When the construction is completed, a standard ¢-argument shows
that T9 is a Suslin tree and that (IV) holds: Case II takes care of the
antichains, and Case III takes care of potential isomorphisms. The projec-
tion h satisfies (I), and T! = " T'? is a rormal Suslin tree. The m,,’s
witness to (III), and so the trees 70, T} satisfy (I)— (V).

Now we are ready to prove Theorem j. In view of Lemma 4.1 it is ob-
vious that it is sufficient to construct a sequence of trees with the fol-
lowing properties.

Lemma 4.3 (V = L). There exists a sequence T®, TY, ..., T", ..., n < w,
of normai Suslin wy-trees such that for every n =0, 1, ... there exists a
projection h,, : T" 5 T4 which satisfies (I)—(IV).

Proof. We construct all 7" at once, by induction on levels. As in
Lemma 4.2, we construct also the &,’s, and all the 7, s (foru, ve T"
such that h, u = h,v); also, we keep (i) —(iv) satisfied.

The successor step is exactly as in Lemma 4.2. So let a be limit. We
will construct a countable set B of a-branches through the tree 70 ! o
(B will serve as the ath level of 79) such that the following two condi-
tions are satisfied:

(1) For each x € T? ! « there is b € B that goes through x.

() Ifbe Band v, ve T™ are such that h,,u= h, v and if (5)™ (the
image of b in T™, i.e.. (b)" = h,, _, ... hyb) goes through v, then there
is by € B such that (b))™ =m,,(B)".

If (1) and (2) are satisfied, then, after defining /,,’s and m,,,’s in the
obvious way, the trees T" I' (a + 1) satisfy the conditions (i)~ (iv).

Having in mind that T° is supposed to be Suslin, and that the trees
T" should satisfy (IV), we construct B such that, in addition to (1) and
(2), we take care of the S, of the ¢-sequence. Thus the three cases.

Case 1. The easy case, We fiX an increasing sequence {a,: n < w}
such that a = lim &,. We further fix an enumeration {x,: n < w} of
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T° 1 «. Finally, we enumerate all 7, ’s, where v, v€ T™, m < w and
hpu=h,v: {m,: n< wh

We construct B in ¢ steps. After n steps, we will have constructed
initial segments of finitely many branches in B. We construct
B = {b: i< w} as follows, At siep n, we have initial segments of
by, ...y by, , and each initial segment has length at least o, and has a maxi-
mal element. To make sure that B satisfies (1), we simply require, at each
step n, that

(A) for eachj < n there is i < &, such that b, goes through X;.

To satisfy (2), let us enumerate all pairs (j, k). Let b; = m; by denote
G ﬂi(bk)"", where 7; is an isomorphism in the tree 77, At step n,
assuming that at previous steps we have assigned to each (7, k) among
the first n pairs some /, we require that the initial segments of these by ’s
and b;’s satisfy

(B) by * m; by.

Furthermore, if (j, k) is the next pair in the enumeration, we add one
more (initial segment of) branch, b;, to B,,, so that b, = m; b, (and assign
lto (j. k).

Case 11. S, codes a maximal antichain A in 7 { a. In addition to (1)
and (2) we require that each & € B meets 4. We proceed as in Case I, and
have to make sure that every time we add a new branch to our collection,
it has to go through A.

We are adding a new branch at step » either to satisfy (A), that is, to
have a branch through every x;. or to satisfy (B), .o have b; such that
b; = m; by. In both cases we make sure, by taking a sufficiently long ini-
tial segment, that the new branch meets the antichain.

Case 111. S, codes an isomorshism 7 between {77)¢ and (T™)¢ such
that i, x = h,, v, and we wish to destroy =, in addition to satisfying (1)
and (2).

