

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 304 (2006) 1004-1013

www.elsevier.com/locate/jalgebra

Overgroups of classical groups in linear group over Banach algebras [☆]

Hong You

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, People's Republic of China Received 31 July 2005 Available online 25 July 2006 Communicated by Leonard L. Scott, Jr.

Abstract

All overgroups of elementary unitary groups in linear group GL_{2n} over Banach algebras with 1 have been described.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Overgroup; Unitary group; Linear group; Banach algebra

1. Introduction

Let *R* be an associative ring with 1 and assume that an anti-automorphism $*: x \mapsto x^*$ is defined on *R* such that $x^{**} = \varepsilon x \varepsilon^*$ for some unit $\varepsilon = \varepsilon^{*-1}$ of *R* and every *x* in *R*. It also determines an anti-automorphism of the ring $M_n R$ of all *n* by *n* matrices (x_{ij}) by $(x_{ij})^* = (x_{ij}^*)$.

Set $R_{\varepsilon} = \{x - x^* \varepsilon \mid x \in R\}$, $R^{\varepsilon} = \{x \in R \mid x = -x^* \varepsilon\}$. We fix an additive subgroup Λ of R with the following properties:

(i) $r^* \Lambda r \subset \Lambda$ for all $r \in R$; (ii) $R_{\varepsilon} \subset \Lambda \subset R^{\varepsilon}$.

Let

$$\Lambda_n = \{ (a_{ij}) \in M_n R \mid a_{ij} = -a_{ji}^* \varepsilon \text{ for } i \neq j \text{ and } a_{ii} \in \Lambda \}.$$

^{*} This work is supported by NSF of China and RFDP, CFKSTIP of Ministry of Education. *E-mail address:* hyou@hit.edu.cn.

^{0021-8693/}\$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.03.024

As in [1,11], we define

$$U_{2n}(R,\Lambda) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL_{2n}R \ \middle| \ \alpha^*\delta + \gamma^*\varepsilon\beta = I_n, \alpha^*\gamma, \beta^*\delta \in \Lambda_n \right\}.$$

For fixed * and ε , if $\Lambda \subset \Lambda'$, it is clear that $U_{2n}(R, \Lambda) \subset U_{2n}(R, \Lambda')$. So, in this article we assume that $\Lambda = R^{\varepsilon}$, that is

$$U_{2n}(R,\Lambda) = U_{2n}R = \{\theta \in GL_{2n}R \mid \theta^*\varphi_n\theta = \varphi_n\},\$$

where

$$\varphi_n = \begin{pmatrix} 0 & I_n \\ \varepsilon I_n & 0 \end{pmatrix}.$$

When * is identical on R and $\varepsilon = -1$, $U_{2n}R$ is the symplectic group. When * is identical on R and $\varepsilon = 1$, but 2 is torsionfree in R, $U_{2n}R$ is the ordinary orthogonal group. When R is the complex numbers, * the complex conjugation, $\varepsilon = 1$ or -1, $U_{2n}R$ is the standard unitary group. Let

$$GU_{2n}R = \{ \theta \in GL_{2n}R \mid \theta^*\varphi_n\theta = \mu\varphi_n, \ \mu \in \text{Cent } R \text{ is invertible} \}.$$

(Note that $\mu^* = \mu$.)

An ideal *J* of *R* is said to be dual, if $J^* = J$. For any ideal *J* of *R*, let $E_{2n}J$ denote the subgroup of $GL_{2n}R$ generated by all elementary matrices $\xi_{ij}(a) = I_{2n} + aE_{ij}$ with $a \in J, i \neq j$, where E_{ij} denotes the matrix with 1 at the position (i, j) and zeros elsewhere. The normal subgroup of $E_{2n}R$ generated by $E_{2n}J$ is denoted by $E_{2n}(R, J)$. With *n* fixed for any $1 \leq k \leq 2n$, set $\sigma k = k + n$ if $k \leq n$ and $\sigma k = k - n$ if k > n. For $a \in R$ and $1 \leq i \neq j \leq 2n$ we define the elementary unitary matrices $\rho_{i,\sigma i}(a)$ and $\rho_{ij}(a)$ with $j \neq \sigma i$ as follows: $\rho_{i,\sigma i}(a) = I_{2n} + aE_{i,\sigma i}$ with $a \in \Lambda$ when $n + 1 \leq i$ and $a^* \in \Lambda$ when $i \leq n$, $\rho_{ij}(a) = \rho_{\sigma j,\sigma i}(-a') = I_{2n} + aE_{ij} - a'E_{\sigma j,\sigma i} \in U_{2n}R$ with $a' = a^*$ when $i, j \leq n$; $a' = \varepsilon^*a^*$ when $i \leq n < j$; $a' = a^*\varepsilon$ when $j \leq n < i$; and $a'' = \varepsilon^*a^*\varepsilon$ when $n + 1 \leq i$, j. The subgroup of $U_{2n}R$ generated by all elementary unitary matrices is denoted by $EU_{2n}R$.

Define

$$EEU_{2n}J = EU_{2n}R \cdot E_{2n}(R, J), \qquad CGU_{2n}J = \{\rho \in GL_{2n}R \mid \rho \pmod{J} \in GU_{2n}(R/J)\}.$$

(Note that $E_{2n}(R, J)$ is normal in $GL_{2n}R$ when $n \ge 2$, $EU_{2n}R \cdot E_{2n}(R, J)$ make sense when $n \ge 2$ (see [9]).)

The main result of this paper is stated as follows.

