
JOURNAL OF MATHFMATIC‘AL ANALYW ANI) APPLICATIONS 135, 568-580 (1988) 

Heat Transfer of a Continuous, Stretching 
Surface with Suction or Blowing 

CHA’O-KUANG CHEN AND MING-I CHAR 

An analysis has been carried out to determine the heat transfer occurring in the 
laminar boundary layer on a linearly stretching, continuous surface subject to 
suction or blowing. Two cases are considered: the sheet with prescribed wall 
temperature and heat flux. The results are expressed in terms of Kummer’s 
functions. For specified conditions, the solutions reduced to the published results. 
Additionally, the results of an impermeable stretching plate with variable wall heat 
flux are also obtained. Finally, the effects of Prandtl number, suction or blowing 
parameter, temperature parameter, and heat flux parameter on the temperature 
distribution are discussed in detail. ( 19X8 Academic Prr,s. Inc 

Boundary-layer behavior on a moving continuous solid surface is an 
important type of flow occurring in a number of engineering processes. For 
example, materials which are manufactured by extrusion processes and 
heat-treated materials travelling between a feed roll and a wind-up roll or 
on conveyor belts possess the characteristics of moving continuous surface. 

Flow in the boundary layer on a continuous solid surface with constant 
speed was studied by Sakiadis [I 1. Due to entrainment of ambient fluid, 
this situation represents a different class of boundary-layer problem which 
has a solution substantially different from that of boundary-layer flow over 
a semi-infinite flat plate. Erickson, Fan, and Fox [Z] extended this 
problem to the case in which suction or blowing existed at the moving sur- 
face. Since polyester is a flexible material, the filament surface may stretch 
during the course of ejection and therefore the surface velocity deviates 
from being uniform. Crane [3] considered the moving strip whose velocity 
is proportional to the distance from the slit. These types of flow usually 
occur in the drawing of plastic films and artificial fibers. The heat and mass 
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transfer on a stretching sheet with suction or blowing was investigated by 
Gupta and Gupta [4]. They dealt with the isothermal moving plate and 
obtained the temperature and concentration distributions. Dutta, Roy, and 
Gupta [S] analyzed the temperature distribution in the flow over a 
stretching sheet with uniform heat flux. It is shown that the temperature at 
a point decreases with increase in Prandtl number. 

In a more recent study, Grubka and Bobba [6] considered the heat 
transfer occurring on a linear impermeable stretched surface with a power 
law surface temperature. In the present investigation the effects of both 
power law surface temperature and power law surface heat flux variation 
on the heat transfer characteristics of a continuous, linearly stretching sheet 
subject to suction or blowing are analyzed. A series solution to the energy 
equation in terms of Kummer’s functions is developed. Several closed-form 
analytical solutions are also presented for special conditions. 

The analysis is carried out in a general form allowing one, in a unified 
approach, to describe the heat transfer on a stretching sheet with suction or 
blowing for different versions of thermal boundary conditions on the 
surface. 

ANALYSIS 

Consider the problem of a flat plate issuing from a thin slit at x=O, 
J’ = 0 and subsequently being stretched, as in a polymer processing 
application (Fig. I ). It is assumed that the speed of a point on the plate 
is proportional to its distance from the slit, the boundary-layer 
approximations are still applicable, and viscous dissipation is neglected in 
the energy equation. 

The velocity boundary-layer equations for the steady, two-dimensional, 
incompressible Newtonian flow are 

FIG. I. Boundary layer on a stretching. flat. porous surface. 
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with the boundary conditions 

u = Bx, 11 = ljl, for J~=O 

u=o 
(3) 

as !‘-+s. 

The -y-axis is parallel to the surface of the plate in the direction of motion, 
and the It-axis is perpendicular to the plate; u and L: are the velocity com- 
ponents in the direction of x and I’, respectively. 

For the heat transfer analysis, two different cases are considered: 
prescribed surface temperature and heat flux. The governing boundary- 
layer energy equation is 

(4) 

The thermal boundary conditions depend on the type of heating process 
under consideration. 

Since the fluid is incompressible, the momentum equation (2) and the 
energy equation (4) are decoupled and can be solved consecutively. The 
solution to the momentum equation will be considered first. 

