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1. Introduction

Let R be an associative ring with 1 and assume that an anti-automorphism *:x — x* is
defined on R such that x** = exe* for some unit ¢ = ¢*~! of R and every x in R. It also
determines an anti-automorphism of the ring M, R of all n by n matrices (x;;) by (x;;)* = (x;‘i).

Set R, = {x —x*¢ | x € R}, R® ={x € R| x = —x™e}. We fix an additive subgroup A of R
with the following properties:

(1) r*Ar Cc Aforall r € R,
(i) R C A CR®.

Let

An={(aij) € MyR | ajj = —aje fori # jand a;; € Al
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Asin [1,11], we define

Uz (R, A) = { <;‘f §> € GLy, R

o8 + V*EIB =1, 06*% ﬂ*(s € An}-
For fixed * and ¢, if A C A’, it is clear that Uy, (R, A) C Us,(R, A’). So, in this article we
assume that A = R?, that is

Uon(R, A) =UpR = {9 € GLon R | 9*%9 =<Pn},

(0 I
Yn = el, 0]
When = is identical on R and ¢ = —1, Uy, R is the symplectic group. When * is identical on
R and ¢ = 1, but 2 is torsionfree in R, U, R is the ordinary orthogonal group. When R is the

complex numbers, * the complex conjugation, € = 1 or —1, U, R is the standard unitary group.
Let

where

GU2 R ={0 € GLyy R | 0" 9,0 = i@y, 1 € Cent R is invertible}.

(Note that ©* = u.)

An ideal J of R is said to be dual, if J* = J. For any ideal J of R, let E,J denote the
subgroup of GLy, R generated by all elementary matrices &;j(a) = I, +aE;j witha e J,i # j,
where E;; denotes the matrix with 1 at the position (i, j) and zeros elsewhere. The normal
subgroup of E», R generated by E», J is denoted by E», (R, J). With n fixed for any 1 < k < 2n,
setok=k+nifk<mandok=k—nifk>n.Forae R and 1 <i # j < 2n we define the
elementary unitary matrices p; o;(a) and p;j(a) with j # oi as follows: p; 5i(a) = Iy, + aE; o
with a € A when n + 1 <i and a* € A when i < n, pij(a) = ,ogj,g,-(—a’) = Dby +akjj —
ad'Esjqi € Uy R with @’ = a* when i, j <n; a’ =¢e*a* when i <n < j; a’ =a*e when j <
n <i;and a’ = ¢*a*s when n + 1 <1, j. The subgroup of U, R generated by all elementary
unitary matrices is denoted by EU», R.

Define

EEU>,J =EU»R - E2, (R, J), CGUzJ ={p € GLy,R | p (mod J) € GU2,(R/J)}.

(Note that Ey, (R, J) is normal in GLy, R when n > 2, EUy,R - E>,(R, J) make sense when
n =2 (see [9]).)
The main result of this paper is stated as follows.

Theorem. Let R be a Banach algebra with 1 and n > 4. Let X be an overgroup of EUy, R in
GLy, R. Then there is a unique dual ideal J of R such that

EEU»,J C X CCGU,,J.
King [2,3] and Li [4,5] determined all overgroups of SU(n, K, f) and £2(n, K, Q) in GL, K

where K is a division ring, respectively. In the resent years, Vavilov and Petrov [12,13], and
the author [14] described the overgroups of symplectic and orthogonal groups (with hyperbolic
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form) over commutative rings; Petrov [6] also classified under a local stable rank condition with
form parameter, the overgroups of unitary groups (with hyperbolic form).

2. Basic lemmas
Lemma 2.1. [11] The following identities hold for elementary unitary matrices (1 <i # j < 2n):

(1) pijla+b)=pij(a)p;jd);

(2) [pij(a), pjx(b)] = pix(ab) when i, j, k, oi, 0j, ok are all distinct;

(3) [pij(a), pjoi(b)] = pigi(ab — c) when j # oi, where ¢ = b*a*s whenn + 1 <i and ¢ =
e*b*a* wheni <n,

@) [pij(a), pj,oj(b)] = pioj(ab)piqi(c) when j # oi, where

b*e€e A and c=aba* wheni,j<n,

b*e€ A and c=aba*s when j<n<i,

NN

beA and c¢=—ab*a* wheni<n<j,

beA and c=—ab*a*s whenn+1<i,j.

