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Abstract

All overgroups of elementary unitary groups in linear group GL2n over Banach algebras with 1 have been
described.
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1. Introduction

Let R be an associative ring with 1 and assume that an anti-automorphism ∗ :x �→ x∗ is
defined on R such that x∗∗ = εxε∗ for some unit ε = ε∗−1 of R and every x in R. It also
determines an anti-automorphism of the ring MnR of all n by n matrices (xij ) by (xij )

∗ = (x∗
ji).

Set Rε = {x − x∗ε | x ∈ R}, Rε = {x ∈ R | x = −x∗ε}. We fix an additive subgroup Λ of R

with the following properties:

(i) r∗Λr ⊂ Λ for all r ∈ R;
(ii) Rε ⊂ Λ ⊂ Rε .

Let

Λn = {
(aij ) ∈ MnR | aij = −a∗

jiε for i �= j and aii ∈ Λ
}
.
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As in [1,11], we define

U2n(R,Λ) =
{(

α β

γ δ

)
∈ GL2nR

∣∣∣∣ α∗δ + γ ∗εβ = In,α
∗γ,β∗δ ∈ Λn

}
.

For fixed ∗ and ε, if Λ ⊂ Λ′, it is clear that U2n(R,Λ) ⊂ U2n(R,Λ′). So, in this article we
assume that Λ = Rε , that is

U2n(R,Λ) = U2nR = {
θ ∈ GL2nR | θ∗ϕnθ = ϕn

}
,

where

ϕn =
(

0 In

εIn 0

)
.

When ∗ is identical on R and ε = −1,U2nR is the symplectic group. When ∗ is identical on
R and ε = 1, but 2 is torsionfree in R,U2nR is the ordinary orthogonal group. When R is the
complex numbers, ∗ the complex conjugation, ε = 1 or −1, U2nR is the standard unitary group.

Let

GU2nR = {
θ ∈ GL2nR | θ∗ϕnθ = μϕn, μ ∈ CentR is invertible

}
.

(Note that μ∗ = μ.)
An ideal J of R is said to be dual, if J ∗ = J . For any ideal J of R, let E2nJ denote the

subgroup of GL2nR generated by all elementary matrices ξij (a) = I2n + aEij with a ∈ J, i �= j ,
where Eij denotes the matrix with 1 at the position (i, j) and zeros elsewhere. The normal
subgroup of E2nR generated by E2nJ is denoted by E2n(R,J ). With n fixed for any 1 � k � 2n,
set σk = k + n if k � n and σk = k − n if k > n. For a ∈ R and 1 � i �= j � 2n we define the
elementary unitary matrices ρi,σ i(a) and ρij (a) with j �= σ i as follows: ρi,σ i(a) = I2n + aEi,σ i

with a ∈ Λ when n + 1 � i and a∗ ∈ Λ when i � n,ρij (a) = ρσj,σ i(−a′) = I2n + aEij −
a′Eσj,σ i ∈ U2nR with a′ = a∗ when i, j � n; a′ = ε∗a∗ when i � n < j ; a′ = a∗ε when j �
n < i; and a′ = ε∗a∗ε when n + 1 � i, j . The subgroup of U2nR generated by all elementary
unitary matrices is denoted by EU2nR.

Define

EEU2nJ = EU2nR · E2n(R,J ), CGU2nJ = {
ρ ∈ GL2nR | ρ (modJ ) ∈ GU2n(R/J )

}
.

(Note that E2n(R,J ) is normal in GL2nR when n � 2, EU2nR · E2n(R,J ) make sense when
n � 2 (see [9]).)

The main result of this paper is stated as follows.

Theorem. Let R be a Banach algebra with 1 and n � 4. Let X be an overgroup of EU2nR in
GL2nR. Then there is a unique dual ideal J of R such that

EEU2nJ ⊆ X ⊆ CGU2nJ.