Equation (1) implies a stream function $ given by 

where 

wheref’is the dimensionless stream function and q is the similarity variable 
depending on y only. Substituting Eq. (5) into Eq. (2) yields 

f” +,ff” - (j”) = 0 (6) 

with boundary conditions 

.f”(O) = 1, ,f(O) = -o,,/(Bv)’ ‘, f’(‘m)=o, (7) 

where primes denote order of differentiation with respect to q. The solution 
of Eq. (6) was shown by Gupta and Gupta [4] to be 

f“ = c “‘I, .f’= m -e “‘“lm, (8) 

Here m is a positive number and 

u,, = - (Bv)“’ (m - l/m). (9) 
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It should be noted that rn > 1 corresponds to suction (c,, < 0), while m < 1 
corresponds to blowing (v,, > 0). In the case when the parameter m is 
unity, the stretching plate is impermeable. 

To solve Eq. (4) we consider two different heating processes: 

Case A: Prescribed Sut$zce Temperuture (PST). For this circumstance, 
the boundary conditions are 

T,, = T, + ,4x’ for .r=O 

and 

T= T, as J’ --t a, (10) 

where r is the temperature parameter. When r = 0, the thermal boundary 
condition becomes isothermal. The dimensionless temperature is defined as 

NV) = (T- T, NT,, - T, ). (11) 

Substitution of Eqs. (5), (8) and (11) in Eq. (4) gives 

(10) and (11) as The boundary conditions are derived from Eqs. 

f)(O) = 1, f~(xLc)=O 

Introducing a new variable 4 as 

5 = - pr e ““I/n,’ 

and substituting the solution for ,f’into Eq. (12) yields 

(_ Liz0 _ dfj 
6@+(1 -Pr-5).z+rfI=0. 

The corresponding boundary conditions are 

fl( - Pr/m’) = 1 and H(0) = 0. 

(12) 

(13) 

(14) 

16) 

The solution of Eq. (15) satisfying Eq. (16) in terms of Kummer’s 
functions [7] is 

e(t)= $ 

( 1 

Pr M(Pr-r, Pr+ I,() 
M(Pr-r, Pr+ 1, -Pr/m’)’ (17) 
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M(a, h, -I) = 1 + i GI 
,1=, h,, n! 

a,,=a(u+ l)(u+2)“‘(u+n- 1) 

h,,=h(h+ l)(h+2)-..(h+n- 1). 

Equation (17) can be recast in terms of rl as 

&v)=e 
,)I Pr ,I M( Pr - r, Pr + 1, - Pr e ~~““/m*) 

M(Pr-r, Pr+ 1, -Pr/m2) . (18) 

The dimensionless wall temperature gradient derived from Eq. (18) is 

O’(O)= -m 
M(Pr-r+ 1, Pr+2, -Pr/m’) 

M(Pr-r, Pr+ 1, -Pr/m*) (19) 

and the local wall heat flux can be expressed as 

= -kA(B/\j)“2 xrO’(0). 

For specific values of r and Pr, closed-form solutions can be readily 
obtained from Eqs. (18) and (19). Five such cases are reported in Table I. 

Case B: Prescribed Wull Heat FILLY ( WHF). Now, the boundary con- 
ditions are 

-ktTxq,,,=Dx’ 
r7J 

for J~=O 

and 

T=T, as .t+x, (20) 

where s is the heat flux parameter. For s = 0, the stretching sheet is subject 
to uniform heat flux. In order to obtain the temperature distribution, it can 
be taken in the form of a similar solution as 

T- T, = T (v,~)‘,’ R(rl). 

Putting Eqs. ( 15), (8), and (21) in Eq. (4), it becomes 

(21) 
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TABLE II 

Dimensionless Temperature Expressions for Various Pr and s 

s Pr R(rl) 

Pr s 
exp( --m Pr q) 

M Pr 

0 

0 

-1 

-2 

1 Pr -Pr 
Pr -- 

m 0 m 
exp(Pr/&) y(Pr, (Pr e +‘v)/mz)” 

1 m(l -exp( -e-m”v)/mz) 

Pr 
m 

(ml-1)Pr 
exp(Pr( 1 - m3fj - em”“)/m2) 

Pr 
(l+Pr-(Pr/t71~)e~“~) 

m Pr( 1 + Pr - 2PrJm’- 2/m2 + Pr/m4) 
exp(Pr(1 - rn’q -P -““)/m’) 

‘* Incomplete gamma function. 

with the boundary conditions 

g’(0) = - 1 and g(co)=O. 