Letxg € T0 be such that x = /1, _; ... Agx,. We will construct, as in
Case I, a countable set of a-branches B = {b;: i < w} satisfying (1) and (2),
and. moreover, such that b, goes through x,, and for all b € B,

(b)m #* ﬂ(b())m'

Thus we have to make sure that when adding a new branch b either to
satisfy (A) or (B), we have (b)" # m(by)" (once the initial segments are
unequal they stay unequazl). This is easy to arrange if a new branch is added
to go through some x;. If a new branch b, is added in order to have
b; = m; by, then n; is an isomorphism in 77 and we may have r < m, r=m
orr>m, Ifr < m, then mj(bg)™ = (by)™ # m(by)™ and (b)™ + m(by)™
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is easily arranged. If r = m and k = 0 then wj(bo)’" #+ w(by)™ because
By (i (Bo)™) = Ry (bg)™ while hy, (w(bg)™) # by (bg)™. If r = m and
k # 0, then we have the choice of extending 2, and b; somewhat to
have wj(bk)"’ # w(bo)™. In any case, if » = m, then b, can be obtained sn
that (b)™ # w(by)™. The case r > m is handled similarly.

When the construction is completed, a O-argument shows that 70 is
a Suslin tree and that (IV) holds for each T™. This completes the proof
of Lemma 4.3 and also the proof of Theorem j.

5. Proof of the Main Theorem

We will use the technique introduced in Section 4 to construct, for
each ©, a model of ZFC in which the sequence HOD®, o < ©, is strictly
decreasing.

The construction in Section 4 involves projections of trees, We wish
to get a k-sequence of trees such that each successive tree is a projection
of its predecessor and the tree on a limit stage is a limit of these projec-
tions. The construction will basically be the same as in Section 4 but we
need a nice sequence of projections to work with (in place of the projec-
tionj in the proof of Lemma 4.2). Note that projections are the same
as equivalence relations.

Lemma S.1. Lert « be a cardinal. There exists a sequence {=,: a < &} of
equivalence relations on k such that
(0) =, is the identity,
(1) each =, has x equivalence classes,
(2) each =,y equivalence class is the union of k =, equivalence
classes,
) if Nis a limit ordinal, =, is the limit of =, a < \iie. s =, tiff
5=, t for some a <\,
(4) lim,,_, =, is trivial, i.e. if x, y € &, then x = y for some a.

Proof. We identify k with k-sequences s : k ~ k such that s, # 0 for
only finitely many a < k. We define, for each a < k,
s= te s(B)=t(f) foral > a.

It is easy to verify that the sequence =, a < K, satisfies (0)—(4).
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The main problem we encounter in the generalization of Theorem }
is how to handle the limit steps, i.e., how to show that if \ is a limit
ordinal, then the X\*h model is the intersection of the previous moedels.
We will need the following lemma.

If B is a complete Boolean algebra and k a cardinal, then B is k-distri-
butive if B satisfies the following distributivity law:

0 Du,=2 My,
a<k ief © fel® a<x af(@)
The significance of this properiy in forcing is that when forcing via B,
one does not add any new k-sequence of ordinals.

Lemma 5.2, Let k be a cardinal and let B be a k-distributive complete
Boolean algebra. Let

By, B,..... B

be a k-sequence of complete Boolean algebras such that By = B, B, 4,

is a complete subaigebra of B, for each a < k, and B, = N, B, if A

is limit. Let all this be in a ground model R, let G be an M-generic ultra-
filter on Band let 5,= G 0 B, for ull a < k. If A is a set of ordinals and
A€ WM[G_] foraii a < k, then A € M[G, 1.

ot a< K,

This lemma will be used to show that WG, J = N, M[G, ] Thisis
not necessarily true in general; cf. {8}

Proof. Work in IR[G]. Since 4 € M[G ] for all & < k, it has a B -valued
name A, for each a. Since B is k-distributive, it follows that the sequence
{44 a <k} is in M. Thus work in M. We are going to define a B, -valued
name of A. Fix an ordinal §. Foreacha < x,letu, =t € 4,]1€ B,.

By k-distributivity, there exists a partition {p;: i € I'} of B such that for
each a < k, each i € [, either p; < u, orp;- u, = 0. Hence for each g,

u, = Z{p;: i€J} forsomeJ & I Now we let

w=2{p‘.:3%\;'cx>aepi<ua}.