Here [a, b] denotes aba='b~1.

Lemma 2.2. The following identities hold (1 <i # j < 2n):

(D) pijla) =§ij(a)ss; o (a") (i # j, the definition of &;j(a) is indicated in Section 1), where
a =—a* wheni, j<n; a =—¢&*a* wheni<n<j;

/ /

a'=—a*e when j<n<i; a' =—s*a*s whenn+1<i,j.

(2) [&j(a), pji(b)] = &ix(ab) when i, j, k are distinct and j # oi, where b € A or b* € A if
k=oj.
(3) [&ij(@), pr,oj (D)) =& ok (c) wheni, j, ok are distinct, where

c=—ac*b* when j, k <n; c=—ab*s whenn+1<j,k;

c=—as*b*e when j<n<kork<n<j.

The following matrices are in EUj, R.
Py

da = (A A*—’) where A € E, R, especially w;; = (
(I<i,j<n).
Set ¥ = v*p, for v e R Let {e1,...,ex,} denote the standard basis of R™ je.,

(ela .. 762}1) = 1211’
Let 0 € GLy, R. By the definition of U, R and GU3, R we have

(1) where Pij =& (DEji (~ 1 (1)

Lemma 2.3. 0 € Uy, R if and only if u; = €*vs; when 1 <i <n and u; = vy; when n + 1 <
i <2n, where u; is the ith row of@‘1 and vy; is the oith column of 6.
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Proof. We need only to point out that ! = gpn_l@*(pn ifand only if 6 € Uy, R. O
Similarly, for the unitary similitudes GU», R, we have

Lemma 2.4. 6 € GUy, R if and only if there is a u € Cent R* (R", the set of invertible elements
in R) such that u; = ue*v,; when 1 <i <n and u; = uvys; when n + 1 <i < 2n, where u; is
the ith row of 0~ and v, is the oith column of 6.

Lemma 2.5. [6] Let n > 2, g € GLoy R such that gEU»,Rg™" C U»,R. Then g belongs to
GUyR.

Lemma 2.6. Let X be an overgroup of EUy, R in GLy, R and n > 3:

(1) For Banach algebras R, if X contains an elementary matrix §; i (a) with a € R® (or a* € R®),
then X contains a & (c) with | # ok and c € R except for the symplectic case, i.e., * is
identical on R and ¢ = —1.

(2) If X contains an elementary matrix &;j(a) with j # oi and a € R, then X contains E2,J,
where J, is the ideal of R generated by a and a*, so satisfies that J, = J .

Proof. (1) Without loss of generality, suppose that X contains & ,4i(a) with a* € R®.
Then X contains & ,+2(=a)é2ns1(~@)E2ns2(=a) = [E1,511(@), p21(D] and & ,12(a) =
w21 n+1(@wiz. Thus & y42(—=a)é2n11(—a) € X and & ,q1(—e*a* — a) = & py1(—a)
E1.n+2(—a)p1,n4+2(a) € X (note that a* € R®). Since 2 is not torsion in Banach algebra, even-
though x* is identical on R and ¢ = 1, —¢*a* —a # 0.

(2) By Lemma 2.2, all §;(aR),&;j(Ra) for 1 <i#j<nandn+1<i#j<2n lie
in X. Further, §; 5; (ab) = [§j(a), pj i (D)] € X (also, §; »; (ba) € X), where j #oi, forall 1 <
i < 2n; and &(ab) =& 5j(a),8sj,j(b)] € X(also, &;;(ba) € X) forall 1 <i<n,n+1<
j<2nand n+1<i<2n, 1< j<n (j#oi) That means X contains E;,(aR) and
E>,(Ra). When X contains &;;(a), X also contains ng,ai(a’) = pij(a)éij(—a), where a =a*,
ora’ =¢*a*, or a’ = a*e, or a’ = e*a*¢. So, by the above argument we have that X contains
ExyJsand J,=J). O

It is obvious that if an overgroup X of EU», R contains E;,J where J is an ideal of R, then
X contains the subgroup of GLy, J, which is denoted by UE», (R, J), generated by all elements
of the form p;; (r)&x (a)pij(—r) witha € J and r € R for all k #1,i # j. Note that UE>, (R, J)
is different from EU»,(R, J), the normal subgroup of EU>, R generated by EU,, J (see [11]),
and that EU», (R, J) C UEy, (R, J).