King [2,3] and Li [4,5] determined all overgroups of SU(n,K,f ) and Ω(n,K,Q) in GLnK

where K is a division ring, respectively. In the resent years, Vavilov and Petrov [12,13], and
the author [14] described the overgroups of symplectic and orthogonal groups (with hyperbolic
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form) over commutative rings; Petrov [6] also classified under a local stable rank condition with
form parameter, the overgroups of unitary groups (with hyperbolic form).

2. Basic lemmas

Lemma 2.1. [11] The following identities hold for elementary unitary matrices (1 � i �= j � 2n):

(1) ρij (a + b) = ρij (a)ρij (b);
(2) [ρij (a), ρjk(b)] = ρik(ab) when i, j , k, σ i, σj , σk are all distinct;
(3) [ρij (a), ρj,σ i(b)] = ρi,σ i(ab − c) when j �= σ i, where c = b∗a∗ε when n + 1 � i and c =

ε∗b∗a∗ when i � n;
(4) [ρij (a), ρj,σj (b)] = ρi,σj (ab)ρi,σ i(c) when j �= σ i, where

b∗ ∈ Λ and c = aba∗ when i, j � n,

b∗ ∈ Λ and c = aba∗ε when j � n < i,

b ∈ Λ and c = −ab∗a∗ when i � n < j,

b ∈ Λ and c = −ab∗a∗ε when n + 1 � i, j.

Here [a, b] denotes aba−1b−1.

Lemma 2.2. The following identities hold (1 � i �= j � 2n):

(1) ρij (a) = ξij (a)ξσj ,σi
(a′) (i �= j , the definition of ξij (a) is indicated in Section 1), where

a′ = −a∗ when i, j � n; a′ = −ε∗a∗ when i � n < j ;
a′ = −a∗ε when j � n < i; a′ = −ε∗a∗ε when n + 1 � i, j.

(2) [ξij (a), ρjk(b)] = ξik(ab) when i, j, k are distinct and j �= σ i, where b ∈ Λ or b∗ ∈ Λ if
k = σj .

(3) [ξij (a), ρk,σj (b)] = ξi,σk(c) when i, j, σk are distinct, where

c = −aε∗b∗ when j, k � n; c = −ab∗ε when n + 1 � j, k;
c = −aε∗b∗ε when j � n < k or k � n < j.

The following matrices are in EU2nR.

dA = (
A

A∗−1

)
where A ∈ EnR, especially wij = ( Pij

(P ∗
ij )−1

)
where Pij = ξij (1)ξji(−1)ξij (1)

(1 � i, j � n).
Set ṽ = v∗ϕn for v ∈ R2n. Let {e1, . . . , e2n} denote the standard basis of R2n, i.e.,

(e1, . . . , e2n) = I2n.
Let θ ∈ GL2nR. By the definition of U2nR and GU2nR we have

Lemma 2.3. θ ∈ U2nR if and only if ui = ε∗ṽσ i when 1 � i � n and ui = ṽσ i when n + 1 �
i � 2n, where ui is the ith row of θ−1 and vσi is the σ ith column of θ .
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Proof. We need only to point out that θ−1 = ϕ−1
n θ∗ϕn if and only if θ ∈ U2nR. �

Similarly, for the unitary similitudes GU2nR, we have

Lemma 2.4. θ ∈ GU2nR if and only if there is a μ ∈ CentRu (Ru, the set of invertible elements
in R) such that ui = με∗ṽσ i when 1 � i � n and ui = μṽσi when n + 1 � i � 2n, where ui is
the ith row of θ−1 and vσi is the σ ith column of θ .

Lemma 2.5. [6] Let n � 2, g ∈ GL2nR such that gEU2nRg−1 ⊆ U2nR. Then g belongs to
GU2nR.

Lemma 2.6. Let X be an overgroup of EU2nR in GL2nR and n � 3:

(1) For Banach algebras R, if X contains an elementary matrix ξi,σ i(a) with a ∈̄Rε (or a∗ ∈̄Rε),
then X contains a ξkl(c) with l �= σk and c ∈ R except for the symplectic case, i.e., ∗ is
identical on R and ε = −1.

