Overgroups of classical groups in linear group over Banach algebras ${ }^{*}$

Hong You
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, People's Republic of China

Received 31 July 2005
Available online 25 July 2006
Communicated by Leonard L. Scott, Jr.

Abstract

All overgroups of elementary unitary groups in linear group $G L_{2 n}$ over Banach algebras with 1 have been described. © 2006 Elsevier Inc. All rights reserved.

Keywords: Overgroup; Unitary group; Linear group; Banach algebra

1. Introduction

Let R be an associative ring with 1 and assume that an anti-automorphism $*: x \mapsto x^{*}$ is defined on R such that $x^{* *}=\varepsilon x \varepsilon^{*}$ for some unit $\varepsilon=\varepsilon^{*-1}$ of R and every x in R. It also determines an anti-automorphism of the ring $M_{n} R$ of all n by n matrices $\left(x_{i j}\right)$ by $\left(x_{i j}\right)^{*}=\left(x_{j i}^{*}\right)$.

Set $R_{\varepsilon}=\left\{x-x^{*} \varepsilon \mid x \in R\right\}, R^{\varepsilon}=\left\{x \in R \mid x=-x^{*} \varepsilon\right\}$. We fix an additive subgroup Λ of R with the following properties:
(i) $r^{*} \Lambda r \subset \Lambda$ for all $r \in R$;
(ii) $R_{\varepsilon} \subset \Lambda \subset R^{\varepsilon}$.

Let

$$
\Lambda_{n}=\left\{\left(a_{i j}\right) \in M_{n} R \mid a_{i j}=-a_{j i}^{*} \varepsilon \text { for } i \neq j \text { and } a_{i i} \in \Lambda\right\} .
$$

[^0]As in [1,11], we define

$$
U_{2 n}(R, \Lambda)=\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in G L_{2 n} R \right\rvert\, \alpha^{*} \delta+\gamma^{*} \varepsilon \beta=I_{n}, \alpha^{*} \gamma, \beta^{*} \delta \in \Lambda_{n}\right\} .
$$

For fixed $*$ and ε, if $\Lambda \subset \Lambda^{\prime}$, it is clear that $U_{2 n}(R, \Lambda) \subset U_{2 n}\left(R, \Lambda^{\prime}\right)$. So, in this article we assume that $\Lambda=R^{\varepsilon}$, that is

$$
U_{2 n}(R, \Lambda)=U_{2 n} R=\left\{\theta \in G L_{2 n} R \mid \theta^{*} \varphi_{n} \theta=\varphi_{n}\right\}
$$

where

$$
\varphi_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
\varepsilon I_{n} & 0
\end{array}\right)
$$

When $*$ is identical on R and $\varepsilon=-1, U_{2 n} R$ is the symplectic group. When $*$ is identical on R and $\varepsilon=1$, but 2 is torsionfree in $R, U_{2 n} R$ is the ordinary orthogonal group. When R is the complex numbers, $*$ the complex conjugation, $\varepsilon=1$ or $-1, U_{2 n} R$ is the standard unitary group.

Let

$$
G U_{2 n} R=\left\{\theta \in G L_{2 n} R \mid \theta^{*} \varphi_{n} \theta=\mu \varphi_{n}, \mu \in \text { Cent } R \text { is invertible }\right\} .
$$

(Note that $\mu^{*}=\mu$.)
An ideal J of R is said to be dual, if $J^{*}=J$. For any ideal J of R, let $E_{2 n} J$ denote the subgroup of $G L_{2 n} R$ generated by all elementary matrices $\xi_{i j}(a)=I_{2 n}+a E_{i j}$ with $a \in J, i \neq j$, where $E_{i j}$ denotes the matrix with 1 at the position (i, j) and zeros elsewhere. The normal subgroup of $E_{2 n} R$ generated by $E_{2 n} J$ is denoted by $E_{2 n}(R, J)$. With n fixed for any $1 \leqslant k \leqslant 2 n$, set $\sigma k=k+n$ if $k \leqslant n$ and $\sigma k=k-n$ if $k>n$. For $a \in R$ and $1 \leqslant i \neq j \leqslant 2 n$ we define the elementary unitary matrices $\rho_{i, \sigma i}(a)$ and $\rho_{i j}(a)$ with $j \neq \sigma i$ as follows: $\rho_{i, \sigma i}(a)=I_{2 n}+a E_{i, \sigma i}$ with $a \in \Lambda$ when $n+1 \leqslant i$ and $a^{*} \in \Lambda$ when $i \leqslant n, \rho_{i j}(a)=\rho_{\sigma j, \sigma i}\left(-a^{\prime}\right)=I_{2 n}+a E_{i j}-$ $a^{\prime} E_{\sigma j, \sigma i} \in U_{2 n} R$ with $a^{\prime}=a^{*}$ when $i, j \leqslant n ; a^{\prime}=\varepsilon^{*} a^{*}$ when $i \leqslant n<j ; a^{\prime}=a^{*} \varepsilon$ when $j \leqslant$ $n<i$; and $a^{\prime}=\varepsilon^{*} a^{*} \varepsilon$ when $n+1 \leqslant i, j$. The subgroup of $U_{2 n} R$ generated by all elementary unitary matrices is denoted by $E U_{2 n} R$.

Define

$$
E E U_{2 n} J=E U_{2 n} R \cdot E_{2 n}(R, J), \quad C G U_{2 n} J=\left\{\rho \in G L_{2 n} R \mid \rho(\bmod J) \in G U_{2 n}(R / J)\right\}
$$

(Note that $E_{2 n}(R, J)$ is normal in $G L_{2 n} R$ when $n \geqslant 2, E U_{2 n} R \cdot E_{2 n}(R, J)$ make sense when $n \geqslant 2$ (see [9]).)

The main result of this paper is stated as follows.
Theorem. Let R be a Banach algebra with 1 and $n \geqslant 4$. Let X be an overgroup of $E U_{2 n} R$ in $G L_{2 n} R$. Then there is a unique dual ideal J of R such that

$$
E E U_{2 n} J \subseteq X \subseteq C G U_{2 n} J
$$

King [2,3] and Li [4,5] determined all overgroups of $S U(n, K, f)$ and $\Omega(n, K, Q)$ in $G L_{n} K$ where K is a division ring, respectively. In the resent years, Vavilov and Petrov [12,13], and the author [14] described the overgroups of symplectic and orthogonal groups (with hyperbolic
form) over commutative rings; Petrov [6] also classified under a local stable rank condition with form parameter, the overgroups of unitary groups (with hyperbolic form).