We will show that
(a)weB,,
(b)yweGiff ¢ € A.
Thus, if we call w, this w obtained for £, and let 4 be such that
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& € A] = w,, then A4 is a B,-valued name for A. Thus doing this for
each &, we get a B, -valued name for 4.

To show that w € B,, we show that w € B,, for each a < k. Leta <k.
It suffices to show that if p; < w, then py < w, wherep; =Z{p;: j€ J},
where J & [ is the least J such thati€J and £ {p,-: j€J}€B,. Let
p; < w. Then there is ag > « such that p; < u, for all § > «. Let
u=Tl{ug: B> ay}. Clearly u € By; alsou = Z{p;: J€J} forsomeJ & I
It follows that for eachj € J, pisw and hence u < w. However, p; <u
and sop; < w.

To show that w € G iff ¢ € A, let p; be the unique p; which is in G.
Thenw€ Giff p; < w. If £€ 4, thenu, € G and p; < u,, for each a,
and hence p; < w. On the other hand, if p; < w, then p; < u,, for even-
tually all «; hence u, € G and so ¢ € 4.

Another problem at limit steps is the following: We want the ath
model to be given bv a tree T, Thus we want , for a limit «, ﬂﬁan
to be a cBa associated with a tree T%, a “limit” of the trees 777, ¥ < «. The
following theorem (or rather its proof) suggests how to handle this
problem.

Theorem 3 (V = L), There exists a sequence TS, T, ..., T". ..., n < w,
of normal Suslin w~trees such that for every n there is ¢ projection
h, : T" 228 T and if by, is a generic branch through T®, b, = hyby,
by, =hyb,, etc., then

(a) L{b,] FHOD =L[b, 4],

(b) b, & Libyy),

(N, Lib,1=L.

We can see that Theorem § is just Lemma 4.3 with the clause (¢) added.
Thus the proof of Theorem { is like the proof of Lemma 4.3 but extra
care is needed to satisfy condition (c).

Let B, be the cBa associated with T". Since each B, is R-distributive
(a known property of normal Suslin trees when used to force with),
Lemma 5.2 tells us that N, L{d,] is given by the cBa N, B,,. Thus we
wish to construct the T"’s so that N, B, is the trivial algebra.

Proof of Theorem 3. Let us follow the proof of Lemma 4.3. We make a
slight change of rotation, namely to call &, the projection of 79 onto
T™ (what we called then h,,, _, ... hy). We construct 7", n < w to satisfy
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the conditions (I) ~(IV) of Lemma 4.3 (with the notational change),
and in addition, the condition

(V) if x, ¥ € T are such that o(x) = o(»), then there is & such that
hk X = kk y.

A typical element of the algebra By is a subset of a level of TO. A
typical element of B,, is a subset v of an «th level of T0 such that if
o(x)=o(y)=a,x€uand b, x=h,, », theny € u. Hence ifu € B, “for
all m < w, it follows from (V) thatu =1 oru =0, and so N ;_, B, is the
trivial algebra. Thus a sequence of trees satisfying (I)— (V) is enough to
prove Theorem 3.

We will follow closely the proof of Lemma 4.3. Instead of the projec-
tionj (defined in the proof of Lemma 4.2), we use projections j;, k < ¢,
g 'en by Lemma 5.1; the property we need is that for every n;, n, there
is k such that jp(n,) = ji(n,).

In Lerama 5.1, let k = N and let =; be the k™ equivalence relation
on w (k < w). We define j,. by

m=m,

where # is in the mth equivalence class of =.

We construct the trees 7% by induction on a. As in Lemma 4.3 (or
4.2), we construct also the /s, and the 7, 's. We make sure that the
conditions (i)— (iv) (with the notational change) are satisfied, and more-
over,

(v) if o(x) = 0(¥) = a, then there is k such tha. &, x = b y.

As before, it is obvious (at limit steps) or easy to define the &;’s and
the m, s at each step. In particular, we define

R m= 02" (.
at successor steps, and
he(B) = (hp (b)) y< a)

at a limit step a.