(2) If X contains an elementary matrix ξij (a) with j �= σ i and a ∈ R, then X contains E2nJa

where Ja is the ideal of R generated by a and a∗, so satisfies that Ja = J ∗
a .

Proof. (1) Without loss of generality, suppose that X contains ξ1,n+1(a) with a∗ ∈̄ Rε .
Then X contains ξ1,n+2(−a)ξ2,n+1(−a)ξ2,n+2(−a) = [ξ1,n+1(a), ρ21(1)] and ξ2,n+2(a) =
w12ξ1,n+1(a)w12. Thus ξ1,n+2(−a)ξ2,n+1(−a) ∈ X and ξ2,n+1(−ε∗a∗ − a) = ξ2,n+1(−a)

ξ1,n+2(−a)ρ1,n+2(a) ∈ X (note that a∗ ∈̄ Rε). Since 2 is not torsion in Banach algebra, even-
though ∗ is identical on R and ε = 1,−ε∗a∗ − a �= 0.

(2) By Lemma 2.2, all ξij (aR), ξij (Ra) for 1 � i �= j � n and n + 1 � i �= j � 2n lie
in X. Further, ξi,σ i(ab) = [ξij (a), ρj,σ i(b)] ∈ X (also, ξi,σ i(ba) ∈ X), where j �= σ i, for all 1 �
i � 2n; and ξij (ab) = [ξi,σj (a), ξσj,j (b)] ∈ X(also, ξij (ba) ∈ X) for all 1 � i � n, n + 1 �
j � 2n and n + 1 � i � 2n, 1 � j � n (j �= σ i). That means X contains E2n(aR) and
E2n(Ra). When X contains ξij (a),X also contains ξσj,σ i(a

′) = ρij (a)ξij (−a), where a′ = a∗,
or a′ = ε∗a∗, or a′ = a∗ε, or a′ = ε∗a∗ε. So, by the above argument we have that X contains
E2nJa and Ja = J ∗

a . �
It is obvious that if an overgroup X of EU2nR contains E2nJ where J is an ideal of R, then

X contains the subgroup of GL2nJ , which is denoted by UE2n(R,J ), generated by all elements
of the form ρij (r)ξkl(a)ρij (−r) with a ∈ J and r ∈ R for all k �= l, i �= j . Note that UE2n(R,J )

is different from EU2n(R,J ), the normal subgroup of EU2nR generated by EU2nJ (see [11]),
and that EU2n(R,J ) ⊆ UE2n(R,J ).

Lemma 2.7. For any ideal J of R and n � 2, UE2n(R,J ) = E2n(R,J ).

Proof. Since UE2n(R,J ) ⊆ E2n(R,J ), we only need to show that E2n(R,J ) ⊆ UE2n(R,J ).
By the definition of E2n(R,J ) and the commutator formulas of elementary matrices, in fact,
E2n(R,J ) is generated by ξij (r)ξji(a)ξij (−r) with a ∈ J , r ∈ R for all i �= j (see [8]). We
distinguish the following two cases on the index (i, j):

(1) j �= σ i. In this case, we have ξij (r)ξji(a)ξij (−r) = ρij (r)ξji(a)ρij (−r) ∈ UE2n(R,J ).
(2) j = σ i. Without loss of generality, we assume that n = 2 and (i, j) = (1,3).
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Then

ξ13(r)ξ31(a)ξ13(−r) =
(

1 + ra −rar

a 1 − ra

)
⊕ I2

= ξ14
(−raε∗r∗)ρ23(r)ρ21(−1)ξ12(ra)ξ34

(−aε∗r∗)ξ32(a)

· (ρ23(r)ρ21(−1)
)−1

ξ32(−a)ξ12(−ra)ξ24
(
rε∗ar∗) ∈ UE2n(R,J ). �

Remark 2.8. The above result has been proved in [6, Lemma 12], but, here the proof is direct
and simple.