2. Basic lemmas

Lemma 2.1. [11] The following identities hold for elementary unitary matrices $(1 \leqslant i \neq j \leqslant 2 n)$:
(1) $\rho_{i j}(a+b)=\rho_{i j}(a) \rho_{i j}(b)$;
(2) $\left[\rho_{i j}(a), \rho_{j k}(b)\right]=\rho_{i k}(a b)$ when $i, j, k, \sigma i, \sigma j, \sigma k$ are all distinct;
(3) $\left[\rho_{i j}(a), \rho_{j, \sigma i}(b)\right]=\rho_{i, \sigma i}(a b-c)$ when $j \neq \sigma i$, where $c=b^{*} a^{*} \varepsilon$ when $n+1 \leqslant i$ and $c=$ $\varepsilon^{*} b^{*} a^{*}$ when $i \leqslant n$;
(4) $\left[\rho_{i j}(a), \rho_{j, \sigma j}(b)\right]=\rho_{i, \sigma j}(a b) \rho_{i, \sigma i}(c)$ when $j \neq \sigma i$, where

$$
\begin{array}{cll}
b^{*} \in \Lambda \quad \text { and } \quad c=a b a^{*} & \text { when } i, j \leqslant n, \\
b^{*} \in \Lambda \quad \text { and } \quad c=a b a^{*} \varepsilon & \text { when } j \leqslant n<i, \\
b \in \Lambda \quad \text { and } \quad c=-a b^{*} a^{*} & \text { when } i \leqslant n<j, \\
b \in \Lambda \quad \text { and } \quad c=-a b^{*} a^{*} \varepsilon & \text { when } n+1 \leqslant i, j .
\end{array}
$$

Here $[a, b]$ denotes $a b a^{-1} b^{-1}$.
Lemma 2.2. The following identities hold $(1 \leqslant i \neq j \leqslant 2 n)$:
(1) $\rho_{i j}(a)=\xi_{i j}(a) \xi_{\sigma_{j}, \sigma_{i}}\left(a^{\prime}\right)\left(i \neq j\right.$, the definition of $\xi_{i j}(a)$ is indicated in Section 1$)$, where

$$
\begin{array}{rlr}
a^{\prime}=-a^{*} \quad \text { when } i, j \leqslant n ; & a^{\prime}=-\varepsilon^{*} a^{*} \quad \text { when } i \leqslant n<j ; \\
a^{\prime}=-a^{*} \varepsilon \quad \text { when } j \leqslant n<i ; & a^{\prime}=-\varepsilon^{*} a^{*} \varepsilon \quad \text { when } n+1 \leqslant i, j .
\end{array}
$$

(2) $\left[\xi_{i j}(a), \rho_{j k}(b)\right]=\xi_{i k}(a b)$ when i, j, k are distinct and $j \neq \sigma i$, where $b \in \Lambda$ or $b^{*} \in \Lambda$ if $k=\sigma j$.
(3) $\left[\xi_{i j}(a), \rho_{k, \sigma j}(b)\right]=\xi_{i, \sigma k}(c)$ when $i, j, \sigma k$ are distinct, where

$$
\begin{gathered}
c=-a \varepsilon^{*} b^{*} \quad \text { when } j, k \leqslant n ; \quad c=-a b^{*} \varepsilon \quad \text { when } n+1 \leqslant j, k ; \\
c=-a \varepsilon^{*} b^{*} \varepsilon \quad \text { when } j \leqslant n<k \text { or } k \leqslant n<j .
\end{gathered}
$$

The following matrices are in $E U_{2 n} R$.
$d_{A}=\left(\begin{array}{cc}A & \\ A^{*-1}\end{array}\right)$ where $A \in E_{n} R$, especially $w_{i j}=\binom{P_{i j}}{\left(P_{i j}^{*}\right)^{-1}}$ where $P_{i j}=\xi_{i j}(1) \xi_{j i}(-1) \xi_{i j}(1)$ $(1 \leqslant i, j \leqslant n)$.

Set $\tilde{v}=v^{*} \varphi_{n}$ for $v \in R^{2 n}$. Let $\left\{e_{1}, \ldots, e_{2 n}\right\}$ denote the standard basis of $R^{2 n}$, i.e., $\left(e_{1}, \ldots, e_{2 n}\right)=I_{2 n}$.

Let $\theta \in G L_{2 n} R$. By the definition of $U_{2 n} R$ and $G U_{2 n} R$ we have
Lemma 2.3. $\theta \in U_{2 n} R$ if and only if $u_{i}=\varepsilon^{*} \tilde{v}_{\sigma i}$ when $1 \leqslant i \leqslant n$ and $u_{i}=\tilde{v}_{\sigma i}$ when $n+1 \leqslant$ $i \leqslant 2 n$, where u_{i} is the ith row of θ^{-1} and $v_{\sigma i}$ is the σ ith column of θ.

Proof. We need only to point out that $\theta^{-1}=\varphi_{n}^{-1} \theta^{*} \varphi_{n}$ if and only if $\theta \in U_{2 n} R$.
Similarly, for the unitary similitudes $G U_{2 n} R$, we have

Lemma 2.4. $\theta \in G U_{2 n} R$ if and only if there is a $\mu \in \operatorname{Cent} R^{u}$ (R^{u}, the set of invertible elements in R) such that $u_{i}=\mu \varepsilon^{*} \tilde{v}_{\sigma i}$ when $1 \leqslant i \leqslant n$ and $u_{i}=\mu \tilde{v}_{\sigma i}$ when $n+1 \leqslant i \leqslant 2 n$, where u_{i} is the ith row of θ^{-1} and $v_{\sigma i}$ is the σ ith column of θ.

Lemma 2.5. [6] Let $n \geqslant 2, g \in G L_{2 n} R$ such that $g E U_{2 n} R g^{-1} \subseteq U_{2 n} R$. Then g belongs to $G U_{2 n} R$.

Lemma 2.6. Let X be an overgroup of $E U_{2 n} R$ in $G L_{2 n} R$ and $n \geqslant 3$:
(1) For Banach algebras R, if X contains an elementary matrix $\xi_{i, \sigma i}(a)$ with $a \bar{\in} R^{\varepsilon}\left(\right.$ or $\left.a^{*} \bar{\in} R^{\varepsilon}\right)$, then X contains a $\xi_{k l}(c)$ with $l \neq \sigma k$ and $c \in R$ except for the symplectic case, i.e., $*$ is identical on R and $\varepsilon=-1$.
(2) If X contains an elementary matrix $\xi_{i j}(a)$ with $j \neq \sigma i$ and $a \in R$, then X contains $E_{2 n} J_{a}$ where J_{a} is the ideal of R generated by a and a^{*}, so satisfies that $J_{a}=J_{a}^{*}$.