Theorem. Let R be a Banach algebra with 1 and $n \ge 4$. Let X be an overgroup of $EU_{2n}R$ in $GL_{2n}R$. Then there is a unique dual ideal J of R such that

$$EEU_{2n}J \subseteq X \subseteq CGU_{2n}J.$$

King [2,3] and Li [4,5] determined all overgroups of SU(n, K, f) and $\Omega(n, K, Q)$ in GL_nK where K is a division ring, respectively. In the resent years, Vavilov and Petrov [12,13], and the author [14] described the overgroups of symplectic and orthogonal groups (with hyperbolic

form) over commutative rings; Petrov [6] also classified under a local stable rank condition with form parameter, the overgroups of unitary groups (with hyperbolic form).

2. Basic lemmas

Lemma 2.1. [11] *The following identities hold for elementary unitary matrices* $(1 \le i \ne j \le 2n)$:

- (1) $\rho_{ij}(a+b) = \rho_{ij}(a)\rho_{ij}(b);$
- (2) $[\rho_{ij}(a), \rho_{jk}(b)] = \rho_{ik}(ab)$ when $i, j, k, \sigma i, \sigma j, \sigma k$ are all distinct;
- (3) $[\rho_{ij}(a), \rho_{j,\sigma i}(b)] = \rho_{i,\sigma i}(ab c)$ when $j \neq \sigma i$, where $c = b^*a^*\varepsilon$ when $n + 1 \leq i$ and $c = \varepsilon^*b^*a^*$ when $i \leq n$;
- (4) $[\rho_{ij}(a), \rho_{j,\sigma j}(b)] = \rho_{i,\sigma j}(ab)\rho_{i,\sigma i}(c)$ when $j \neq \sigma i$, where

$b^* \in \Lambda$ and $c = aba^*$	when $i, j \leq n$,
$b^* \in \Lambda$ and $c = aba^*\varepsilon$	when $j \leq n < i$,
$b \in \Lambda$ and $c = -ab^*a^*$	when $i \leq n < j$,
$b \in \Lambda$ and $c = -ab^*a^*\varepsilon$	when $n + 1 \leq i, j$.

Here [a, b] *denotes* $aba^{-1}b^{-1}$.

Lemma 2.2. *The following identities hold* $(1 \le i \ne j \le 2n)$:

(1) $\rho_{ij}(a) = \xi_{ij}(a)\xi_{\sigma_i,\sigma_i}(a')$ $(i \neq j, the definition of \xi_{ij}(a) is indicated in Section 1), where$

$$a' = -a^*$$
 when $i, j \le n$; $a' = -\varepsilon^* a^*$ when $i \le n < j$;
 $a' = -a^*\varepsilon$ when $j \le n < i$; $a' = -\varepsilon^* a^*\varepsilon$ when $n + 1 \le i, j$.

- (2) $[\xi_{ij}(a), \rho_{jk}(b)] = \xi_{ik}(ab)$ when i, j, k are distinct and $j \neq \sigma i$, where $b \in \Lambda$ or $b^* \in \Lambda$ if $k = \sigma j$.
- (3) $[\xi_{ij}(a), \rho_{k,\sigma j}(b)] = \xi_{i,\sigma k}(c)$ when $i, j, \sigma k$ are distinct, where

$$\begin{split} c &= -a\varepsilon^*b^* \quad \text{when } j, k \leqslant n; \qquad c = -ab^*\varepsilon \quad \text{when } n+1 \leqslant j, k; \\ c &= -a\varepsilon^*b^*\varepsilon \quad \text{when } j \leqslant n < k \text{ or } k \leqslant n < j. \end{split}$$

The following matrices are in $EU_{2n}R$.

 $d_A = {A \choose A^{*-1}}$ where $A \in E_n R$, especially $w_{ij} = {P_{ij} \choose (P_{ij}^*)^{-1}}$ where $P_{ij} = \xi_{ij}(1)\xi_{ji}(-1)\xi_{ij}(1)$ $(1 \le i, j \le n)$.

Set $\tilde{v} = v^* \varphi_n$ for $v \in \mathbb{R}^{2n}$. Let $\{e_1, \ldots, e_{2n}\}$ denote the standard basis of \mathbb{R}^{2n} , i.e., $(e_1, \ldots, e_{2n}) = I_{2n}$.

Let $\theta \in GL_{2n}R$. By the definition of $U_{2n}R$ and $GU_{2n}R$ we have

Lemma 2.3. $\theta \in U_{2n}R$ if and only if $u_i = \varepsilon^* \tilde{v}_{\sigma i}$ when $1 \leq i \leq n$ and $u_i = \tilde{v}_{\sigma i}$ when $n + 1 \leq i \leq 2n$, where u_i is the *i*th row of θ^{-1} and $v_{\sigma i}$ is the *σ*ith column of θ .

Proof. We need only to point out that $\theta^{-1} = \varphi_n^{-1} \theta^* \varphi_n$ if and only if $\theta \in U_{2n} R$. \Box

Similarly, for the unitary *similitudes* $GU_{2n}R$, we have

Lemma 2.4. $\theta \in GU_{2n}R$ if and only if there is a $\mu \in Cent R^u$ (R^u , the set of invertible elements in R) such that $u_i = \mu \varepsilon^* \tilde{v}_{\sigma i}$ when $1 \leq i \leq n$ and $u_i = \mu \tilde{v}_{\sigma i}$ when $n + 1 \leq i \leq 2n$, where u_i is the *i*th row of θ^{-1} and $v_{\sigma i}$ is the σ *i*th column of θ .