Lemma 2.9. Suppose that R is a Banach algebra with 1. Let X be an overgroup of EU2nR which
is not in GU2nR and let n � 3. Then there exist an element θ in X and an elementary unitary
matrix ρij (ra) for all real number r with sufficiently small |r| such that θρij (ra)θ−1 ∈ X is not
in GU2nR.

Proof. Note that when n � 3EU2nR = [EU2nR,EU2nR]. If ξ ∈ X satisfies: ξEU2nRξ−1 ⊆
GU2nR, then ξEU2nRξ−1 = [ξEU2nRξ−1, ξEU2nRξ−1] ⊆ U2nR. So, by Lemma 2.5 there is
ξ ∈ X such that ξEU2nRξ−1 � GU2nR. Since EU2nR is generated by ρij (a) with a ∈ R when
j �= σ i and a ∈ Rε (or a∗ ∈ Rε) when j = σ i, there is ρij (a) such that ξρij (a)ξ−1 ∈̄GU2nR. Let
d = diag(A,A∗−1) where A = ( r

r−1

) ⊕ In−2 and r is a real number with sufficiently small |r|.
Since A ∈ EnR, d ∈ EU2nR. We have dρij (a)d−1 = ρij (r

2a) (note that r∗ = r for real num-
bers) and dξd−1 = θ ∈̄ GU2nR. It is obvious that θρij (r

2a)θ−1 = dξd−1dρij (a)d−1dξd−1 =
dξρij (a)ξ−1d−1 ∈̄ GU2nR. �

Form now, assume that R is a Banach algebra with 1. For Banach algebras R (with 1), if x ∈ R

with ‖x‖ < 1, then 1 + x is invertible (see [7]).
So, for any a ∈ R we have 1 + ra invertible for all real number r with sufficiently small |r|

(see [9,10]). Moreover, we claim that.
For any finite set {a1, . . . , ak} in R, there exists a real number r with sufficiently small |r| such

that 1 + rb1, . . . ,1 + rbk , where bi is a sum of some aj and some products of a finite number of
rai by (1+ raj )

−1 (1 � j � i), are all invertible (denote the property by (Δ)). In fact, (1+ rb)−1

is in a neighborhood of 1 when |r| is sufficiently small.

Lemma 2.10. Let X be an overgroup of EU2nR in GL2nR which is not in GU2nR where n � 4.
Then there is an element θ in X which has the following form and is not in GU2nR:

θ = (v1, . . . , vn, vn+1, vn+2, vn+3, . . . , v2n) where

v1 = e1 + αen+1 = (1,0, . . . ,0, α,0, . . . ,0)t ,

vn+2 = e2 + ben+1 + βen+2 = (0,1,0, . . . ,0, b,β,0, . . . ,0)t and

vn+3 = e3 + c1en+1 + c2en+2 + γ en+3 = (0,0,1,0, . . . ,0, c1, c2, γ,0, . . . ,0)t . (2.1)

Proof. By Lemma 2.9 there exist an element ξ in X and ρij (ra) with r a real number with suffi-
ciently small |r| such that ξρij (ra)ξ−1 is not in GU2nR. When j �= σ i, we have ξρij (ra)ξ−1 =
I2n + rviauj − rvσj a

′uσi with a′ = a∗ when i, j � n; a′ = ε∗a∗ when i � n < j ; a′ = a∗ε when
j � n < i. When j = σ i, we have ξρij (ra)ξ−1 = I2n + rviauσi with a ∈ Rε or a∗ ∈ Rε , where
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vi is the ith column of ξ and uj is the j th row of ξ−1. But in any case, we can write ξρij (ra)ξ−1

as I2n + r(aij )2n×2n.
Since R is a Banach algebra, we may choose a real number r with sufficiently small

|r| such that 1 + ra11,1 + ra′
n+2,n+2,1 + ra′′

n+3,n+3, where a′
n+2,n+2(a

′′
n+3,n+3) is a sum of

an+2,n+2(a
′
n+3,n+3) and a finite number of products of coefficients in (aij )2n×2n by r or by

r(1 + ra11)
−1(r(1 + ra′

n+2,n+2)
−1) (for example, a′

n+2,n+2 = an+2,n+2 − a1,n+2(ra1,n+2 +
ran,n+2 + r(ra11 − ran1)(1 + ra11)

−1a1,n+2)), are all invertible. Now observe η = I2n +
r(aij )2n×2n.