Proof. (1) Without loss of generality, suppose that X contains $\xi_{1, n+1}(a)$ with $a^{*} \bar{\in} R^{\varepsilon}$. Then X contains $\xi_{1, n+2}(-a) \xi_{2, n+1}(-a) \xi_{2, n+2}(-a)=\left[\xi_{1, n+1}(a), \rho_{21}(1)\right]$ and $\xi_{2, n+2}(a)=$ $w_{12} \xi_{1, n+1}(a) w_{12}$. Thus $\xi_{1, n+2}(-a) \xi_{2, n+1}(-a) \in X$ and $\xi_{2, n+1}\left(-\varepsilon^{*} a^{*}-a\right)=\xi_{2, n+1}(-a)$ $\xi_{1, n+2}(-a) \rho_{1, n+2}(a) \in X$ (note that $a^{*} \bar{\in} R^{\varepsilon}$). Since 2 is not torsion in Banach algebra, eventhough $*$ is identical on R and $\varepsilon=1,-\varepsilon^{*} a^{*}-a \neq 0$.
(2) By Lemma 2.2, all $\xi_{i j}(a R), \xi_{i j}(R a)$ for $1 \leqslant i \neq j \leqslant n$ and $n+1 \leqslant i \neq j \leqslant 2 n$ lie in X. Further, $\xi_{i, \sigma i}(a b)=\left[\xi_{i j}(a), \rho_{j, \sigma i}(b)\right] \in X$ (also, $\left.\xi_{i, \sigma i}(b a) \in X\right)$, where $j \neq \sigma i$, for all $1 \leqslant$ $i \leqslant 2 n$; and $\xi_{i j}(a b)=\left[\xi_{i, \sigma j}(a), \xi_{\sigma j, j}(b)\right] \in X\left(\right.$ also, $\left.\xi_{i j}(b a) \in X\right)$ for all $1 \leqslant i \leqslant n, n+1 \leqslant$ $j \leqslant 2 n$ and $n+1 \leqslant i \leqslant 2 n, 1 \leqslant j \leqslant n(j \neq \sigma i)$. That means X contains $E_{2 n}(a R)$ and $E_{2 n}(R a)$. When X contains $\xi_{i j}(a), X$ also contains $\xi_{\sigma j, \sigma i}\left(a^{\prime}\right)=\rho_{i j}(a) \xi_{i j}(-a)$, where $a^{\prime}=a^{*}$, or $a^{\prime}=\varepsilon^{*} a^{*}$, or $a^{\prime}=a^{*} \varepsilon$, or $a^{\prime}=\varepsilon^{*} a^{*} \varepsilon$. So, by the above argument we have that X contains $E_{2 n} J_{a}$ and $J_{a}=J_{a}^{*}$.

It is obvious that if an overgroup X of $E U_{2 n} R$ contains $E_{2 n} J$ where J is an ideal of R, then X contains the subgroup of $G L_{2 n} J$, which is denoted by $U E_{2 n}(R, J)$, generated by all elements of the form $\rho_{i j}(r) \xi_{k l}(a) \rho_{i j}(-r)$ with $a \in J$ and $r \in R$ for all $k \neq l, i \neq j$. Note that $U E_{2 n}(R, J)$ is different from $E U_{2 n}(R, J)$, the normal subgroup of $E U_{2 n} R$ generated by $E U_{2 n} J$ (see [11]), and that $E U_{2 n}(R, J) \subseteq U E_{2 n}(R, J)$.

Lemma 2.7. For any ideal J of R and $n \geqslant 2, U E_{2 n}(R, J)=E_{2 n}(R, J)$.
Proof. Since $U E_{2 n}(R, J) \subseteq E_{2 n}(R, J)$, we only need to show that $E_{2 n}(R, J) \subseteq U E_{2 n}(R, J)$. By the definition of $E_{2 n}(R, J)$ and the commutator formulas of elementary matrices, in fact, $E_{2 n}(R, J)$ is generated by $\xi_{i j}(r) \xi_{j i}(a) \xi_{i j}(-r)$ with $a \in J, r \in R$ for all $i \neq j$ (see [8]). We distinguish the following two cases on the index (i, j) :
(1) $j \neq \sigma i$. In this case, we have $\xi_{i j}(r) \xi_{j i}(a) \xi_{i j}(-r)=\rho_{i j}(r) \xi_{j i}(a) \rho_{i j}(-r) \in U E_{2 n}(R, J)$.
(2) $j=\sigma i$. Without loss of generality, we assume that $n=2$ and $(i, j)=(1,3)$.

Then

$$
\begin{aligned}
\xi_{13}(r) \xi_{31}(a) \xi_{13}(-r)= & \left(\begin{array}{cc}
1+r a & -r a r \\
a & 1-r a
\end{array}\right) \oplus I_{2} \\
= & \xi_{14}\left(-r a \varepsilon^{*} r^{*}\right) \rho_{23}(r) \rho_{21}(-1) \xi_{12}(r a) \xi_{34}\left(-a \varepsilon^{*} r^{*}\right) \xi_{32}(a) \\
& \cdot\left(\rho_{23}(r) \rho_{21}(-1)\right)^{-1} \xi_{32}(-a) \xi_{12}(-r a) \xi_{24}\left(r \varepsilon^{*} a r^{*}\right) \in U E_{2 n}(R, J)
\end{aligned}
$$

Remark 2.8. The above result has been proved in [6, Lemma 12], but, here the proof is direct and simple.

Lemma 2.9. Suppose that R is a Banach algebra with 1 . Let X be an overgroup of $E U_{2 n} R$ which is not in $G U_{2 n} R$ and let $n \geqslant 3$. Then there exist an element θ in X and an elementary unitary matrix $\rho_{i j}(r a)$ for all real number r with sufficiently small $|r|$ such that $\theta \rho_{i j}(r a) \theta^{-1} \in X$ is not in $G U_{2 n} R$.