Lemma 2.5. [6] Let $n \ge 2$, $g \in GL_{2n}R$ such that $gEU_{2n}Rg^{-1} \subseteq U_{2n}R$. Then g belongs to $GU_{2n}R$.

Lemma 2.6. Let X be an overgroup of $EU_{2n}R$ in $GL_{2n}R$ and $n \ge 3$:

- (1) For Banach algebras R, if X contains an elementary matrix $\xi_{i,\sigma i}(a)$ with $a \in \mathbb{R}^{\varepsilon}$ (or $a^* \in \mathbb{R}^{\varepsilon}$), then X contains a $\xi_{kl}(c)$ with $l \neq \sigma k$ and $c \in R$ except for the symplectic case, i.e., * is *identical on* R *and* $\varepsilon = -1$ *.*
- (2) If X contains an elementary matrix $\xi_{ij}(a)$ with $j \neq \sigma i$ and $a \in R$, then X contains $E_{2n}J_a$ where J_a is the ideal of R generated by a and a^* , so satisfies that $J_a = J_a^*$.

Proof. (1) Without loss of generality, suppose that X contains $\xi_{1,n+1}(a)$ with $a^* \in \mathbb{R}^{\varepsilon}$. Then X contains $\xi_{1,n+2}(-a)\xi_{2,n+1}(-a)\xi_{2,n+2}(-a) = [\xi_{1,n+1}(a), \rho_{21}(1)]$ and $\xi_{2,n+2}(a) = [\xi_{1,n+1}(a), \rho_{21}(1)]$ $w_{12}\xi_{1,n+1}(a)w_{12}$. Thus $\xi_{1,n+2}(-a)\xi_{2,n+1}(-a) \in X$ and $\xi_{2,n+1}(-\varepsilon^*a^*-a) = \xi_{2,n+1}(-a)$ $\xi_{1,n+2}(-a)\rho_{1,n+2}(a) \in X$ (note that $a^* \in \mathbb{R}^{\varepsilon}$). Since 2 is not torsion in Banach algebra, eventhough * is identical on R and $\varepsilon = 1, -\varepsilon^* a^* - a \neq 0$.

(2) By Lemma 2.2, all $\xi_{ij}(aR), \xi_{ij}(Ra)$ for $1 \leq i \neq j \leq n$ and $n+1 \leq i \neq j \leq 2n$ lie in X. Further, $\xi_{i,\sigma_i}(ab) = [\xi_{i,j}(a), \rho_{i,\sigma_i}(b)] \in X$ (also, $\xi_{i,\sigma_i}(ba) \in X$), where $j \neq \sigma_i$, for all $1 \leq i$ $i \leq 2n$; and $\xi_{ij}(ab) = [\xi_{i,\sigma j}(a), \xi_{\sigma j,j}(b)] \in X(\text{also}, \xi_{ij}(ba) \in X)$ for all $1 \leq i \leq n, n+1 \leq i \leq n$ $j \leq 2n$ and $n+1 \leq i \leq 2n$, $1 \leq j \leq n$ $(j \neq \sigma i)$. That means X contains $E_{2n}(aR)$ and $E_{2n}(Ra)$. When X contains $\xi_{ij}(a)$, X also contains $\xi_{\sigma j,\sigma i}(a') = \rho_{ij}(a)\xi_{ij}(-a)$, where $a' = a^*$, or $a' = \varepsilon^* a^*$, or $a' = a^* \varepsilon$, or $a' = \varepsilon^* a^* \varepsilon$. So, by the above argument we have that X contains $E_{2n}J_a$ and $J_a = J_a^*$. \Box

It is obvious that if an overgroup X of $EU_{2n}R$ contains $E_{2n}J$ where J is an ideal of R, then X contains the subgroup of $GL_{2n}J$, which is denoted by $UE_{2n}(R, J)$, generated by all elements of the form $\rho_{ii}(r)\xi_{kl}(a)\rho_{ij}(-r)$ with $a \in J$ and $r \in R$ for all $k \neq l, i \neq j$. Note that $UE_{2n}(R, J)$ is different from $EU_{2n}(R, J)$, the normal subgroup of $EU_{2n}R$ generated by $EU_{2n}J$ (see [11]), and that $EU_{2n}(R, J) \subseteq UE_{2n}(R, J)$.

Lemma 2.7. For any ideal J of R and $n \ge 2$, $UE_{2n}(R, J) = E_{2n}(R, J)$.

Proof. Since $UE_{2n}(R, J) \subseteq E_{2n}(R, J)$, we only need to show that $E_{2n}(R, J) \subseteq UE_{2n}(R, J)$. By the definition of $E_{2n}(R, J)$ and the commutator formulas of elementary matrices, in fact, $E_{2n}(R, J)$ is generated by $\xi_{ij}(r)\xi_{ji}(a)\xi_{ij}(-r)$ with $a \in J, r \in R$ for all $i \neq j$ (see [8]). We distinguish the following two cases on the index (i, j):

(1) $j \neq \sigma i$. In this case, we have $\xi_{ij}(r)\xi_{ji}(a)\xi_{ij}(-r) = \rho_{ij}(r)\xi_{ji}(a)\rho_{ij}(-r) \in UE_{2n}(R, J)$.

(2) $j = \sigma i$. Without loss of generality, we assume that n = 2 and (i, j) = (1, 3).