Since 1+ra11 is invertible, multiplying η on the left by ρ1n(−1)ρn1((ra11 −ran1)(1+ra−1
11 )),

then by
∏

i �=n+1 ρi1(−ra′
i1) where ra′

i1 are the coefficients in the first column of ρ1n(−1)ρn1 ×
((ra11 − ran1)(1 + ra11)

−1)η (denote the product by η1 and denote
∏

i �=n+1 ρi1(−ra′
i1)η1

by η2), we have the first column v1 of η2 has the form (1,0, . . . ,0, α,0, . . . ,0)t . Multi-
plying η2 on the right by ρ1,n+2(−ra′

1,n+2)ρ1,n+3(−ra′
1,n+3) (denote the product by η3),

we get that the first elements in the (n + 2)th, (n + 3)th columns of η3 are zero. The
(n + 2, n + 2)− element 1 + ra′

n+2,n+2 in η3 is still invertible, multiplying η3 on the left by

ρ2,2n(1− ra′
2,n+2 +ε∗h∗εra′

n,n+2)ρ2n,n+2(h), where h = (1− ra′
2n,n+2)(1+ ra′

n+2,n+2)
−1, then

by
∏

i �=1,n+1,n+2 ρi2(−ra′′
i,n+2) (denote the product by η4), we get that the (n+2)th column vn+2

of η4 has the form (0,1,0, . . . ,0, b,β,0, . . . ,0)t and the first column v1 keeps its form. Multi-
plying η4 on the right by ρn+2,n+3(−ra′′

2,n+3) (denote the product by η5), we get that the second
element of (n + 3)th column of η5 is zero and the forms of v1, vn+2 in η5 are not changed, since
1 + ra′′

n+3,n+3 in η5 is still invertible, continuing the above procedure, we may get an element θ

in X has the required form and is not in GU2nR. �
Remark 2.11.

(1) A vector v ∈ R2n is said to be unitary if v∗ϕnv = 0. If v1 in θ is unitary, we may have v1 =
(1,0, . . . ,0,0, . . . ,0)t ; and if v1, vn+2, vn+3 are all unitary, we may have v1 = (1,0, . . . ,

0,0, . . . ,0)t , v2 = (0,1, . . . ,0, b,0, . . . ,0)t , v3 = (0,0,1,0, . . . ,0, c1, c2,0, . . . ,0)t . When
v1 is unitary, no necessary to multiply η1 on the right by ρ1,n+2(−a′

1,n+2)ρ1,n+3(−a′
1,n+3),

we may get that a′
1,n+2 = a′

1,n+3 = 0 by left multiplying η2 by suitable elementary matrices.
(2) If α ∈̄ Rε in v1, by Lemmas 2.3, 2.4, θ is certainly not in GU2nR.

3. Proof of the theorem

Let X be an overgroup of EU2nR in GL2nR which is not in GU2nR where n � 4. By the
proof of Lemma 2.10, X contains an element η with the form I2n + r(aij )2n×2n, where r is a real
number with sufficiently small |r|, which is not in GU2nR.

Lemma 3.1. Suppose that all columns of η = I2n + r(aij )2n×2n are unitary. Then X contains an
elementary matrix ξij (a) with a ∈ R and j �= σ i (ξij (a) is not in GU2nR).