Proof. Note that when $n \geqslant 3 E U_{2 n} R=\left[E U_{2 n} R, E U_{2 n} R\right]$. If $\xi \in X$ satisfies: $\xi E U_{2 n} R \xi^{-1} \subseteq$ $G U_{2 n} R$, then $\xi E U_{2 n} R \xi^{-1}=\left[\xi E U_{2 n} R \xi^{-1}, \xi E U_{2 n} R \xi^{-1}\right] \subseteq U_{2 n} R$. So, by Lemma 2.5 there is $\xi \in X$ such that $\xi E U_{2 n} R \xi^{-1} \nsubseteq G U_{2 n} R$. Since $E U_{2 n} R$ is generated by $\rho_{i j}(a)$ with $a \in R$ when $j \neq \sigma i$ and $a \in R^{\varepsilon}$ (or $a^{*} \in R^{\varepsilon}$) when $j=\sigma i$, there is $\rho_{i j}(a)$ such that $\xi \rho_{i j}(a) \xi^{-1} \bar{\in} G U_{2 n} R$. Let $d=\operatorname{diag}\left(A, A^{*-1}\right)$ where $A=\binom{r}{r^{-1}} \oplus I_{n-2}$ and r is a real number with sufficiently small $|r|$. Since $A \in E_{n} R, d \in E U_{2 n} R$. We have $d \rho_{i j}(a) d^{-1}=\rho_{i j}\left(r^{2} a\right)$ (note that $r^{*}=r$ for real numbers) and $d \xi d^{-1}=\theta \bar{\in} G U_{2 n} R$. It is obvious that $\theta \rho_{i j}\left(r^{2} a\right) \theta^{-1}=d \xi d^{-1} d \rho_{i j}(a) d^{-1} d \xi d^{-1}=$ $d \xi \rho_{i j}(a) \xi^{-1} d^{-1} \bar{\in} G U_{2 n} R$.

Form now, assume that R is a Banach algebra with 1. For Banach algebras R (with 1), if $x \in R$ with $\|x\|<1$, then $1+x$ is invertible (see [7]).

So, for any $a \in R$ we have $1+r a$ invertible for all real number r with sufficiently small $|r|$ (see $[9,10])$. Moreover, we claim that.

For any finite set $\left\{a_{1}, \ldots, a_{k}\right\}$ in R, there exists a real number r with sufficiently small $|r|$ such that $1+r b_{1}, \ldots, 1+r b_{k}$, where b_{i} is a sum of some a_{j} and some products of a finite number of $r a_{i}$ by $\left(1+r a_{j}\right)^{-1}(1 \leqslant j \leqslant i)$, are all invertible (denote the property by $\left.(\Delta)\right)$. In fact, $(1+r b)^{-1}$ is in a neighborhood of 1 when $|r|$ is sufficiently small.

Lemma 2.10. Let X be an overgroup of $E U_{2 n} R$ in $G L_{2 n} R$ which is not in $G U_{2 n} R$ where $n \geqslant 4$. Then there is an element θ in X which has the following form and is not in $G U_{2 n} R$:

$$
\begin{align*}
& \theta=\left(v_{1}, \ldots, v_{n}, v_{n+1}, v_{n+2}, v_{n+3}, \ldots, v_{2 n}\right) \text { where } \\
& v_{1}=e_{1}+\alpha e_{n+1}=(1,0, \ldots, 0, \alpha, 0, \ldots, 0)^{t} \\
& v_{n+2}=e_{2}+b e_{n+1}+\beta e_{n+2}=(0,1,0, \ldots, 0, b, \beta, 0, \ldots, 0)^{t} \quad \text { and } \\
& v_{n+3}=e_{3}+c_{1} e_{n+1}+c_{2} e_{n+2}+\gamma e_{n+3}=\left(0,0,1,0, \ldots, 0, c_{1}, c_{2}, \gamma, 0, \ldots, 0\right)^{t} \tag{2.1}
\end{align*}
$$

Proof. By Lemma 2.9 there exist an element ξ in X and $\rho_{i j}(r a)$ with r a real number with sufficiently small $|r|$ such that $\xi \rho_{i j}(r a) \xi^{-1}$ is not in $G U_{2 n} R$. When $j \neq \sigma i$, we have $\xi \rho_{i j}(r a) \xi^{-1}=$ $I_{2 n}+r v_{i} a u_{j}-r v_{\sigma j} a^{\prime} u_{\sigma i}$ with $a^{\prime}=a^{*}$ when $i, j \leqslant n ; a^{\prime}=\varepsilon^{*} a^{*}$ when $i \leqslant n<j ; a^{\prime}=a^{*} \varepsilon$ when $j \leqslant n<i$. When $j=\sigma i$, we have $\xi \rho_{i j}(r a) \xi^{-1}=I_{2 n}+r v_{i} a u_{\sigma i}$ with $a \in R^{\varepsilon}$ or $a^{*} \in R^{\varepsilon}$, where
v_{i} is the i th column of ξ and u_{j} is the j th row of ξ^{-1}. But in any case, we can write $\xi \rho_{i j}(r a) \xi^{-1}$ as $I_{2 n}+r\left(a_{i j}\right)_{2 n \times 2 n}$.

Since R is a Banach algebra, we may choose a real number r with sufficiently small $|r|$ such that $1+r a_{11}, 1+r a_{n+2, n+2}^{\prime}, 1+r a_{n+3, n+3}^{\prime \prime}$, where $a_{n+2, n+2}^{\prime}\left(a_{n+3, n+3}^{\prime \prime}\right)$ is a sum of $a_{n+2, n+2}\left(a_{n+3, n+3}^{\prime}\right)$ and a finite number of products of coefficients in $\left(a_{i j}\right)_{2 n \times 2 n}$ by r or by $r\left(1+r a_{11}\right)^{-1}\left(r\left(1+r a_{n+2, n+2}^{\prime}\right)^{-1}\right)$ (for example, $a_{n+2, n+2}^{\prime}=a_{n+2, n+2}-a_{1, n+2}\left(r a_{1, n+2}+\right.$ $\left.\left.r a_{n, n+2}+r\left(r a_{11}-r a_{n 1}\right)\left(1+r a_{11}\right)^{-1} a_{1, n+2}\right)\right)$, are all invertible. Now observe $\eta=I_{2 n}+$ $r\left(a_{i j}\right)_{2 n \times 2 n}$.