Then

$$\xi_{13}(r)\xi_{31}(a)\xi_{13}(-r) = \begin{pmatrix} 1+ra & -rar \\ a & 1-ra \end{pmatrix} \oplus I_2$$

= $\xi_{14}(-ra\varepsilon^*r^*)\rho_{23}(r)\rho_{21}(-1)\xi_{12}(ra)\xi_{34}(-a\varepsilon^*r^*)\xi_{32}(a)$
 $\cdot (\rho_{23}(r)\rho_{21}(-1))^{-1}\xi_{32}(-a)\xi_{12}(-ra)\xi_{24}(r\varepsilon^*ar^*) \in UE_{2n}(R, J).$

Remark 2.8. The above result has been proved in [6, Lemma 12], but, here the proof is direct and simple.

Lemma 2.9. Suppose that *R* is a Banach algebra with 1. Let *X* be an overgroup of $EU_{2n}R$ which is not in $GU_{2n}R$ and let $n \ge 3$. Then there exist an element θ in *X* and an elementary unitary matrix $\rho_{ij}(ra)$ for all real number *r* with sufficiently small |r| such that $\theta \rho_{ij}(ra)\theta^{-1} \in X$ is not in $GU_{2n}R$.

Proof. Note that when $n \ge 3EU_{2n}R = [EU_{2n}R, EU_{2n}R]$. If $\xi \in X$ satisfies: $\xi EU_{2n}R\xi^{-1} \subseteq GU_{2n}R$, then $\xi EU_{2n}R\xi^{-1} = [\xi EU_{2n}R\xi^{-1}, \xi EU_{2n}R\xi^{-1}] \subseteq U_{2n}R$. So, by Lemma 2.5 there is $\xi \in X$ such that $\xi EU_{2n}R\xi^{-1} \nsubseteq GU_{2n}R$. Since $EU_{2n}R$ is generated by $\rho_{ij}(a)$ with $a \in R$ when $j \neq \sigma i$ and $a \in R^{\varepsilon}$ (or $a^* \in R^{\varepsilon}$) when $j = \sigma i$, there is $\rho_{ij}(a)$ such that $\xi \rho_{ij}(a)\xi^{-1} \in GU_{2n}R$. Let $d = \text{diag}(A, A^{*-1})$ where $A = \binom{r}{r^{-1}} \oplus I_{n-2}$ and r is a real number with sufficiently small |r|. Since $A \in E_n R$, $d \in EU_{2n}R$. We have $d\rho_{ij}(a)d^{-1} = \rho_{ij}(r^2a)$ (note that $r^* = r$ for real numbers) and $d\xi d^{-1} = \theta \in GU_{2n}R$. It is obvious that $\theta \rho_{ij}(r^2a)\theta^{-1} = d\xi d^{-1}d\rho_{ij}(a)d^{-1}d\xi d^{-1} = d\xi \rho_{ij}(a)\xi^{-1}d^{-1} \in GU_{2n}R$. \Box

Form now, assume that *R* is a Banach algebra with 1. For Banach algebras *R* (with 1), if $x \in R$ with ||x|| < 1, then 1 + x is invertible (see [7]).

So, for any $a \in R$ we have 1 + ra invertible for all real number r with sufficiently small |r| (see [9,10]). Moreover, we claim that.

For any finite set $\{a_1, \ldots, a_k\}$ in R, there exists a real number r with sufficiently small |r| such that $1 + rb_1, \ldots, 1 + rb_k$, where b_i is a sum of some a_j and some products of a finite number of ra_i by $(1 + ra_j)^{-1}$ $(1 \le j \le i)$, are all invertible (denote the property by (Δ)). In fact, $(1 + rb)^{-1}$ is in a neighborhood of 1 when |r| is sufficiently small.

Lemma 2.10. Let X be an overgroup of $EU_{2n}R$ in $GL_{2n}R$ which is not in $GU_{2n}R$ where $n \ge 4$. Then there is an element θ in X which has the following form and is not in $GU_{2n}R$:

$$\theta = (v_1, \dots, v_n, v_{n+1}, v_{n+2}, v_{n+3}, \dots, v_{2n}) \text{ where}$$

$$v_1 = e_1 + \alpha e_{n+1} = (1, 0, \dots, 0, \alpha, 0, \dots, 0)^t,$$

$$v_{n+2} = e_2 + be_{n+1} + \beta e_{n+2} = (0, 1, 0, \dots, 0, b, \beta, 0, \dots, 0)^t \text{ and}$$

$$v_{n+3} = e_3 + c_1 e_{n+1} + c_2 e_{n+2} + \gamma e_{n+3} = (0, 0, 1, 0, \dots, 0, c_1, c_2, \gamma, 0, \dots, 0)^t. \quad (2.1)$$

Proof. By Lemma 2.9 there exist an element ξ in X and $\rho_{ij}(ra)$ with r a real number with sufficiently small |r| such that $\xi \rho_{ij}(ra)\xi^{-1}$ is not in $GU_{2n}R$. When $j \neq \sigma i$, we have $\xi \rho_{ij}(ra)\xi^{-1} = I_{2n} + rv_i au_j - rv_{\sigma j}a'u_{\sigma i}$ with $a' = a^*$ when $i, j \leq n; a' = \varepsilon^* a^*$ when $i \leq n < j; a' = a^* \varepsilon$ when $j \leq n < i$. When $j = \sigma i$, we have $\xi \rho_{ij}(ra)\xi^{-1} = I_{2n} + rv_i au_{\sigma i}$ with $a \in R^{\varepsilon}$ or $a^* \in R^{\varepsilon}$, where

1008

 v_i is the *i*th column of ξ and u_j is the *j*th row of ξ^{-1} . But in any case, we can write $\xi \rho_{ij}(ra)\xi^{-1}$ as $I_{2n} + r(a_{ij})_{2n \times 2n}$.