Proof. Since η = I2n + r(aij )2n×2n is not in GU2nR, there exists ρij (a), without loss of gener-
ality, assume that ρij (a) = ρ12(1), such that ξ = ηρ12(1)η−1 = I2n +v1u2 −vn+2un+1, where vi

is the ith column of η and uj is the j th row of η−1, is not in U2nR. Note that v1 and vn+2 have
the form (1 + ra11, ra21, . . . , ran+1,1, . . . , ra2n,1)

t and (ra1,n+2, . . . , ran+1,n+2,1 + ran+2,n+2,

. . . , ra2n,n+2)
t , respectively. Refering the proof of Lemma 2.10, we may find θ ∈ EU2nR

such that θv1 = (1,0, . . . ,0,0, . . . ,0)t and θvn+2 = (0,1,0, . . . ,0, b,0, . . . ,0)t . Let u2θ
−1 =

(d1, . . . , dn, dn+1, . . . , d2n) and un+1θ
−1 = (f1, . . . , fn, fn+1, . . . , f2n)

t , respectively. We have
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τ = θξθ−1 = I2n + θv1u2θ
−1 − θvn+2un+1θ

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 d2 d3 · · · dn

... dn+1 dn+2 · · · d2n

1 − f2 −f3 · · · −fn

... −fn+1 −fn+2 · · · −f2n

1
...

. . .
...

1
...

· · · · · · · · · · · · · · · ... · · · · · · · · ·
0 −h1 −h2 · · · −hn

... 1 − hn+1 −hn+2 · · · −h2n

... 1

...
. . .

... 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ X, (3.1)

where hi = bfi (1 � i � 2n).
(Note that (i) τ is not in U2nR; (ii) τ−1 = I2n − θv1u2θ

−1 + θvn+2un+1θ
−1 has the same

type (3.1) as τ ; (iii) since u2v1 = un+1v1 = 0, d1 = f1 = 0.)
(a) If there is fi �= 0, or di �= 0, or hi �= 0 for 2 � i �= n + 1, n + 2 � 2n, without loss of

generality saying f3 �= 0, we have

ξ4,n+3(−f3) = [
ρ42(1),

[[
τ,ρ24(1)

]
, ρ4,n+3(1)

]] ∈ X (3.2)

(if f2 �= 0, then ξ34(−f2) = [ρ32(1), [[τ,ρ23(1)], ρ34(1)]] ∈ X).
(b) di = fi = hi = 0 for all 2 � i �= n + 1, n + 2 � 2n in (3.1). In this case, if hn+1 or hn+2 is

not zero, for example, hn+1 �= 0, we may have

ξ24(−hn+1) = [
ρ2,n+1(1),

[[
τ,ρn+1,3(1)

]
, ρ34(1)

]] ∈ X. (3.3)

So, assume that hn+1 = hn+2 = 0. Now if dn+2 �= ε∗f ∗
n+1, left multiplying τ by ρ2,n+1(fn+1),

we get that the (1, n + 2)-coefficient in ρ2,n+1(fn+1)τ is dn+2 − ε∗f ∗
n+1 �= 0 and we can show

that X contains an elementary matrix ξij (a) with j �= σ i. Thus, suppose that dn+2 = ε∗f ∗
n+1.

Since ρ2,n+1(fn+1)τ is not in U2nR, there is at least one of d∗
n+1, f

∗
n+2 not in Rε (for symplectic

case, we must have fn+1 �= −dn+2). Modifying the proof of Lemma 2.6 a little, we can get that
X contains an elementary matrix ξij (a) with j �= σ i. �
Lemma 3.2. Suppose that there is at least one column which is not unitary in η = I2n +
r(aij )2n×2n. Then X contains an elementary matrix ξij (a) with a ∈ R and j �= σ i (ξij (a) is
not in GU2nR).