Lemma 2.7. For any ideal J of R and n > 2, UE>,(R, J) = E2,(R, J).

Proof. Since UE>,(R,J) C E>,(R, J), we only need to show that E»,(R, J) € UE»,(R, J).
By the definition of Ej, (R, J) and the commutator formulas of elementary matrices, in fact,
E>, (R, J) is generated by &;;(r)é;;(a)é;j(—r) witha € J, r € R for all i # j (see [8]). We
distinguish the following two cases on the index (7, j):
(1) j # oi. In this case, we have &;; (r)§;i (@)§ij(—r) = pij(r)§ji(a)pij(—r) € UE (R, J).
(2) j = oi. Without loss of generality, we assume that n =2 and (7, j) = (1, 3).
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Then

£13(1E31 (@)E13(—r) = (1 tra orar ) &b

a ra
= &14(—rag*r*) p23(r) p21 (= D& (ra)ésa(—ae*r*)&sn(a)

: (/023(”))021(_1))71&2(_“)512(_"61)524(78*5”’*) € UEy(R,J). O

Remark 2.8. The above result has been proved in [6, Lemma 12], but, here the proof is direct
and simple.

Lemma 2.9. Suppose that R is a Banach algebra with 1. Let X be an overgroup of EUy, R which
is not in GUp, R and let n > 3. Then there exist an element 0 in X and an elementary unitary
matrix p;j(ra) for all real number r with sufficiently small |r| such that 0p;; (ra)0~' € X is not
in GUy, R.

Proof. Note that when n > 3EU,, R = [EU>, R, EUy, R]. If & € X satisfies: SEUgnRs_l C
GU2, R, then EEUp, RE™ = [EEU,, RE™, EEU,, RE™'] C Uy, R. So, by Lemma 2.5 there is
& € X such that SEUang_l ;(_ GUz,R. Since EU», R is generated by p;;(a) with a € R when
j#oianda e R® (ora* € R®) when j = oi, there is p;;(a) such that £p;; (@))€~ EGU,,R. Let
d =diag(A, A*~1) where A = (r r*l) @ I,,—7 and r is a real number with sufficiently small |r|.
Since A € E,R, d € EU», R. We have dp;; (a)d~' = Pij (r2a) (note that r* = r for real num-
bers) and déd~' =0 & GU,, R. It is obvious that 0pij (r’a)o~! = dé‘;d_ldpij (a)d 'ded™ ' =
dépij(@)E'd"' €GUpR. O

Form now, assume that R is a Banach algebra with 1. For Banach algebras R (with 1),ifx € R
with ||x|| < 1, then 1 + x is invertible (see [7]).

So, for any a € R we have | + ra invertible for all real number r with sufficiently small |r|
(see [9,10]). Moreover, we claim that.

For any finite set {ay, ..., ax} in R, there exists a real number r with sufficiently small |r| such
that 1 +rby, ..., 1 +rbi, where b; is a sum of some a; and some products of a finite number of
ra; by (1+ raj)_1 (1 < j <i), are all invertible (denote the property by (A)). In fact, (1 + rb)~!
is in a neighborhood of 1 when |r| is sufficiently small.

Lemma 2.10. Let X be an overgroup of EU>, R in GLy, R which is not in GUp, R where n > 4.
Then there is an element 6 in X which has the following form and is not in GU», R:

0 =(V1,..., Un, Vng1, Upa2, Unt3, ..., V2,) Where

vi=e; +ae,r1=(1,0,...,0,0,0,...,0),

Vpi2=er+be, 1+ Bens2=0(0,1,0,...,0,b,8,0,...,0) and

Upt3 =e3+crep+1 +c2epy2 +ven3=1(0,0,1,0,...,0,c1,¢2,¥,0, ..., 0)’. 2.1
Proof. By Lemma 2.9 there exist an element & in X and p;; (ra) with r a real number with suffi-
ciently small |r| such that &p;; (ra)é ! is not in GU, R. When j # oi, we have §pij (ra)e™ ' =

Dy +rviauj—rvgja'us; witha' =a* wheni, j <n;a’ =¢e*a* wheni <n < j;a’' =a*e when
j<n<i.When j=oi, we have gpi.,'(ra)é‘;_l = I, + rviauy; with a € R® or a* € R®, where
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v; is the ith column of & and u is the jth row of £~!. But in any case, we can write &pij (ra)g~!
as Ipy +r(aij)2nxon-