At successor steps, the condition (V) remains satisfied: If x =z nand
y =w " m, then first there is k, such that h;(z) = b, (w) for all k > k,
and second there is k, such that j,(n) = j.(m) for all k > k,. Thus for
some X,

b () = (R 2) O () = (W) © (o) = B (1)
At a limit step, following Lemma 4.3, it suffices to satisfy
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(1) for each x € T? | « there is b € B that goes through x,

(2)ifbe Bandu, vE T™ are such that hu = hv, then there isb, € B
such that h,, b, = n, (h, b).

[Recall that B constitutes the a'? level of 70; & in (2) is the projection
of T™ onto T7™*,] And, the additional condition

(3) if by and b, are in B, then for some k, i b, = h; b,.

In addition to (1), (2), (3), we are also destroying an antichain or an
isomorphism, if so required by ©. We shall only describe the easy case
(Case ), since Case II (antichain) and Case III (isomorphism) are handled
as in Lemma 4.3 with the additional requirement of (3).

Case 1. We proceed as in the proof of Lemma 4.3. In addition, at
step n we assume that we have assigned to each (7, s) among the first n
pairs, some £, and require that the initial segments of these &,’s and b’s
satisfy

(c) h,b, = by
Furthermore, if (7, §) is the next pair in the enumeration, we find t < w
such that #,b, = b, and add this condition to (¢) to keep it satisfied at
further steps.

Now we are ready to prove the Main Theorem.

Theorem 1 (V = L). Let « be u regular cardinal. There is a k-sequence of
normal Suslin x*-trees,

17, Y<K,

such that the corresponding cBa’s B, , v <«, form a descending sequence
By 2By 2..2B, 2., v<kand B, =N, By if vy <« isalimit ordinal,
and if G S By, is generic, then

L[G] EHODY=L[G N B,,] .
and
N LIGNB_ 1=L.

y<k v

Proof. (Sketch). The proof of Theorem 1 is a more or less straightforward
generalization of Theorem 3, but with some caution. We shall first point
out the pitfalls.

A Suslin x*-tree ™ is normal if, in addition to obvious generalization
of properties of normal Suslin (w,-trees, it has the property that for every
limit « of cofinality < k, every a-branch in 7 is extended. One constructs
such trees with the aid of a O-sequence {S,: a < k* and ¢f a = k}, and
the induction step at limit a of cofinality < « is trivial: one extends all
a-branches.
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The corresponding cBa is k-distributive, and so by Lemma 5.2
ﬂ&(,y LIGNBs]1=LIGNB ], if v < « is limit. Thus it would be suffi-
cient to construct a x'sequence of trees 77, vy < K, along with projec-
tions h,, : TO = M, 77, with properties analogous to (I)~(V) of
Theorem 3. However, if y < x is a limit ordinal, then B =N <y B; and
SO we would require that & x =k, y just in case iy x = izs y for some
8 < 7. Butleta=cfy We can easily find two a-branche: b‘ and b,
such that for every 8 <, hy " by # s "by buth, " by =h, " b,. Since
every a-branch has to be extended this cannot be avmded

Here we remark that this is because the algebra N, ., Bs, although a
complete subalgebra of By, cannot be obtained by means of a projection
of T9: see our remark preceding Lemnma 4.1,

This difficulty can be avoided by considering the mappmgs h,, not to
be projections of TC, but rather defined on a subtree of T, Let

= {a < k* aisasuccessoror cf &« = K} .