Proof. By Lemma 2.10. X contains an element (still denote it by η) having the form (2.1).
We may assume that vn+2 in η is not unitary, i.e., β �= 0 in vn+2 (see (2.1)), which without
loss of generality. Keep the notation of v1, vn+2 and vn+3 in (2.1) and let u2 = (d1, . . . , dn,

dn+1, . . . , d2n), u3 = (g1, . . . , gn, gn+1, . . . , g2n) and un+1 = (f1, . . . , fn, fn+1, . . . , f2n), where
uj is the j th row of η−1.
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Observe

τ = ηρ12(1)η−1 = I2n + v1u2 − vn+2un+1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + d1 d2 d3 · · · dn

... dn+1 dn+2 dn+3 · · · d2n

−f1 1 − f2 −f3 · · · −fn

... −fn+1 −fn+2 −fn+3 · · · −f2n

1
...

. . .
...

1
...

· · · · · · · · · · · · · · · ... · · · · · · · · · · · ·
r1 r2 r3 · · · rn

... 1 + rn+1 rn+2 rn+3 · · · r2n

−h1 −h2 −h3 · · · −hn

... −hn+1 1 − hn+2 −hn+3 · · · −h2n

... 1

...
. . .

... 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ X,

(3.4)

where ri = αdi − bfi , 1 � i � 2n; hi = βfi , 1 � i � 2n.
(a) If there is di �= 0 or fi �= 0 for 3 � i �= n + 1, n + 2 � 2n, we can obtain that X contains

an elementary matrix ξij (a) with j �= σ i by the same method in Lemma 3.1.
(b) Assume that di = fi = 0 for all 3 � i �= n + 1, n + 2 � 2n in the 2nd row and (n + 1)th

row of η−1, respectively. Consider

τ ′ = ηρ13(1)η−1 = I2n + v1u3 − vn+3un+1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + g1 g2 g3 · · · gn

... gn+1 gn+2 gn+3 · · · g2n

0 1 0 · · · 0
... 0 0 0 · · · 0

−f1 −f2 1 · · · 0
... −fn+1 −fn+2 0 · · · 0

. . .
...

1
...

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
r ′

1 r ′
2 r ′

3 · · · r ′
n

... 1 + r ′
n+1 r ′

n+2 r ′
n+3 · · · r ′

2n

−h′
1 −h′

2 0 · · · 0
... −h′

n+1 1 − h′
n+2 0 · · · 0

−l′1 −l′2 0 · · · 0
... −l′n+1 −l′n+2 1
...

. . .
... 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ X,

(3.5)

where r ′ = αgi − c1fi , 1 � i � 2n; h′ = c2fi , l′ = γfi , i = 1,2, n + 1, n + 2.
i i i
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Same to (a), if there is fi �= 0 for i = 2, n+ 2, or gi �= 0 for 4 � i �= n+ 1, n+ 3 � 2n, we can
obtain that an elementary matrix ξij (a) with j = σ i lies in X. For instance, if fn+2 �= 0, then

ξn+2,n(−fn+2) = [
ρn+2,3(1),

[
τ ′, ρn+2,n(1)

]] ∈ X. (3.6)

(c) Investigating τ ′′ = ηρn+2,3(1)η−1 = I2n + vn+2u3 − εvn+3u2, we can show that if
dn+1 �= 0, then X contains an elementary matrix ξij (a) with j �= σ i by the same method in
Lemma 3.1.

Now, assume that di = 0 for all 3 � i �= n + 2 � 2n in the 2nd row u2 and fi = 0 for all 2 �
i �= n+1 � 2n in the (n+1)th row of η−1, respectively. Since u2v1 = un+1v1 = 0 and dn+1 = 0,
we have d1 = 0 and f1 + fn+1α = 0. Because un+1 is unimodular (a vector u = (c1, . . . , cn) is
called unimodular if there are d1, . . . , dn ∈ R such that c1d1 + · · · + cndn = 1), fn+1 should be a
unit in R. We have

ζ = [
η,p31(1)

]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
... 0 0 0 · · · 0

0 1 0 · · · 0
... 0 0 fn+1 · · · 0

0 −d2 1 · · · 0
... 0 −dn+2 0 · · · 0

. . .
...

1
...