Since *R* is a Banach algebra, we may choose a real number *r* with sufficiently small |r| such that $1 + ra_{11}, 1 + ra'_{n+2,n+2}, 1 + ra''_{n+3,n+3}$, where $a'_{n+2,n+2}(a''_{n+3,n+3})$ is a sum of $a_{n+2,n+2}(a'_{n+3,n+3})$ and a finite number of products of coefficients in $(a_{ij})_{2n\times 2n}$ by *r* or by $r(1 + ra_{11})^{-1}(r(1 + ra'_{n+2,n+2})^{-1})$ (for example, $a'_{n+2,n+2} = a_{n+2,n+2} - a_{1,n+2}(ra_{1,n+2} + ra_{n,n+2} + r(ra_{11} - ra_{n1})(1 + ra_{11})^{-1}a_{1,n+2})$), are all invertible. Now observe $\eta = I_{2n} + r(a_{ij})_{2n\times 2n}$.

Since $1 + ra_{11}$ is invertible, multiplying η on the left by $\rho_{1n}(-1)\rho_{n1}((ra_{11} - ra_{n1})(1 + ra_{11}^{-1}))$, then by $\prod_{i \neq n+1} \rho_{i1}(-ra'_{i1})$ where ra'_{i1} are the coefficients in the first column of $\rho_{1n}(-1)\rho_{n1} \times ((ra_{11} - ra_{n1})(1 + ra_{11})^{-1})\eta$ (denote the product by η_1 and denote $\prod_{i \neq n+1} \rho_{i1}(-ra'_{i1})\eta_1$ by η_2), we have the first column v_1 of η_2 has the form $(1, 0, \dots, 0, \alpha, 0, \dots, 0)^t$. Multiplying η_2 on the right by $\rho_{1,n+2}(-ra'_{1,n+2})\rho_{1,n+3}(-ra'_{1,n+3})$ (denote the product by η_3), we get that the first elements in the (n + 2)th, (n + 3)th columns of η_3 are zero. The (n + 2, n + 2) – element $1 + ra'_{n+2,n+2}$ in η_3 is still invertible, multiplying η_3 on the left by $\rho_{2,2n}(1 - ra'_{2,n+2} + \varepsilon^*h^*\varepsilon ra'_{n,n+2})\rho_{2n,n+2}(h)$, where $h = (1 - ra'_{2n,n+2})(1 + ra'_{n+2,n+2})^{-1}$, then by $\prod_{i \neq 1, n+1, n+2} \rho_{i2}(-ra''_{n,n+2})$ (denote the product by η_4), we get that the (n + 2)th column v_{n+2} of η_4 has the form $(0, 1, 0, \dots, 0, b, \beta, 0, \dots, 0)^t$ and the first column v_1 keeps its form. Multiplying η_4 on the right by $\rho_{n+2,n+3}(-ra''_{2,n+3})$ (denote the product by η_5), we get that the second element of (n + 3)th column of η_5 is zero and the forms of v_1, v_{n+2} in η_5 are not changed, since $1 + ra''_{n+3,n+3}$ in η_5 is still invertible, continuing the above procedure, we may get an element θ in X has the required form and is not in $GU_{2n}R$. \Box

Remark 2.11.

(1) A vector v ∈ R²ⁿ is said to be unitary if v^{*}φ_nv = 0. If v₁ in θ is unitary, we may have v₁ = (1,0,...,0,0,...,0)^t; and if v₁, v_{n+2}, v_{n+3} are all unitary, we may have v₁ = (1,0,..., 0,0,...,0)^t, v₂ = (0,1,...,0,b,0,...,0)^t, v₃ = (0,0,1,0,...,0,c₁, c₂,0,...,0)^t. When v₁ is unitary, no necessary to multiply η₁ on the right by ρ_{1,n+2}(-a'_{1,n+2})ρ_{1,n+3}(-a'_{1,n+3}), we may get that a'_{1,n+2} = a'_{1,n+3} = 0 by left multiplying η₂ by suitable elementary matrices.
(2) If α ∈ R^ε in v₁, by Lemmas 2.3, 2.4, θ is certainly not in GU_{2n}R.

3. Proof of the theorem

Let X be an overgroup of $EU_{2n}R$ in $GL_{2n}R$ which is not in $GU_{2n}R$ where $n \ge 4$. By the proof of Lemma 2.10, X contains an element η with the form $I_{2n} + r(a_{ij})_{2n \times 2n}$, where r is a real number with sufficiently small |r|, which is not in $GU_{2n}R$.

Lemma 3.1. Suppose that all columns of $\eta = I_{2n} + r(a_{ij})_{2n \times 2n}$ are unitary. Then X contains an elementary matrix $\xi_{ij}(a)$ with $a \in R$ and $j \neq \sigma i$ ($\xi_{ij}(a)$ is not in $GU_{2n}R$).