Since $1+r a_{11}$ is invertible, multiplying η on the left by $\rho_{1 n}(-1) \rho_{n 1}\left(\left(r a_{11}-r a_{n 1}\right)\left(1+r a_{11}^{-1}\right)\right)$, then by $\prod_{i \neq n+1} \rho_{i 1}\left(-r a_{i 1}^{\prime}\right)$ where $r a_{i 1}^{\prime}$ are the coefficients in the first column of $\rho_{1 n}(-1) \rho_{n 1} \times$ $\left(\left(r a_{11}-r a_{n 1}\right)\left(1+r a_{11}\right)^{-1}\right) \eta$ (denote the product by η_{1} and denote $\prod_{i \neq n+1} \rho_{i 1}\left(-r a_{i 1}^{\prime}\right) \eta_{1}$ by η_{2}), we have the first column v_{1} of η_{2} has the form $(1,0, \ldots, 0, \alpha, 0, \ldots, 0)^{t}$. Multiplying η_{2} on the right by $\rho_{1, n+2}\left(-r a_{1, n+2}^{\prime}\right) \rho_{1, n+3}\left(-r a_{1, n+3}^{\prime}\right)$ (denote the product by η_{3}), we get that the first elements in the $(n+2)$ th, $(n+3)$ th columns of η_{3} are zero. The $(n+2, n+2)$ - element $1+r a_{n+2, n+2}^{\prime}$ in η_{3} is still invertible, multiplying η_{3} on the left by $\rho_{2,2 n}\left(1-r a_{2, n+2}^{\prime}+\varepsilon^{*} h^{*} \varepsilon r a_{n, n+2}^{\prime}\right) \rho_{2 n, n+2}(h)$, where $h=\left(1-r a_{2 n, n+2}^{\prime}\right)\left(1+r a_{n+2, n+2}^{\prime}\right)^{-1}$, then by $\prod_{i \neq 1, n+1, n+2} \rho_{i 2}\left(-r a_{i, n+2}^{\prime \prime}\right)$ (denote the product by η_{4}), we get that the $(n+2)$ th column v_{n+2} of η_{4} has the form $(0,1,0, \ldots, 0, b, \beta, 0, \ldots, 0)^{t}$ and the first column v_{1} keeps its form. Multiplying η_{4} on the right by $\rho_{n+2, n+3}\left(-r a_{2, n+3}^{\prime \prime}\right)$ (denote the product by η_{5}), we get that the second element of $(n+3)$ th column of η_{5} is zero and the forms of v_{1}, v_{n+2} in η_{5} are not changed, since $1+r a_{n+3, n+3}^{\prime \prime}$ in η_{5} is still invertible, continuing the above procedure, we may get an element θ in X has the required form and is not in $G U_{2 n} R$.

Remark 2.11.

(1) A vector $v \in R^{2 n}$ is said to be unitary if $v^{*} \varphi_{n} v=0$. If v_{1} in θ is unitary, we may have $v_{1}=$ $(1,0, \ldots, 0,0, \ldots, 0)^{t}$; and if v_{1}, v_{n+2}, v_{n+3} are all unitary, we may have $v_{1}=(1,0, \ldots$, $0,0, \ldots, 0)^{t}, v_{2}=(0,1, \ldots, 0, b, 0, \ldots, 0)^{t}, v_{3}=\left(0,0,1,0, \ldots, 0, c_{1}, c_{2}, 0, \ldots, 0\right)^{t}$. When v_{1} is unitary, no necessary to multiply η_{1} on the right by $\rho_{1, n+2}\left(-a_{1, n+2}^{\prime}\right) \rho_{1, n+3}\left(-a_{1, n+3}^{\prime}\right)$, we may get that $a_{1, n+2}^{\prime}=a_{1, n+3}^{\prime}=0$ by left multiplying η_{2} by suitable elementary matrices.
(2) If $\alpha \bar{\in} R^{\varepsilon}$ in v_{1}, by Lemmas $2.3,2.4, \theta$ is certainly not in $G U_{2 n} R$.

3. Proof of the theorem

Let X be an overgroup of $E U_{2 n} R$ in $G L_{2 n} R$ which is not in $G U_{2 n} R$ where $n \geqslant 4$. By the proof of Lemma 2.10, X contains an element η with the form $I_{2 n}+r\left(a_{i j}\right)_{2 n \times 2 n}$, where r is a real number with sufficiently small $|r|$, which is not in $G U_{2 n} R$.

Lemma 3.1. Suppose that all columns of $\eta=I_{2 n}+r\left(a_{i j}\right)_{2 n \times 2 n}$ are unitary. Then X contains an elementary matrix $\xi_{i j}(a)$ with $a \in R$ and $j \neq \sigma i\left(\xi_{i j}(a)\right.$ is not in $\left.G U_{2 n} R\right)$.

Proof. Since $\eta=I_{2 n}+r\left(a_{i j}\right)_{2 n \times 2 n}$ is not in $G U_{2 n} R$, there exists $\rho_{i j}(a)$, without loss of generality, assume that $\rho_{i j}(a)=\rho_{12}(1)$, such that $\xi=\eta \rho_{12}(1) \eta^{-1}=I_{2 n}+v_{1} u_{2}-v_{n+2} u_{n+1}$, where v_{i} is the i th column of η and u_{j} is the j th row of η^{-1}, is not in $U_{2 n} R$. Note that v_{1} and v_{n+2} have the form $\left(1+r a_{11}, r a_{21}, \ldots, r a_{n+1,1}, \ldots, r a_{2 n, 1}\right)^{t}$ and $\left(r a_{1, n+2}, \ldots, r a_{n+1, n+2}, 1+r a_{n+2, n+2}\right.$, $\left.\ldots, r a_{2 n, n+2}\right)^{t}$, respectively. Refering the proof of Lemma 2.10 , we may find $\theta \in E U_{2 n} R$ such that $\theta v_{1}=(1,0, \ldots, 0,0, \ldots, 0)^{t}$ and $\theta v_{n+2}=(0,1,0, \ldots, 0, b, 0, \ldots, 0)^{t}$. Let $u_{2} \theta^{-1}=$ $\left(d_{1}, \ldots, d_{n}, d_{n+1}, \ldots, d_{2 n}\right)$ and $u_{n+1} \theta^{-1}=\left(f_{1}, \ldots, f_{n}, f_{n+1}, \ldots, f_{2 n}\right)^{t}$, respectively. We have