Since R is a Banach algebra, we may choose a real number r with sufficiently small
|| such that 1 + raj;, 1 + ra;+2yn+2, 1+ ra;l’+3yn+3, where a;/1+2,n+2(a;1/+3,n+3) is a sum of
a,,Jrz,,,Jrg(a,’1 . +3) and a finite number of products of coefficients in (a;;j)2ux2, by r or by
r(l + ra)~ e + ra;,+2yn+2)—1) (for example, @, » = Gnt2n42 — ALas2(rainss +
rappy2 + r(ra;; — raz))(1 + rall)_lal,n+2)), are all invertible. Now observe n = I, +
r(aij)an2n~

Since 1+ray; is invertible, multiplying  on the left by p1,,(—1) pp1 ((rair —ra,1)(1 —i—raff)),
then by Hi;&m—l pi1(—ra},) where ra;, are the coefficients in the first column of p1,(—1)0a1 X
((rayy — ra,1)(1 + rall)_l)n (denote the product by n; and denote ]_[#nﬂp“(—ra;l)m
by 12), we have the first column vy of n, has the form (1,0,...,0, «,0,...,0)". Multi-
plying 1, on the right by pl’n+2(—rai,n+2)p1,n+3(—rai’n+3) (denote the product by n3),
we get that the first elements in the (n + 2)th, (n + 3)th columns of 53 are zero. The
(n+2,n 4 2)— element 1 + ra,, 42142 10 73 is still invertible, multiplying 13 on the left by

0220 (1 — ra§JH_2 +s*h*sra;’nﬁ)pzn,nﬂ(h), where h = (1 — raén’n”)(l +m;;+2,n+2)_1’ then
by [1i 21 n41.042 Pi2(=7a;, ) (denote the product by 14), we get that the (n +2)th column v, 4>
of n4 has the form (0, 1,0,...,0,b,8,0,...,0)" and the first column v; keeps its form. Multi-
plying n4 on the right by ,on+2,n+3(—ra§”n 43) (denote the product by 7s), we get that the second
element of (n 4 3)th column of 75 is zero and the forms of vy, v,42 in n5 are not changed, since
l+ra) 13,043 10 75 1s still invertible, continuing the above procedure, we may get an element ¢
in X has the required form and is not in GU>,R. O

Remark 2.11.

(1) A vector v € R?" is said to be unitary if v*@,v = 0. If v} in 6 is unitary, we may have v| =
(1,0,...,0,0,...,0)"; and if vy, vy42, vy,+3 are all unitary, we may have v; = (1,0,...,
0,0,...,0)", v =(0,1,...,0,b,0,...,0)", v3=(0,0,1,0,...,0,c1,¢2,0,...,0)". When
v1 is unitary, no necessary to multiply n; on the right by pl,n+2(—a§,n+2)p1,n+3(—a§’n+3),
we may get that ai, w2 = ai’ 243 = 0 by left multiplying 1, by suitable elementary matrices.

(2) If ¢ € R? in vy, by Lemmas 2.3, 2.4, 6 is certainly not in GU», R.

3. Proof of the theorem

Let X be an overgroup of EU, R in GLy, R which is not in GU, R where n > 4. By the
proof of Lemma 2.10, X contains an element  with the form I, +7(a;;)2,x2,, Where r is a real
number with sufficiently small |#|, which is not in GU», R.

Lemma 3.1. Suppose that all columns of n = o, + r(a;j)2nx2n are unitary. Then X contains an
elementary matrix §;j(a) witha € R and j # oi (§;j(a) is not in GU, R).

Proof. Since n = I, + r(a;j)onx2n 8 not in GU, R, there exists p;;(a), without loss of gener-
ality, assume that p;;(a) = p12(1), such that§ = 17,012(1)17’1 = Iy, +viuy — vp2Unt1, Where v;
is the ith column of » and u; is the jth row of 77_1, is not in Uy, R. Note that v; and v, have
the form (1 4+ rayy, razi, ..., ran+1.1s --->razg1)" and (raj p42, - .. ransi.n42, 1 + rans2.n42,
..., rasn n42)', respectively. Refering the proof of Lemma 2.10, we may find 8 € EU,, R
such that vy = (1,0,...,0,0,...,0)" and Qv,42 = (0,1,0,...,0,5,0,...,0)". Let up0~! =
di,....dp,dyy1, ..., doy) and u,,_HG_l =(fls-r fus fatls--.s fon)!, respectively. We have
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T=080"" = Dy + 0v1u20 ™" — Ov, 20y 107!

