A Comparison Result for a Class of Quasilinear Elliptic Partial Differential Equations*

LOUIS B. BUSHARD

Mathematics Section, Alliance Research Center, Babcock and Wilcox, Alliance, Ohio 44601

Received March 14, 1975

A comparison theorem and a uniqueness corollary for positive solutions to the equation

\[\sum_{i=1}^{n} \left(p_i(x, u)u_{x_i} \right)_{x_i} + q(x, u)u = 0 \]

on the closure of a bounded open set are found. The important hypotheses on the nonlinear coefficients are that each \(p_i \) is positive and monotone increasing in \(u \) while \(q \) is monotone decreasing in \(u \). An application is made to equations arising in the theory of chemical reactors.

INTRODUCTION

A comparison and uniqueness result for ordinary differential equations obtained by the author [4] has been extended to a class of quasilinear partial differential equations. Two solutions, \(u \) and \(v \), to two related differential inequalities are compared. Previous results compared \(u \) and \(v \) on sets which were "rigged" to have a boundary smooth enough to allow application of Green's theorem as is the case in [1, Theorem 2] ([2, 3, 8] contain extensive bibliographies on comparison and oscillation results). In contrast, the present theorem compares \(u \) and \(v \) directly on \(G = \{ x \mid u(x) > v(x) \} \) using only the fact that \(G \) is open and bounded. The result, however, is restricted to equations without mixed derivatives. Finally, an application is made to two classes of equations arising in chemical reactor theory.

* Most of this research was accomplished while the author held a National Research Council Postdoctoral Resident Research Associateship supported by the Aerospace Research Laboratories at Wright-Patterson AFB.

Copyright © 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved.
THEOREM. Let D be a bounded open subset of \mathbb{R}^n and let $p_i(x, u), i = 1, \ldots, n$ be C^1 and q be C^0 on $D \times [0, \infty)$. Further, let p_i be positive and monotone increasing in u for $i = 1, \ldots, n$ and let q be monotone decreasing in u. If u and v are C^1 on D with $p_i(x, u) u_{x_i}$ and $p_i(x, v) v_{x_i}$ C^1 on D for $i = 1, \ldots, n$,

(i) $v \geq u$ on ∂D,

(ii) $v > 0$ on \overline{D}, $u \geq 0$ on \overline{D},

(iii) $\sum_{i=1}^{n} (p_i(x, v) v_{x_i})_{x_i} + q(x, v) v \leq 0$,

and

(iv) $\sum_{i=1}^{n} (p_i(x, u) u_{x_i})_{x_i} + q(x, u) u \geq 0$, then $v \geq u$ on \overline{D}.

Remark. If the monotonicity hypotheses on p and q hold only for u and v in an interval I, then the conclusion holds for u and v if $u(x)$ and $v(x)$ are in I when x is in D.

Proof. Suppose the theorem is false. Let $G = \{x \mid x$ in $D, u(x) > v(x)\}$. Then G is a bounded open subset of \mathbb{R}^n, $G \subset D$ and $u = v$ on ∂G.

We shall make use of the following Picone identity.

$$
\sum_{i=1}^{n} \left(\frac{u}{v} \left(p_i(x, u) u_{x_i} v - p_i(x, v) v_{x_i} u \right) \right)_{x_i} - u \left(\sum_{i=1}^{n} (p_i(x, u) u_{x_i})_{x_i} + q(x, u) u \right) - v \left(\frac{v}{u} \right)^2 \left(\sum_{i=1}^{n} (p_i(x, v) v_{x_i})_{x_i} + q(x, v) v \right) + \sum_{i=1}^{n} (p_i(x, u) - p_i(x, v))(u_{x_i})^2 + \sum_{i=1}^{n} p_i(x, v) \left(u_{x_i} - \frac{u}{v} v_{x_i} \right)^2 + (q(x, v) - q(x, u)) u^2.
$$

We assert that the right-hand side of (#) is positive at some point of G, and therefore on an open subset of G. Consider any i. Let \bar{x} be a point of G and let l_i be the line $x_j = \bar{x}_j, j \neq i$. Consider next the restriction of u and v to $l_i \cap G$, which is an open subset of l_i in the \mathbb{R}^1 topology. Let I be the maximal interval in $l_i \cap G$ containing \bar{x}. At the endpoints of I, $u = v$, while $u(\bar{x}) \neq v(\bar{x})$. Now suppose $u_{x_i} - (u/v) v_{x_i} = 0$ for all x in G. Then u/v is constant on I. But then $u = v$ on I, a fact which contradicts $u(\bar{x}) > v(\bar{x})$.

Thus, at some point of \(G \), \(u_{x_i} - (u/v) v_{x_i} \neq 0 \) and at that point the right-hand side of (\#) is positive.

The integral over \(G \) of the right-hand side of (\#) is positive. The theorem will be proved once we show that the integral over \(G \) of the left-hand side is nonpositive.