$$
\begin{align*}
\tau & =\theta \xi \theta^{-1}=I_{2 n}+\theta v_{1} u_{2} \theta^{-1}-\theta v_{n+2} u_{n+1} \theta^{-1} \\
& =\left(\begin{array}{cccccccccc}
1 & d_{2} & d_{3} & \cdots & d_{n} & \vdots & d_{n+1} & d_{n+2} & \cdots & d_{2 n} \\
& 1-f_{2} & -f_{3} & \cdots & -f_{n} & \vdots & -f_{n+1} & -f_{n+2} & \cdots & -f_{2 n} \\
& & 1 & & & \vdots & & & & \\
& & & \ddots & & \vdots & & & & \\
& & & & 1 & \vdots & & & & \\
\cdots & \cdots & \cdots & \cdots & \cdots & \vdots & \cdots & \cdots & \cdots & \\
0 & -h_{1} & -h_{2} & \cdots & -h_{n} & \vdots & 1-h_{n+1} & -h_{n+2} & \cdots & -h_{2 n} \\
& & & & & \vdots & & 1 & & \\
& & & & & \vdots & & & \ddots & \\
& & & & & \vdots & & & & 1
\end{array}\right) \in X, \tag{3.1}
\end{align*}
$$

where $h_{i}=b f_{i}(1 \leqslant i \leqslant 2 n)$.
(Note that (i) τ is not in $U_{2 n} R$; (ii) $\tau^{-1}=I_{2 n}-\theta v_{1} u_{2} \theta^{-1}+\theta v_{n+2} u_{n+1} \theta^{-1}$ has the same type (3.1) as τ; (iii) since $u_{2} v_{1}=u_{n+1} v_{1}=0, d_{1}=f_{1}=0$.)
(a) If there is $f_{i} \neq 0$, or $d_{i} \neq 0$, or $h_{i} \neq 0$ for $2 \leqslant i \neq n+1, n+2 \leqslant 2 n$, without loss of generality saying $f_{3} \neq 0$, we have

$$
\begin{equation*}
\xi_{4, n+3}\left(-f_{3}\right)=\left[\rho_{42}(1),\left[\left[\tau, \rho_{24}(1)\right], \rho_{4, n+3}(1)\right]\right] \in X \tag{3.2}
\end{equation*}
$$

(if $f_{2} \neq 0$, then $\left.\xi_{34}\left(-f_{2}\right)=\left[\rho_{32}(1),\left[\left[\tau, \rho_{23}(1)\right], \rho_{34}(1)\right]\right] \in X\right)$.
(b) $d_{i}=f_{i}=h_{i}=0$ for all $2 \leqslant i \neq n+1, n+2 \leqslant 2 n$ in (3.1). In this case, if h_{n+1} or h_{n+2} is not zero, for example, $h_{n+1} \neq 0$, we may have

$$
\begin{equation*}
\xi_{24}\left(-h_{n+1}\right)=\left[\rho_{2, n+1}(1),\left[\left[\tau, \rho_{n+1,3}(1)\right], \rho_{34}(1)\right]\right] \in X \tag{3.3}
\end{equation*}
$$

So, assume that $h_{n+1}=h_{n+2}=0$. Now if $d_{n+2} \neq \varepsilon^{*} f_{n+1}^{*}$, left multiplying τ by $\rho_{2, n+1}\left(f_{n+1}\right)$, we get that the $(1, n+2)$-coefficient in $\rho_{2, n+1}\left(f_{n+1}\right) \tau$ is $d_{n+2}-\varepsilon^{*} f_{n+1}^{*} \neq 0$ and we can show that X contains an elementary matrix $\xi_{i j}(a)$ with $j \neq \sigma i$. Thus, suppose that $d_{n+2}=\varepsilon^{*} f_{n+1}^{*}$. Since $\rho_{2, n+1}\left(f_{n+1}\right) \tau$ is not in $U_{2 n} R$, there is at least one of d_{n+1}^{*}, f_{n+2}^{*} not in R^{ε} (for symplectic case, we must have $f_{n+1} \neq-d_{n+2}$). Modifying the proof of Lemma 2.6 a little, we can get that X contains an elementary matrix $\xi_{i j}(a)$ with $j \neq \sigma i$.

Lemma 3.2. Suppose that there is at least one column which is not unitary in $\eta=I_{2 n}+$ $r\left(a_{i j}\right)_{2 n \times 2 n}$. Then X contains an elementary matrix $\xi_{i j}(a)$ with $a \in R$ and $j \neq \sigma i\left(\xi_{i j}(a)\right.$ is not in $G U_{2 n} R$).

Proof. By Lemma 2.10. X contains an element (still denote it by η) having the form (2.1). We may assume that v_{n+2} in η is not unitary, i.e., $\beta \neq 0$ in v_{n+2} (see (2.1)), which without loss of generality. Keep the notation of v_{1}, v_{n+2} and v_{n+3} in (2.1) and let $u_{2}=\left(d_{1}, \ldots, d_{n}\right.$, $\left.d_{n+1}, \ldots, d_{2 n}\right), u_{3}=\left(g_{1}, \ldots, g_{n}, g_{n+1}, \ldots, g_{2 n}\right)$ and $u_{n+1}=\left(f_{1}, \ldots, f_{n}, f_{n+1}, \ldots, f_{2 n}\right)$, where u_{j} is the j th row of η^{-1}.

Observe

$$
\begin{align*}
\tau & =\eta \rho_{12}(1) \eta^{-1}=I_{2 n}+v_{1} u_{2}-v_{n+2} u_{n+1} \\
& =\left(\begin{array}{ccccccccccc}
1+d_{1} & d_{2} & d_{3} & \cdots & d_{n} & \vdots & d_{n+1} & d_{n+2} & d_{n+3} & \cdots & d_{2 n} \\
-f_{1} & 1-f_{2} & -f_{3} & \cdots & -f_{n} & \vdots & -f_{n+1} & -f_{n+2} & -f_{n+3} & \cdots & -f_{2 n} \\
& & 1 & & & \vdots & & & & & \\
& & & \ddots & & \vdots & & & & & \\
& & & & 1 & \vdots & & & & & \\
\cdots & \cdots & \cdots & \cdots & \cdots & \vdots & \cdots & \cdots & \cdots & \cdots & \\
r_{1} & r_{2} & r_{3} & \cdots & r_{n} & \vdots & 1+r_{n+1} & r_{n+2} & r_{n+3} & \cdots & r_{2 n} \\
-h_{1} & -h_{2} & -h_{3} & \cdots & -h_{n} & \vdots & -h_{n+1} & 1-h_{n+2} & -h_{n+3} & \cdots & -h_{2 n} \\
& & & & & \vdots & & & 1 & & \\
& & & & & \vdots & & & & \ddots & \\
& & & & & & & & & & 1
\end{array}\right) \in X, \tag{3.4}
\end{align*}
$$