Proof. Since $\eta = I_{2n} + r(a_{ij})_{2n \times 2n}$ is not in $GU_{2n}R$, there exists $\rho_{ij}(a)$, without loss of generality, assume that $\rho_{ij}(a) = \rho_{12}(1)$, such that $\xi = \eta\rho_{12}(1)\eta^{-1} = I_{2n} + v_1u_2 - v_{n+2}u_{n+1}$, where v_i is the *i*th column of η and u_j is the *j*th row of η^{-1} , is not in $U_{2n}R$. Note that v_1 and v_{n+2} have the form $(1 + ra_{11}, ra_{21}, \dots, ra_{n+1,1}, \dots, ra_{2n,1})^t$ and $(ra_{1,n+2}, \dots, ra_{n+1,n+2}, 1 + ra_{n+2,n+2}, \dots, ra_{2n,n+2})^t$, respectively. Refering the proof of Lemma 2.10, we may find $\theta \in EU_{2n}R$ such that $\theta v_1 = (1, 0, \dots, 0, 0, \dots, 0)^t$ and $\theta v_{n+2} = (0, 1, 0, \dots, 0, b, 0, \dots, 0)^t$. Let $u_2\theta^{-1} = (d_1, \dots, d_n, d_{n+1}, \dots, d_{2n})$ and $u_{n+1}\theta^{-1} = (f_1, \dots, f_n, f_{n+1}, \dots, f_{2n})^t$, respectively. We have

where $h_i = bf_i$ $(1 \le i \le 2n)$.

(Note that (i) τ is not in $U_{2n}R$; (ii) $\tau^{-1} = I_{2n} - \theta v_1 u_2 \theta^{-1} + \theta v_{n+2} u_{n+1} \theta^{-1}$ has the same type (3.1) as τ ; (iii) since $u_2 v_1 = u_{n+1} v_1 = 0$, $d_1 = f_1 = 0$.)

(a) If there is $f_i \neq 0$, or $d_i \neq 0$, or $h_i \neq 0$ for $2 \leq i \neq n + 1, n + 2 \leq 2n$, without loss of generality saying $f_3 \neq 0$, we have

$$\xi_{4,n+3}(-f_3) = \left[\rho_{42}(1), \left[\left[\tau, \rho_{24}(1)\right], \rho_{4,n+3}(1)\right]\right] \in X$$
(3.2)

(if $f_2 \neq 0$, then $\xi_{34}(-f_2) = [\rho_{32}(1), [[\tau, \rho_{23}(1)], \rho_{34}(1)]] \in X$).

(b) $d_i = f_i = h_i = 0$ for all $2 \le i \ne n+1$, $n+2 \le 2n$ in (3.1). In this case, if h_{n+1} or h_{n+2} is not zero, for example, $h_{n+1} \ne 0$, we may have

$$\xi_{24}(-h_{n+1}) = \left[\rho_{2,n+1}(1), \left[\left[\tau, \rho_{n+1,3}(1)\right], \rho_{34}(1)\right]\right] \in X.$$
(3.3)

So, assume that $h_{n+1} = h_{n+2} = 0$. Now if $d_{n+2} \neq \varepsilon^* f_{n+1}^*$, left multiplying τ by $\rho_{2,n+1}(f_{n+1})$, we get that the (1, n + 2)-coefficient in $\rho_{2,n+1}(f_{n+1})\tau$ is $d_{n+2} - \varepsilon^* f_{n+1}^* \neq 0$ and we can show that X contains an elementary matrix $\xi_{ij}(a)$ with $j \neq \sigma i$. Thus, suppose that $d_{n+2} = \varepsilon^* f_{n+1}^*$. Since $\rho_{2,n+1}(f_{n+1})\tau$ is not in $U_{2n}R$, there is at least one of d_{n+1}^* , f_{n+2}^* not in R^{ε} (for symplectic case, we must have $f_{n+1} \neq -d_{n+2}$). Modifying the proof of Lemma 2.6 a little, we can get that X contains an elementary matrix $\xi_{ij}(a)$ with $j \neq \sigma i$. \Box

Lemma 3.2. Suppose that there is at least one column which is not unitary in $\eta = I_{2n} + r(a_{ij})_{2n \times 2n}$. Then X contains an elementary matrix $\xi_{ij}(a)$ with $a \in R$ and $j \neq \sigma i$ ($\xi_{ij}(a)$ is not in $GU_{2n}R$).

Proof. By Lemma 2.10. *X* contains an element (still denote it by η) having the form (2.1). We may assume that v_{n+2} in η is not unitary, i.e., $\beta \neq 0$ in v_{n+2} (see (2.1)), which without loss of generality. Keep the notation of v_1, v_{n+2} and v_{n+3} in (2.1) and let $u_2 = (d_1, \ldots, d_n, d_{n+1}, \ldots, d_{2n}), u_3 = (g_1, \ldots, g_n, g_{n+1}, \ldots, g_{2n})$ and $u_{n+1} = (f_1, \ldots, f_n, f_{n+1}, \ldots, f_{2n})$, where u_j is the *j*th row of η^{-1} .

Observe

where $r_i = \alpha d_i - bf_i$, $1 \leq i \leq 2n$; $h_i = \beta f_i$, $1 \leq i \leq 2n$.

(a) If there is $d_i \neq 0$ or $f_i \neq 0$ for $3 \leq i \neq n+1, n+2 \leq 2n$, we can obtain that X contains an elementary matrix $\xi_{ij}(a)$ with $j \neq \sigma i$ by the same method in Lemma 3.1.