We construct the trees 77, and the mappings k., as follows:
I h, is a projection of (7‘9‘Q onto (T7)¢, For each y < «, let
h: (TN - (T7*1H% be the unique  such that i,y =h e h,.
O o(h, x)y=o(x).
Qx<y->h,x<h,y
(NIfxe T and y > x, olx) € Q, then there isz > x, z # y, such that
hz=hy
(4) If y < k is a limit ordinal, and o(x) =0(y} = Q, thenh x=h,y
if and only if b for some & < v, hyx = hy y.
IL 79 is Suslin.
L Ifx, y € (T)® and k< = hy, then T and T are isomorphic.
IV.Ifx,y € (TM®, o(x)=0(y), and hx # hy then thers is no closed
unbounded set € and no automorphism 7 of (72)¢ such that
7" Ty O T)# 0.
V 1fo(x) o(y) € Q, then there is y < k such that A, x = h, y.
Let T'7, v < K, be a sequence of normal k*-trees satisfying I — V Let
b, be a generic branch through 79, and let b =h 4 (bg). The same argu-
ment as in Lemma 4.1 shows that

Lib ) FHOD=11b, ]

and that b, ¢ L(b.m] for all y < k.
In view of V, the intersection N, ., B, is the trivial algebra. Thus to
prove Theorem 1, it suffices to show that for each limit ordinal A< k,
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N L[ 1=LIb,1
a<d @ A

(where b, = ).

We do that by induction on A < k. At stage A, we already know that
eachL[b ], a < N, is HGO® in L[bg]: thus the intersection is a model of
ZF. To show that it is equal to L[b, ], it suffices to show that it has the
same sets of ordinals (by a theorem of Vopé€nka and Balcar). Obviously,
L[b,] € L[b,] for each @ < A. Thus let 4 be a set of ordinals, 4 € L{b,]
for each & < A. The algebra By is k-distributive, so that we may invoke
Lemma 5.2, by which 4 € L[b,].

To construct a sequence T, v < k, satisfying (I)~(V), we follow the
constructions in Lemmas 4.2 and 4.3 and Theorem $. By induction on
a < k*, we construct the at? level of all T7’s, the mappings h,, and the
isomorphisms s

If o is limit and cf @ < k, then we extend all branches, define 7,,,’s
in the obvious way, and do not care about the I, ’s.

If & is limit and cf & = k, then we construct a set of a-branches in
79 I @ in very much the same way as before, paying attention to 0, and
distinguishing 3 cases. The &, ’s and 7,,,’s are defined in the obvious way.
We also verify 1(4).

If « € £, then the k. ’s are defined for all x € 70 with o(x) = a. To
define the 2, ’s on the next level, we use the continuous system of pro-
jectionsj, , v < k, given by Lemma 5.1, We let

h,,,(zn = (hyz) n (j,’i) ,
for all z with o(2) = @ and i < k. Since for every i}, i; < k there is vy such
that Ty zl ], 13, this helps to satisfy V.

Ifeis hmlt and cf a < k, then we define the /1,’s on the (a + 1)8t level.
We define the (z i), where z is an a-branch and i < &, by induction
ony. Ifyis limit then we define h, soasto satisfy condition 1(4).
Otherwise we define h,., more or less arbitrarily, euept forh yH where
v is limit; then, ifh "z = h, " z,, we let hy i (z; " ip= h,M @, " iy),
which guarantees that condmon V is satisfied for elements of the (a + 1)
level.

This sketch of the proof of Theorem 1 describes all the departures
from a straightforward generalization of the constructions in Section 4
and Theorem 3.
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6. Proof of Theoren: 2

In view of existing counterexamples, including the results above, it
seems that one cannot expect any absoluteness of the notion of ordinal
definability. The scope of HOD in one model does not seem to depend
on the scope of HOD in another model. In view of the fact that thereis a
very strong relation between definability and automorphism properties in
the models constructed above, the method presented in Section 4 is
particularly suitable for getting all sorts of counterexamples. The com-
binatorial properties of L give us a vry good control of automorphisms
of treeas.

As an example we sketch the proof of the following.

Theorem 2. There exist models My and M, such that
(L ¢ M,y ¢ M, and L, My, M, have the same cardinals,
(bYW, FHOD = L,
(c) My EHOD = V.