where $r_{i}=\alpha d_{i}-b f_{i}, 1 \leqslant i \leqslant 2 n ; h_{i}=\beta f_{i}, 1 \leqslant i \leqslant 2 n$.
(a) If there is $d_{i} \neq 0$ or $f_{i} \neq 0$ for $3 \leqslant i \neq n+1, n+2 \leqslant 2 n$, we can obtain that X contains an elementary matrix $\xi_{i j}(a)$ with $j \neq \sigma i$ by the same method in Lemma 3.1.
(b) Assume that $d_{i}=f_{i}=0$ for all $3 \leqslant i \neq n+1, n+2 \leqslant 2 n$ in the 2 nd row and $(n+1)$ th row of η^{-1}, respectively. Consider

$$
\begin{align*}
\tau^{\prime} & =\eta \rho_{13}(1) \eta^{-1}=I_{2 n}+v_{1} u_{3}-v_{n+3} u_{n+1} \\
& =\left(\begin{array}{cccccccccc}
1+g_{1} & g_{2} & g_{3} & \cdots & g_{n} & \vdots & g_{n+1} & g_{n+2} & g_{n+3} & \cdots \\
0 & 1 & 0 & \cdots & 0 & \vdots & 0 & g_{2 n} \\
-f_{1} & -f_{2} & 1 & \cdots & 0 & \vdots & -f_{n+1} & -f_{n+2} & 0 & \cdots \\
& & & \ddots & & \vdots & & & & 0 \\
& & & & 1 & \vdots & & & & \\
\cdots & \cdots \\
r_{1}^{\prime} & r_{2}^{\prime} & r_{3}^{\prime} & \cdots & r_{n}^{\prime} & \vdots & 1+r_{n+1}^{\prime} & r_{n+2}^{\prime} & r_{n+3}^{\prime} & \cdots \\
-h_{1}^{\prime} & -h_{2}^{\prime} & 0 & \cdots & 0 & \vdots & -h_{n+1}^{\prime} & 1-h_{n+2}^{\prime} & 0 & \cdots \\
-l_{1}^{\prime} & -l_{2}^{\prime} & 0 & \cdots & 0 & \vdots & -l_{n+1}^{\prime} & -l_{n+2}^{\prime} & 1 & \\
& & & & & \vdots & & & & \ddots
\end{array}\right) \in X, \tag{3.5}
\end{align*}
$$

where $r_{i}^{\prime}=\alpha g_{i}-c_{1} f_{i}, 1 \leqslant i \leqslant 2 n ; h_{i}^{\prime}=c_{2} f_{i}, l_{i}^{\prime}=\gamma f_{i}, i=1,2, n+1, n+2$.

Same to (a), if there is $f_{i} \neq 0$ for $i=2, n+2$, or $g_{i} \neq 0$ for $4 \leqslant i \neq n+1, n+3 \leqslant 2 n$, we can obtain that an elementary matrix $\xi_{i j}(a)$ with $j=\sigma i$ lies in X. For instance, if $f_{n+2} \neq 0$, then

$$
\begin{equation*}
\xi_{n+2, n}\left(-f_{n+2}\right)=\left[\rho_{n+2,3}(1),\left[\tau^{\prime}, \rho_{n+2, n}(1)\right]\right] \in X \tag{3.6}
\end{equation*}
$$

(c) Investigating $\tau^{\prime \prime}=\eta \rho_{n+2,3}(1) \eta^{-1}=I_{2 n}+v_{n+2} u_{3}-\varepsilon v_{n+3} u_{2}$, we can show that if $d_{n+1} \neq 0$, then X contains an elementary matrix $\xi_{i j}(a)$ with $j \neq \sigma i$ by the same method in Lemma 3.1.

Now, assume that $d_{i}=0$ for all $3 \leqslant i \neq n+2 \leqslant 2 n$ in the 2 nd row u_{2} and $f_{i}=0$ for all $2 \leqslant$ $i \neq n+1 \leqslant 2 n$ in the $(n+1)$ th row of η^{-1}, respectively. Since $u_{2} v_{1}=u_{n+1} v_{1}=0$ and $d_{n+1}=0$, we have $d_{1}=0$ and $f_{1}+f_{n+1} \alpha=0$. Because u_{n+1} is unimodular (a vector $u=\left(c_{1}, \ldots, c_{n}\right)$ is called unimodular if there are $d_{1}, \ldots, d_{n} \in R$ such that $\left.c_{1} d_{1}+\cdots+c_{n} d_{n}=1\right), f_{n+1}$ should be a unit in R. We have

$$
\begin{align*}
\zeta & =\left[\eta, p_{31}(1)\right] \\
& =\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & \cdots & 0 & \vdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & \vdots & 0 & 0 & f_{n+1} & \cdots & 0 \\
0 & -d_{2} & 1 & \cdots & 0 & \vdots & 0 & -d_{n+2} & 0 & \cdots & 0 \\
& & & \ddots & & \vdots & & & & & \\
& & & & 1 & \vdots & & & & & \\
\cdots & \\
& & & & & \vdots & 1 & 0 & b f_{n+1} & \\
& & & & & \vdots & & 1 & \beta f_{n+1} & \\
& & & & & \vdots & & & 1 & & \\
& & & & & & & & \ddots & \\
& & & & & & & & 1
\end{array}\right) \in X . \tag{3.7}
\end{align*}
$$

Write $\zeta=\rho_{32}\left(-d_{2}\right) \rho_{2, n+3}\left(f_{n+1}\right) \zeta^{\prime}$, then $\zeta^{\prime} \in X$. It is not difficult to show that if $b \neq 0$, or $\beta f_{n+1} \neq d_{2}^{*}$, or $d_{n+2} \neq \varepsilon^{*} f_{n+1}^{*}, X$ contains an elementary matrix $\xi_{i j}(a)$ with $j \neq \sigma i$. Otherwise, i.e., $b=0, \beta f_{n+1}=d_{2}^{*}$, and $d_{n+2}=\varepsilon^{*} f_{n+1}^{*}, \zeta^{\prime}=\xi_{3, n+3}\left(d_{2} f_{n+1}\right) \in X$. Since $d_{2}=$ $\varepsilon^{*} f_{n+1}^{*} \beta^{*} \varepsilon$ and $\beta^{*} \bar{\in} R^{\varepsilon}$, we have $d_{2} f_{n+1} \neq-\varepsilon^{*} f_{n+1}^{*} d_{2}^{*}$ (note that f_{n+1} is invertible), so $\zeta^{\prime}=\xi_{3, n+3}\left(d_{2} f_{n+1}\right) \bar{\in} U_{2 n} R$. By Lemma $2.6, X$ contains an elementary matrix $\xi_{i j}(a)$ with $j \neq \sigma i$.