(b) Assume that $d_i = f_i = 0$ for all $3 \le i \ne n + 1, n + 2 \le 2n$ in the 2nd row and (n + 1)th row of η^{-1} , respectively. Consider

$$\begin{aligned} \pi' &= \eta \rho_{13}(1) \eta^{-1} = I_{2n} + v_1 u_3 - v_{n+3} u_{n+1} \\ &= \begin{pmatrix} 1 + g_1 & g_2 & g_3 & \cdots & g_n & \vdots & g_{n+1} & g_{n+2} & g_{n+3} & \cdots & g_{2n} \\ 0 & 1 & 0 & \cdots & 0 & \vdots & 0 & 0 & 0 & \cdots & 0 \\ -f_1 & -f_2 & 1 & \cdots & 0 & \vdots & -f_{n+1} & -f_{n+2} & 0 & \cdots & 0 \\ & & \ddots & & \vdots & & & & & \\ & & & 1 & \vdots & & & & & \\ & & & & & 1 & \vdots & & & & \\ & & & & & & & & & & \\ r_1' & r_2' & r_3' & \cdots & r_n' & \vdots & 1 + r_{n+1}' & r_{n+2}' & r_{n+3}' & \cdots & r_{2n}' \\ -h_1' & -h_2' & 0 & \cdots & 0 & \vdots & -h_{n+1}' & 1 - h_{n+2}' & 0 & \cdots & 0 \\ -l_1' & -l_2' & 0 & \cdots & 0 & \vdots & -l_{n+1}' & -l_{n+2}' & 1 & & \\ & & & & \vdots & & & & & & 1 \\ \end{pmatrix} \in X, \end{aligned}$$

$$(3.5)$$

where $r'_i = \alpha g_i - c_1 f_i$, $1 \le i \le 2n$; $h'_i = c_2 f_i$, $l'_i = \gamma f_i$, i = 1, 2, n + 1, n + 2.

Same to (a), if there is $f_i \neq 0$ for i = 2, n+2, or $g_i \neq 0$ for $4 \le i \ne n+1, n+3 \le 2n$, we can obtain that an elementary matrix $\xi_{ij}(a)$ with $j = \sigma i$ lies in X. For instance, if $f_{n+2} \ne 0$, then

$$\xi_{n+2,n}(-f_{n+2}) = \left[\rho_{n+2,3}(1), \left[\tau', \rho_{n+2,n}(1)\right]\right] \in X.$$
(3.6)

(c) Investigating $\tau'' = \eta \rho_{n+2,3}(1)\eta^{-1} = I_{2n} + v_{n+2}u_3 - \varepsilon v_{n+3}u_2$, we can show that if $d_{n+1} \neq 0$, then X contains an elementary matrix $\xi_{ij}(a)$ with $j \neq \sigma i$ by the same method in Lemma 3.1.

Now, assume that $d_i = 0$ for all $3 \le i \ne n + 2 \le 2n$ in the 2nd row u_2 and $f_i = 0$ for all $2 \le i \ne n + 1 \le 2n$ in the (n + 1)th row of η^{-1} , respectively. Since $u_2v_1 = u_{n+1}v_1 = 0$ and $d_{n+1} = 0$, we have $d_1 = 0$ and $f_1 + f_{n+1}\alpha = 0$. Because u_{n+1} is unimodular (a vector $u = (c_1, \ldots, c_n)$ is called unimodular if there are $d_1, \ldots, d_n \in R$ such that $c_1d_1 + \cdots + c_nd_n = 1$), f_{n+1} should be a unit in R. We have

$$\zeta = \begin{bmatrix} \eta, p_{31}(1) \end{bmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & \vdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 & \vdots & 0 & 0 & f_{n+1} & \cdots & 0 \\ 0 & -d_2 & 1 & \cdots & 0 & \vdots & 0 & -d_{n+2} & 0 & \cdots & 0 \\ & & \ddots & & \vdots & & & & & \\ & & & 1 & \vdots & & & & & \\ & & & & 1 & \vdots & & & & \\ & & & & & 1 & 0 & bf_{n+1} \\ & & & & & & 1 & 0 & bf_{n+1} \\ & & & & & & 1 & \beta f_{n+1} \\ & & & & & & & 1 & \\ & & & & & & & & 1 \end{pmatrix} \in X.$$
 (3.7)

Write $\zeta = \rho_{32}(-d_2)\rho_{2,n+3}(f_{n+1})\zeta'$, then $\zeta' \in X$. It is not difficult to show that if $b \neq 0$, or $\beta f_{n+1} \neq d_2^*$, or $d_{n+2} \neq \varepsilon^* f_{n+1}^*$, X contains an elementary matrix $\xi_{ij}(a)$ with $j \neq \sigma i$. Otherwise, i.e., b = 0, $\beta f_{n+1} = d_2^*$, and $d_{n+2} = \varepsilon^* f_{n+1}^*$, $\zeta' = \xi_{3,n+3}(d_2 f_{n+1}) \in X$. Since $d_2 = \varepsilon^* f_{n+1}^* \beta^* \varepsilon$ and $\beta^* \in \mathbb{R}^{\varepsilon}$, we have $d_2 f_{n+1} \neq -\varepsilon^* f_{n+1}^* d_2^*$ (note that f_{n+1} is invertible), so $\zeta' = \xi_{3,n+3}(d_2 f_{n+1}) \in U_{2n} \mathbb{R}$. By Lemma 2.6, X contains an elementary matrix $\xi_{ij}(a)$ with $j \neq \sigma i$. \Box

Lemma 3.3. Let X be an overgroup of $EU_{2n}R$ in $GL_{2n}R$. Then there is a unique dual ideal J of R such that $EEU_{2n}J = EU_{2n}R \cdot E_{2n}(R, J) \subseteq X$.

Proof. If $X \subseteq GU_{2n}R$, then $EU_{2n}R \cdot E_{2n}(R, 0) = EU_{2n}R \subseteq X$.