1 & dy - dy i dppn dpga e doy
I—fr =fs - —fo © —faor1  —fax2 o —fu
] :
- 1
= : eX, (3.1)
0 —hi —hy -+ —hy @ l=huy1 —hyya - —hy,
: 1
1

where h; =bf; (1 <i <2n).

(Note that (i) 7 is not in Uy, R; (i) t~! = I, — v ur0~1 + 9vn+2un+19_1 has the same
type (3.1) as t; (iii) since upv; = up+1v1 =0,d1 = f1 =0.)

(a) If there is f; #£0, or d; #0, or h; #0 for 2 <i #n+ 1,n + 2 < 2n, without loss of
generality saying f3 # 0, we have

En3(=13) = [pa2(D), [[T. p24(D)], pans3(D)]] € X (3.2)

(if f2 #0, then &34(— f2) = [p32(1), [[7, p23 (D], p32(D]] € X).
b)di=fi=h;j=0forall2<i#n+1,n+2<2nin (3.1). In this case, if 4,41 or h, 4> is
not zero, for example, /4,11 # 0, we may have

E24(=hnt1) = [p2ns1(D). [[T. ous1.3(D], p3a(D]] € X. (3.3)

So, assume that 1,41 = hy42 = 0. Now if dy12 # €* £, |, left multiplying 7 by p2.n+1(fa+1)s

we get that the (1, n 4 2)-coefficient in p2 41 (fn+1)T 1S dpt2 — s*f:H # 0 and we can show
that X contains an elementary matrix &;;(a) with j # oi. Thus, suppose that dy,+» = &* f,", ;.
Since 02 41 (fu+1)T is notin Uy, R, there is at least one of d;:+1’ fn*Jr2 not in R? (for symplectic
case, we must have f;, 41 # —d,+2). Modifying the proof of Lemma 2.6 a little, we can get that

X contains an elementary matrix §;;(a) with j #0i. O

Lemma 3.2. Suppose that there is at least one column which is not unitary in n = Iy, +
r(aij)onxon. Then X contains an elementary matrix §;j(a) with a € R and j # oi (§;(a) is
not in GU», R).

Proof. By Lemma 2.10. X contains an element (still denote it by 1) having the form (2.1).
We may assume that v, in 5 is not unitary, i.e., 8 # 0 in v,42 (see (2.1)), which without
loss of generality. Keep the notation of vy, v,42 and v,43 in (2.1) and let ur = (dy, ..., dy,
Aui1s v don) 43 = (81, ..., 8n» &ntls -+ &) and up 1 = (f1, ..., fu, fut1, ..., fon), where

uj is the jth row of n~t.
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Observe

T= 77:012(1)7771 = DIy +viu2 — vypolng

l+dy & dy - dp 1 dyyg dpt2 dyy3 o0 dyy
- 1=f =fz - —fun  —fur1 —far2 —fug3z - —fum
1 )
1
— eX,
T p) ry oo o L Fn42 L )
—hy  —hy  —h3y - —hg 0 —hgyr l—hggy —hayz o —hoy,
: 1
1
(3.4)

where r; = ad; — bfi, 1 <i <2n; h; =Bf;, 1 <i <2n.

(a) If there is d; 0 or f; A0 for 3 <i #n+ 1,n+2 < 2n, we can obtain that X contains
an elementary matrix §;;(a) with j # oi by the same method in Lemma 3.1.

(b) Assume that d; = fi =0forall 3<i#n+ 1,n+ 2 < 2n in the 2nd row and (n + 1)th

row of n~ !, respectively. Consider

v =npi3(Dn~" = Dy + vius — Vai3un41

l+g g g -+ & I gul G2 Ens3 o 8
0 1 0 - 0 0 0 0 .- 0
~fi —f 1 - 0 i —fi1 —farz 0O o0
1

- e X,
" I T e B T
—hy  —hy O - 0 i =k =R, 0 - 0

o0 0

1

(3.5)

where rj =agi —c1fi, 1 <i<2nm;hi=cfi,ll=yfi,i=1,2,n+1,n+2.
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Same to (a), if thereis f; #O0fori =2,n+2,0rg; #0ford <i#n+1,n+3 < 2n, wecan
obtain that an elementary matrix &;;(a) with j = oi lies in X. For instance, if f, 12 # 0, then

Ensan(— far2) = [Pny23(1). [T/, pur2n(D]] € X. (3.6)

(c) Investigating t” = npy123(1)n~" = Iy + vyious — ev,43up, we can show that if
dpy1 # 0, then X contains an elementary matrix &;;(a) with j # oi by the same method in
Lemma 3.1.