Lemma 3.3. Let X be an overgroup of $E U_{2 n} R$ in $G L_{2 n} R$. Then there is a unique dual ideal J of R such that $E E U_{2 n} J=E U_{2 n} R \cdot E_{2 n}(R, J) \subseteq X$.

Proof. If $X \subseteq G U_{2 n} R$, then $E U_{2 n} R \cdot E E_{2 n}(R, 0)=E U_{2 n} R \subseteq X$.
Now suppose that $X \nsubseteq G U_{2 n} R$. By Lemma 2.10 there is $\eta=I_{2 n}+r\left(a_{i j}\right)_{2 n \times 2 n}$ with a real number r with sufficiently small $|r|$ in X which is not in $G U_{2 n} R$. By Lemmas 3.1, 3.2 and 2.6, we may get $E_{2 n} J_{a}$ for some ideal J_{a} of R which is generated by a and a^{*} lies in X. Let $J=$ $\left\{x \in R \mid E_{2 n} J_{x} \subseteq X\right\}$. It is easy to show that J is an ideal of R and satisfies $J^{*}=J$. Thus $E U_{2 n} R \cdot E_{2 n}(R, J) \subseteq X$ by Lemma 2.7.

Denote $\bar{R}=R / J$, and $\bar{X}=\lambda_{J}(x)$, where λ_{J} denotes the group homomorphism: $G L_{2 n} R \rightarrow$ $G L_{2 n}(R / J)$. We have $E U_{2 n} \bar{R} \subseteq \bar{X}$. If $\bar{X} \nsubseteq G U_{2 n} \bar{R}$, since \bar{R} still satisfies property (Δ), there exists some $\xi_{i j}(\bar{a})$ with $j \neq \sigma i$ and $\overline{0} \neq \bar{a} \in \bar{R}$ in \bar{X} by Lemmas 3.1, 3.2. Note that $a \bar{\in} J$. Thus there is $\theta \in X$ such that $\lambda_{J}(\theta)=\lambda_{J}\left(\xi_{i j}(a)\right)$. Take $\tau=\xi_{i j}(-a) \theta \in \operatorname{ker} \lambda_{J}$. Choose $\rho=\rho_{k, \sigma j}(1)$. By [9], $[\rho, \tau] \in E_{2 n}(R, J) \subseteq X$. Since $\xi_{i j}(a)[\rho, \tau] \xi_{i j}(-a) \in E U_{2 n}(R, J) \subseteq X$, we have

$$
\xi_{i, \sigma k}(c)=\left[\xi_{i j}(a), \rho_{k, \sigma j}(1)\right]=\xi_{i j}(a)\left[\rho_{k, \sigma j}(1), \tau\right] \xi_{i j}(-a)\left[\theta, \rho_{k, \sigma j}(1)\right] \in X
$$

where $c=-a \varepsilon^{*}$ when $j, k \leqslant n ; c=-a \varepsilon$ when $n+1 \leqslant j, k ; c=-a$ when $j \leqslant n<k$ or $k \leqslant$ $n<j$. This is contradictory to that $a \bar{\in} J$. Thus \bar{X} must be in $G U_{2 n} \bar{R}$. Hence J is maximal such that $E U_{2 n} R \cdot E_{2 n}(R, J) \subseteq X$, and is uniquely determined.

Now let us complete the proof of theorem.
By Lemma 3.3, we need only to show that $X \subseteq C G U_{2 n} J$. Since J is the maximal ideal of R such that $E_{2 n}(R, J) \subseteq X$ and $\lambda_{J}\left(E E U_{2 n} J\right)=E U_{2 n}(R / J), \lambda_{J}(X)$ should be in $G U_{2 n}(R / J)$ by the proof of Lemmas 3.3 and 2.5 , hence $X \subseteq \lambda_{J}^{-1}\left(\lambda_{J}(X)\right) \subseteq \lambda_{J}^{-1}\left(G U_{2 n}(R / J)\right)$. Since $X \subseteq$ $G L_{2 n} R$, so, $X \subseteq \lambda_{J}^{-1}\left(G U_{2 n}(R / J)\right) \cap G L_{2 n} R=\left\{g \in G L_{2 n} R \mid \lambda_{J}(g) \in G U_{2 n}(R / J)\right\}=C G U_{2 n} J$.

Acknowledgment

The author thanks the referee for his suggestions on the writing of an earlier version of the paper.

References

[1] A. Bak, K-Theory of Forms, Ann. of Math. Stud., vol. 98, Princeton Univ. Press, Princeton, 1981.
[2] O. King, On subgroups of the special linear group containing the special unitary group, Geom. Dedicata 19 (1985) 297-310.
[3] O. King, On subgroups of the special linear group containing the special orthogonal group, J. Algebra 96 (1985) 178-193.
[4] S.Z. Li, Overgroups of $S U(n, K, f)$ or $\Omega(n, K, Q)$ in $G L(n, K)$, Geom. Dedicata 33 (1990) 241-250.
[5] S.Z. Li, On the subgroup structure of classical groups, in: Group Theory in China, Science Press, New York, 1996, pp. 70-90.
[6] V. Petrov, Overgroups of unitary groups, K-Theory 29 (2003) 147-174.
[7] W. Rudin, Functional Analysis, second ed., McGraw-Hill, 1991.
[8] L.N. Vaserstein, On normal subgroups of $G L_{n}$ over a ring, in: Lecture Notes in Math., vol. 854, Springer-Verlag, Berlin, 1980, pp. 456-465.
[9] L.N. Vaserstein, Normal subgroups of the general linear groups over Banach algebras, J. Pure Appl. Algebra 41 (1986) 99-112.
[10] L.N. Vaserstein, Normal subgroups of classical groups over Banach algebras, Comment. Math. Helv. 63 (1988) 103-107.
[11] L.N. Vaserstein, H. You, Normal subgroups of classical groups over rings, J. Pure Appl. Algebra 105 (1995) 93-105.
[12] N. Vavilov, V. Petrov, Overgroups of $E O(2 l, R)$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. POMI 272 (2000) 68-86.
[13] N. Vavilov, V. Petrov, Overgroups of $E p(2 l, R)$, Algebra i Analiz 15 (2003) 72-114.
[14] H. You, Overgroups of symplectic group in linear group over commutative rings, J. Algebra 282 (2004) 23-32.

[^0]: * This work is supported by NSF of China and RFDP, CFKSTIP of Ministry of Education. E-mail address: hyou@hit.edu.cn.