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
... 1 0 bfn+1
... 1 βfn+1
... 1
...

. . .
... 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ X. (3.7)

Write ζ = ρ32(−d2)ρ2,n+3(fn+1)ζ
′, then ζ ′ ∈ X. It is not difficult to show that if b �= 0,

or βfn+1 �= d∗
2 , or dn+2 �= ε∗f ∗

n+1,X contains an elementary matrix ξij (a) with j �= σ i. Oth-
erwise, i.e., b = 0, βfn+1 = d∗

2 , and dn+2 = ε∗f ∗
n+1, ζ

′ = ξ3,n+3(d2fn+1) ∈ X. Since d2 =
ε∗f ∗

n+1β
∗ε and β∗ ∈̄ Rε , we have d2fn+1 �= −ε∗f ∗

n+1d
∗
2 (note that fn+1 is invertible), so

ζ ′ = ξ3,n+3(d2fn+1) ∈̄ U2nR. By Lemma 2.6, X contains an elementary matrix ξij (a) with
j �= σ i. �
Lemma 3.3. Let X be an overgroup of EU2nR in GL2nR. Then there is a unique dual ideal J of
R such that EEU2nJ = EU2nR · E2n(R,J ) ⊆ X.

Proof. If X ⊆ GU2nR, then EU2nR · E2n(R,0) = EU2nR ⊆ X.
Now suppose that X � GU2nR. By Lemma 2.10 there is η = I2n + r(aij )2n×2n with a real

number r with sufficiently small |r| in X which is not in GU2nR. By Lemmas 3.1, 3.2 and 2.6,
we may get E2nJa for some ideal Ja of R which is generated by a and a∗ lies in X. Let J =
{x ∈ R | E2nJx ⊆ X}. It is easy to show that J is an ideal of R and satisfies J ∗ = J . Thus
EU2nR · E2n(R,J ) ⊆ X by Lemma 2.7.
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Denote R̄ = R/J , and X̄ = λJ (x), where λJ denotes the group homomorphism: GL2nR →
GL2n(R/J ). We have EU2nR̄ ⊆ X̄. If X̄ � GU2nR̄, since R̄ still satisfies property (Δ), there
exists some ξij (ā) with j �= σ i and 0̄ �= ā ∈ R̄ in X by Lemmas 3.1, 3.2. Note that a ∈̄ J . Thus
there is θ ∈ X such that λJ (θ) = λJ (ξij (a)). Take τ = ξij (−a)θ ∈ kerλJ . Choose ρ = ρk,σj (1).
By [9], [ρ, τ ] ∈ E2n(R,J ) ⊆ X. Since ξij (a)[ρ, τ ]ξij (−a) ∈ EU2n(R,J ) ⊆ X, we have

ξi,σk(c) = [
ξij (a), ρk,σj (1)

] = ξij (a)
[
ρk,σj (1), τ

]
ξij (−a)

[
θ,ρk,σj (1)

] ∈ X

where c = −aε∗ when j, k � n; c = −aε when n + 1 � j, k; c = −a when j � n < k or k �
n < j . This is contradictory to that a ∈̄ J . Thus X̄ must be in GU2nR̄. Hence J is maximal such
that EU2nR · E2n(R,J ) ⊆ X, and is uniquely determined. �

Now let us complete the proof of theorem.
By Lemma 3.3, we need only to show that X ⊆ CGU2nJ . Since J is the maximal ideal of

R such that E2n(R,J ) ⊆ X and λJ (EEU2nJ ) = EU2n(R/J ), λJ (X) should be in GU2n(R/J )

by the proof of Lemmas 3.3 and 2.5, hence X ⊆ λ−1
J (λJ (X)) ⊆ λ−1

J (GU2n(R/J )). Since X ⊆
GL2nR, so, X ⊆ λ−1

J (GU2n(R/J ))∩GL2nR = {g ∈ GL2nR | λJ (g) ∈ GU2n(R/J )} = CGU2nJ .
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