Now suppose that $X \nsubseteq GU_{2n}R$. By Lemma 2.10 there is $\eta = I_{2n} + r(a_{ij})_{2n \times 2n}$ with a real number r with sufficiently small |r| in X which is not in $GU_{2n}R$. By Lemmas 3.1, 3.2 and 2.6, we may get $E_{2n}J_a$ for some ideal J_a of R which is generated by a and a^* lies in X. Let $J = \{x \in R \mid E_{2n}J_x \subseteq X\}$. It is easy to show that J is an ideal of R and satisfies $J^* = J$. Thus $EU_{2n}R \cdot E_{2n}(R, J) \subseteq X$ by Lemma 2.7.

Denote $\overline{R} = R/J$, and $\overline{X} = \lambda_J(x)$, where λ_J denotes the group homomorphism: $GL_{2n}R \rightarrow GL_{2n}(R/J)$. We have $EU_{2n}\overline{R} \subseteq \overline{X}$. If $\overline{X} \nsubseteq GU_{2n}\overline{R}$, since \overline{R} still satisfies property (Δ), there exists some $\xi_{ij}(\overline{a})$ with $j \neq \sigma i$ and $\overline{0} \neq \overline{a} \in \overline{R}$ in \overline{X} by Lemmas 3.1, 3.2. Note that $a \in J$. Thus there is $\theta \in X$ such that $\lambda_J(\theta) = \lambda_J(\xi_{ij}(a))$. Take $\tau = \xi_{ij}(-a)\theta \in \ker \lambda_J$. Choose $\rho = \rho_{k,\sigma j}(1)$. By [9], $[\rho, \tau] \in E_{2n}(R, J) \subseteq X$. Since $\xi_{ij}(a)[\rho, \tau]\xi_{ij}(-a) \in EU_{2n}(R, J) \subseteq X$, we have

$$\xi_{i,\sigma k}(c) = \left[\xi_{ij}(a), \rho_{k,\sigma j}(1)\right] = \xi_{ij}(a) \left[\rho_{k,\sigma j}(1), \tau\right] \xi_{ij}(-a) \left[\theta, \rho_{k,\sigma j}(1)\right] \in X$$

where $c = -a\varepsilon^*$ when $j, k \leq n$; $c = -a\varepsilon$ when $n + 1 \leq j, k$; c = -a when $j \leq n < k$ or $k \leq n < j$. This is contradictory to that $a \in J$. Thus \bar{X} must be in $GU_{2n}\bar{R}$. Hence J is maximal such that $EU_{2n}R \cdot E_{2n}(R, J) \subseteq X$, and is uniquely determined. \Box

Now let us complete the proof of theorem.

By Lemma 3.3, we need only to show that $X \subseteq CGU_{2n}J$. Since *J* is the maximal ideal of *R* such that $E_{2n}(R, J) \subseteq X$ and $\lambda_J(EEU_{2n}J) = EU_{2n}(R/J)$, $\lambda_J(X)$ should be in $GU_{2n}(R/J)$ by the proof of Lemmas 3.3 and 2.5, hence $X \subseteq \lambda_J^{-1}(\lambda_J(X)) \subseteq \lambda_J^{-1}(GU_{2n}(R/J))$. Since $X \subseteq GL_{2n}R$, so, $X \subseteq \lambda_J^{-1}(GU_{2n}(R/J)) \cap GL_{2n}R = \{g \in GL_{2n}R \mid \lambda_J(g) \in GU_{2n}(R/J)\} = CGU_{2n}J$.

Acknowledgment

The author thanks the referee for his suggestions on the writing of an earlier version of the paper.

References

- [1] A. Bak, K-Theory of Forms, Ann. of Math. Stud., vol. 98, Princeton Univ. Press, Princeton, 1981.
- [2] O. King, On subgroups of the special linear group containing the special unitary group, Geom. Dedicata 19 (1985) 297–310.
- [3] O. King, On subgroups of the special linear group containing the special orthogonal group, J. Algebra 96 (1985) 178–193.
- [4] S.Z. Li, Overgroups of SU(n, K, f) or $\Omega(n, K, Q)$ in GL(n, K), Geom. Dedicata 33 (1990) 241–250.
- [5] S.Z. Li, On the subgroup structure of classical groups, in: Group Theory in China, Science Press, New York, 1996, pp. 70–90.
- [6] V. Petrov, Overgroups of unitary groups, K-Theory 29 (2003) 147-174.
- [7] W. Rudin, Functional Analysis, second ed., McGraw-Hill, 1991.
- [8] L.N. Vaserstein, On normal subgroups of *GL_n* over a ring, in: Lecture Notes in Math., vol. 854, Springer-Verlag, Berlin, 1980, pp. 456–465.
- [9] L.N. Vaserstein, Normal subgroups of the general linear groups over Banach algebras, J. Pure Appl. Algebra 41 (1986) 99–112.
- [10] L.N. Vaserstein, Normal subgroups of classical groups over Banach algebras, Comment. Math. Helv. 63 (1988) 103–107.
- [11] L.N. Vaserstein, H. You, Normal subgroups of classical groups over rings, J. Pure Appl. Algebra 105 (1995) 93–105.
- [12] N. Vavilov, V. Petrov, Overgroups of EO(2l, R), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. POMI 272 (2000) 68–86.
- [13] N. Vavilov, V. Petrov, Overgroups of Ep(2l, R), Algebra i Analiz 15 (2003) 72-114.
- [14] H. You, Overgroups of symplectic group in linear group over commutative rings, J. Algebra 282 (2004) 23–32.