Now, assume that d; = 0 for all 3 <i #n + 2 < 2n in the 2nd row u7 and f; =0 for all 2 <
i #n+1 < 2ninthe (n+ 1)th row of n’l , respectively. Since uv) = u,+1v; =0and d,+1 =0,
we have d; =0 and f] + f,4+1o = 0. Because u, 1 is unimodular (a vector u = (c1, ..., ¢y) 18
called unimodular if there are dy, ..., d, € R such that c;dy + - - - 4+ ¢, d,, = 1), f+1 should be a
unit in R. We have

¢=[n pa(D)]
1 0 0 -~ 0 : 0 0 0
0o 1 0 0 0 Jnt1
0 —d 1 - 0 0 —dyys O - 0

N ex. (37
Do 0 bfu+1

L Bfa
1

1

Write ¢ = p32(—d2) p2.n+3(fu+1)¢’, then ¢’ € X. Tt is not difficult to show that if b # 0,
or Bfut1 #dj, or dyio # &* n*+1’ X contains an elementary matrix &;;(a) with j # oi. Oth-
erwise, ie., b =0, Bfu+1 = dy, and dyy2 = " f;' |, ¢ =& p43(da fus1) € X. Since dp =
e* fr B*e and B* € R®, we have dafy1 # —¢&* f; d5 (note that f,4 is invertible), so
¢ =& y13(dafat1) € Uy R. By Lemma 2.6, X contains an elementary matrix &ij(a) with

jF#oi. O

Lemma 3.3. Let X be an overgroup of EU>, R in GLy, R. Then there is a unique dual ideal J of
R such that EEU»,J = EUy, R - E2, (R, J) C X.

Proof. If X C GU», R, then EU», R - E»,(R,0) =EU,RC X.

Now suppose that X gz GU, R. By Lemma 2.10 there is n = I, + r(aij)2nx2n With a real
number r with sufficiently small |r| in X which is not in GU», R. By Lemmas 3.1, 3.2 and 2.6,
we may get Ep,J, for some ideal J, of R which is generated by a and a* lies in X. Let J =
{x € R| Ep,Jy C X}. It is easy to show that J is an ideal of R and satisfies J* = J. Thus
EU»R - E>(R,J) € X by Lemma 2.7.
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Denote R = R /J, and X = Ay (x), where A, denotes the group homomorphism: GLy, R —
GLy,(R/J). We have EU,,RCX.If X g GUy, R, since R still satisfies property (A), there
exists some &;;(a) with j # oi and 0+#a € R in X by Lemmas 3.1, 3.2. Note that a € J. Thus
there is 0 € X such that 1 ;(0) = A, (§;;(a)). Take T =§&;;(—a)0 € kerA;. Choose p = pi +j(1).
By [9], [p, t] € E2, (R, J) € X. Since §ij(@lp, tléij(—a) € EU2 (R, J) C X, we have

Eiok(c) =[&ij(@), pr.oj(D)] =&ij (@) pr.oj (1), T]&ij (—a)[0, proj(D] € X

where ¢ = —ae* when j, k < n; c=—ase when_n+ 1<j,k;c= —a when j <n<kork<
n < j. This is contradictory to that a € J. Thus X must be in GU», R. Hence J is maximal such
that EU», R - E2, (R, J) C X, and is uniquely determined. O

Now let us complete the proof of theorem.

By Lemma 3.3, we need only to show that X € CGU,, J. Since J is the maximal ideal of
R such that E7, (R, J) € X and Aj(EEU2,J) = EU>,(R/J), Aj(X) should be in GU»,(R/J)
by the proof of Lemmas 3.3 and 2.5, hence X C X;I(AJ(X)) - A;I(GUZ,Z(R/J)). Since X C

GLoyR, 50, X €17 (GU(R/1)NGLoyR = {g € GLoy R | Ay (8) € GUsn(R/J)} = CGU,y J .
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