In view of the lemmas in Sections 3 and 4, it suffices to construct
Suslin trees T and 72 such that T! is homogeneous and (T2)€ is rigid
for every closed unbounded set C, and T, is a homomorphic image of T2

Thus we construct 7! and 7?2 along with 4 : T! = T2, make both
trees Suslin and homogenize 7! while keeping T2 rigid. The construction
is very much like in Lemma 4.2. By induction, we construct TY, T2, &,
and m,, forany u, v € T on the same level. We keep the following condi-
tions satisfied:

(i) For each x € T}, each a > o(x), there are infinitely many y > x
on the a™ level with the same A y.
(i) If hu = hvand x > u, then h(m,, x) = hx.
(iii) It 2w # hv and x > u then for each a > o(x) there are z, z, > x
on the o' level such that hz, = hz, and h(r,, 2y) # k(z,, 2,).
The last condition enables us to annil.ilate every potential automorphism
of (T3)¢ while keeping the m,,’s going (because then k[, ] is not an
automorphism if b u = hv).

7. Proof of Theorem 3

As another example of forcing with Suslin trees w2 construct a mode}
whose constructibility degrees of nonconstriictitle sets have order-type
w". The theorem follows from this (V= L):
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There is a sequence of Suslin trees 7", n < w, and projections
h, o T"-2 77+ such that if by is a branch in T, b, = hybg, by = hyb),
etc., then

(1) b, € Lib, 4l

(2) If A is a set of ordinals in L], then either 4 € L or there is n

such that 4 € L[b,] and b, € L[A4].

We sketch the construction of a pair of trees 79, T'!, with the projection
h:T%= T1, such that if A € L[by), then either by € L{A] or 4 € L[b,].
This combined with the proof of Theorem § (to make N, .., L[b,] =L)
gives the theorem.

To arrange matters so that by & L[b,], we construct T, T such that

) If x, ¥ € TO are such that Ax = hy and if u > x, then thercis a
v#u,v>y, such thathu=ho.

Let By and B, be the cBa’s associated with 70 and T!. We want to con-
struct T9, T! such that if D is a complete subalgebra of By, then for
somea€ By, Dlra=BylfaandD ! —a=8B; ! —-a

Let D be a complete subalgebra of By. We recall (cf. [5]) that D is rep-
resented by partitions of levels of T'0. We say that x, y in the same level
of TO are D-separated if they belong to different parts of the partition
of that level. Let 2 € By be defined as follows:

—a =E[u: DtucB,tu}.
Foreachu<a DT u§f B; Mu

Lemma. T#4ere is a closed unbounded set of o’s such that for each u < b
there are x,v € T®, o(x)=0(y)=a, hx = hy, and x, y are D-separated.

This Lemma is proved using the fact that TO satisfies (*).

Proof. We construct 70, T! and & by induction on a, using ¢. We keep
the condition (*) satisfied. If (¢) commands the destruction of an anti-
chain, we do it. To ensure that for every D & B there is an a such that
Dta=Byltaand D —a=B, | —a we use the lemma, and destroy
a potential counterexample D in a manner similar to the construction
of a simple ¢Ba in [S].

If the S, of O codes D ! (T° I ) which satisfies the lemma, we con-
struct the ath level of 70 such that it contains a branch b that is D-separ-
ated from all other elements of the a'™ level. (cf. the argument in [5].)
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We also keep the condition (*) satisfied on o' level. This is done roughly
as follows: we construct countably many a-branches throught 701 a;
first the “master” branch b, and then the others in such a way that if
X,y € T% M o, hx = hy, and b goes through x, then there is another

b’ # b through y such that Ab=hb', and b and b' are D-separated.

This is done using (*).

8. Final remarks

Since ordinal definability depends on the model of ZF in question, it
is natural to ask:

(i) What can we say about HOD, if we add further axioms?

(ii) What is HOD in “natural” models?

In particular, these questions might be interesting in connection with
large cardinals. It is known that virtually every large cardinal axiom is
consistent with HOD = V., Moreover, the natural model for a measurable
cardinal, L{¥], satisfies HOD = V. And it is expected that the natural
models for other large cardinals, when discovered, will satisfy the same.

One problem that might be of some interest is what can we say ahout
HOD if we assume the axicm of determinacy?
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