Using Eq. (14), we find that Eq. (22) becomes 

(23) 

2 

&+(l -Pr-5).-+.sg=O. 4 
dl* 4 

The corresponding boundary conditions are 

dg( -R/m’) 

dt = 
- m/Pr and g(O)=O. 

(24) 

The solution of Eq. (24) satisfying Eq. (25) may be expressed in terms of 
the similarity variable q as 

g(4)DLe”‘p’” M(Pr-s, Pr+ 1, (-Pr/m’).e mrl) 
M( Pr -s, Pr, - Pr/m’) (26) 

The wall temperature T,,. is obtained from Eq. (21) as 

T,,.- T, =y (v/@‘:2g(o). (27) 

Again several closed-form solutions are developed from Eq. (26) for specific 
values of s and Pr. Five such cases are reported in Table II. 
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RESULTS AND DISCUSSION 

For prescribed surface temperature circumstances, Eqs. ( 18) and ( 19) 
were evaluated to determine the temperature distribution and the surface 
temperature gradient as a function of Pr and r. The results, O(q), coincide 
with the previous solutions for an isothermal permeable stretching plate 
[4] (r = 0, m # 1) as well as for an impermeable stretching plate with 
variable surface temperature [6] (r # 0, m = 1). 

Figure 2 presents the temperature profiles for selected Pr at r = 1 and 
m = 1.5. It is shown that the temperature at a given point decreases with 
increase in Pr. The temperature profiles versus similarity variable, II, for 
selected dimesionless suction or blowing parameter, m, are plotted in 
Fig. 3. For fixed values of q, Pr, and r, the smaller the m, the larger is the 
thermal boundary-layer thickness. This implies that the thermal boundary- 
layer thickness in suction is thinner than that in blowing. 

To compare the effects of blowing with those of suction on temperature 
distribution, temperature profiles were obtained at Pr = 0.72, m = 0.8 
(blowing) or m = 2 (suction) with selected values of r. Plots for the blowing 
and suction case are presented in Figs. 4 and 5. Figure 4 shows that, for 
r > 0, heat flows from the stretching surface to the ambient. The magnitude 
of the temperature gradient increases as r increases. For r = - 1 and - 2, 
the wall temperature gradient is positive and heat flows into the stretching 
surface from the ambient. However, Fig. 5 shows that heat flows from the 
stretching surface to the ambient because the temperature gradient is 
negative for r, ranging between -2 and 2. 

The wall temperature gradient W(O) as a function of Pr for selected 
values of m at r = 1 is shown in Fig. 6. For a given m, the larger the Pr, the 
larger is the magnitude of the wall temperature gradient. In addition, the 
magnitude of the wall temperature gradient increases as m increases. 
Tables III and IV show the variation of W(0) as a function of r in blowing 

1 

.a 

.a 

0 

.4 

.2 

0 
0 .5 1 1.5 2 2.5 3 3.5 4 

? 

FIG. 2. Dimensionless temperature proliles for various Pr at r = 1, m = 1.5 (suction). 
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FIG. 3. Dimensionless temperature profiles for various m at Pr = 0.72, r = 1 

FIG. 4. Dimensionless temperature profiles for various r at Pr = 0.72, m = 0.8 (blowing) 

0 .5 1 1.5 2 2.5 3 3.5 4 

FIG. 5. Dimensionless temperature proliles for various r at Pr = 0.72, W= 2 (suction). 
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TABLE III 

Wall Temperature Gradient as a Function of Pr and r at M = 0.7 (Blowing) 

Pr 

I 0.01 0.1 0.72 1 

-3 0.036460 0.435312 - 1.701066 -0.589065 
-2.1 0.023182 0.250321 7.413630 - 8.565591 
- 1.2 0.010149 0.102105 0.776315 1.113438 

0 - 0.006860 -0.058101 -0.195854 -0.213320 
1.2 - 0.023468 -0.189667 -0.669538 -0.778009 
2.1 -0.035671 -0.275158 -0.930378 - 1.084757 
3 - 0.047667 -0.352134 - 1.150099 - 1.342679 

and suction. It is seen in the blowing case that the wall temperature 
gradient is negative for r < - 2.1 and certain Pr values. This is physically 
unrealistic because temperature distribution for these r and Pr values is 
less than that at the ambient. However, the unrealistic temperature 
distributions disappear in the suction situation, which is clearly observed in 
Table IV. It is worth noting that the values of r and Pr for which 
unrealistic flow is encountered depend on dimensionless suction or blowing 
parameter m. 

For prescribed wall heat flux circumstance, the temperature distribution 
can be readi1.y obtained from Eqs. (26) and (27). When s = 0, m = 1, the 
solutions, g(q), reduce to the published results for an impermeable 
stretching plate with uniform heat flux [S]. For s # 0 and m = 1, the results 
of an impermeable stretching plate subject to variable heat flux are 

g(q) =A .cprq 
M(Pr-s, Pr+ 1, -Pr.epq) 

M(Pr-s, Pr, -Pr) ’ 

TABLE IV 

Wall Temperature Gradient as a Function of Pr and r at m = 2 (Suction) 

(28) 

r 0.01 0.1 0.72 1 

-3 - 0.005062 -0.055922 -0.589916 -0.897260 
-2.1 - 0.009540 - 0.098780 -0.821689 - 1.184108 
-1.2 -0.014008 -0.140780 - 1.034853 - 1.445049 

0 -0.019951 -0.195503 - 1.295052 - 1.760406 
1.2 -0.025875 -0.248838 - 1.532560 - 2.045739 
2.1 - 0.030307 -0.287969 - 1.698236 - 2.243598 
3 -0.034729 -0.326386 - 1.854735 - 2.429752 
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-2.5 - 

FIG. 6. Dimensionless wall temperature gradient in the PST case for various m at r = 1. 

g(0) 

FIG. 7. Dimensionless wall temperature in the WHF case for selected m at s= I 
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g(0) 
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0 I I I 

0 .5 1 1.5 2 2.5 3 3.5 
Pr 

FIG. 8. Dimensionless wall temperature in the WHF case for selected s at m=0.9 
(blowing). 
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Note that the dimensionless temperature distribution 8 = (T- T,)/ 
(T,? - T,) is equal to the ratio of g(q) to g(0). Therefore, Fig. 4 with r 
replaced by s in the prescribed wall heat flux condition shows that the wall 
temperature gradient is negative for s = 0, 1, and 2. This implies that heat 
flows from the stretching surface to the ambient. When s = - 1 and - 2, the 
sign of the temperature gradient changes but the value of g(0) is negative, 
and hence the heat flux at the surface flows into the fluid. As can be seen in 
Fig. 4, zero temperature gradient occurs so the heat flows into the thermal 
boundary layer from both the ambient and stretching plate. 

Figure 7 plots the dimensionless wall temperature g(0) versus Pr for 
selected m at s = 1. The wall temperature decreases rapidly as Pr increases 
from 0 to 1 and then slowly decreases with increase in Pr. Figure 7 also 
shows that the larger the suction or blowing parameter m, the smaller 
is the surface temperature. Figure 8 presents the dimensionless wall 
temperature profiles versus Pr for selected s at m = 0.9. It can be seen that 
the wall temperature decreases with increase in Pr. The wall temperature 
decreases as s increases. 

CONCLUSIONS 

In this study, the laminar boundary-layer heat transfer from a linearly 
streatching, continuous sheet subject to suction or blowing is studied. Two 
cases are considered: moving plate with prescribed wall temperature and 
heat flux. The resulting temperature distribution has been solved in terms 
of Kummer’s functions. Several closed-form solutions for specified con- 
ditions are presented. 

The heat transfer characteristics for this problem are found to be 
determined by Prandtl number Pr, suction or blowing parameter m, the 
temperature parameter r(PST), or the heat flux parameter s(WHF). The 
thermal boundary-layer thickness decreases with increase in Pr, m, or r. 
Varying the parameters r and s affects the mechanism of heat transfer. For 
a specified Pr in the prescribed surface temperature case, the magnitude of 
the wall temperature gradient increases as m increases. Additionally, the 
results of an impermeable stretching plate with variable heat flux are also 
derived. 

For the prescribed wall heat flux case, the wall temperature decreases 
rapidly as Pr increases from 0 to 1. Furthermore, the smaller the wall 
temperature, the larger is the value of m or s. The unrealistic temperature 
distributions are encountered on the stretching plate with blowing and on 
the impermeable plate [6]. Nevertheless, this phenomenon disappears in 
the suction situation. 

It should be noted in conclusion that some of the published results 
[3-61 are obtained as special cases of the results of the present work. 
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