Consider again any \(i \). By Fubini's theorem [7, Chap. 7],

\[
\int_{G} \left(\frac{u}{v} \left(p_i(x, u) u_{x_i} v - p_i(x, v) v_{x_i} u \right) \right)_{x_i} \, dV_n = \int_{G_i} \left(\int_{O_i(x)} \frac{u}{v} \left(p_i(x, u) u_{x_i} v - p_i(x, v) v_{x_i} u \right) \right)_{x_i} \, dx_i \, dV_{n-1}
\]

where \(G_i \) is the projection of \(G \) onto the plane \(x_i = 0 \) and for each \(\bar{x} = (\bar{x}_1, \ldots, \bar{x}_{i-1}, 0, \bar{x}_{i+1}, \ldots, \bar{x}_n) \) in \(G_i \), \(O_i(\bar{x}) \) is the intersection of the line \(l_i : x_j = \bar{x}_j, j \neq i \), with \(G \). Each \(O_i(\bar{x}) \) is an open subset of \(l_i \) in the \(R^1 \) topology and consequently is an at most countable collection of open intervals. Let \(I \) be such an interval with \(a \) and \(b \) the minimum and maximum values of \(x_i \) in \(I \). Then \(u(\bar{x}_1, \ldots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) = v(\bar{x}_1, \ldots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) \) for \(x_i = a, b \), while \(u(\bar{x}_1, \ldots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) > v(\bar{x}_1, \ldots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) \) when \(a < x_i < b \). In particular, \(u_{x_i}(\bar{x}_1, \ldots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) \geq v_{x_i}(\bar{x}_1, \ldots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) \) when \(x_i = a \) and the opposite inequality holds when \(x_i = b \). Thus

\[
\int_{I} \left(\frac{u}{v} \left(p_i(x, u) u_{x_i} v - p_i(x, v) v_{x_i} u \right) \right)_{x_i} \, dx_i = p_i(x, u(x)) \left(u(x)u_{x_i}(x) - v_{x_i}(x) \right) \bigg|_{x=(\bar{x}_1,\ldots,\bar{x}_{i-1},a,\bar{x}_{i+1},\ldots,\bar{x}_n)} - p_i(x, u(x)) \left(u(x)u_{x_i}(x) - v_{x_i}(x) \right) \bigg|_{x=(\bar{x}_1,\ldots,\bar{x}_{i-1},b,\bar{x}_{i+1},\ldots,\bar{x}_n)} \leq 0.
\]

It now follows easily that the integral of the left-hand side of (\#) is nonpositive.

Corollary. Let \(D, p_i, i = 1, \ldots, n \) and \(q \) be as in the theorem. Then the boundary value problem

\[
\sum_{i=1}^{n} (p_i(x, u) u_{x_i})x_i + q(x, u)u = 0 \quad \text{in } D, \quad (*)
\]

\[
u = \varphi > 0 \quad \text{on } \partial D \quad (**)
\]
has at most one solution u that is positive, C^1 on D and such that $p_t(x,u)u_x$ is C^1 on D. Further, the solution $u(\cdot, \varphi)$ to the boundary value problem (*)-(**), when it exists, is monotone increasing in φ, i.e., $\varphi_1(x) \leq \varphi_2(x)$ for x in ∂D implies that $u(x; \varphi_1) \leq u(x; \varphi_2)$ for x in D.

Applications

Consider the boundary value problem

$$\sum_{i=1}^n (p_i(x,u)u_x)_x + f(x,u) = 0 \quad \text{in } D, \quad (*)$$

$$u = \varphi > 0 \quad \text{on } \partial D, \quad (**)$$

where D and p_t, $i = 1, \ldots, n$ are as in the theorem.

First let f be as in [6]. That is, f is C^2 w.r.t. u and has the properties (i) $f(x,u) > 0$ for x in D and $u > 0$, and (ii) there is a $c > 0$ for which $f_{uu}(x,u) \leq 0$ for x in D and $c \leq u$. An f which arises in applications is $f(x,u) = f_0(x,u) = \lambda \exp(-1/u)$. Reference [6] contains further references to applications in chemical reactor theory. Property (ii) implies that there is a $\tau_0 > 0$ with $\tau_0 < c$ such that $f(x,u + \tau)/u$ is decreasing in u for each $\tau > \tau_0$ and x in D (cf. [6, Corollary 5.3.11]). $\tau_0 = \frac{1}{4}$ when $f = f_0$.

The maximum principle shows that a positive solution to (*) achieves its minimum on ∂D. Let $\tau \geq \tau_0$. Applying the theorem after replacing u by $u + \tau$ shows (*)-(**) has at most one positive solution when $\varphi > \tau$.

Next, consider the case where f is C^1 w.r.t. u and there is a constant $c > 0$ such that (i) $f(x,u) < 0$ for $c < u$ and x in D and (ii) $(f(x,u)/u)_u \leq 0$ for $0 < u < c$ and x in D. Conditions (i) and (ii) are weaker than H-3 and H-4 of [5]. An application of the maximum principle shows that any solution of (*) satisfies $u \leq c$ on D if $\varphi \leq c$ on D. The theorem can then be applied to show that (*)-(**) has at most one positive solution in the case that $0 < \varphi \leq c$ on ∂D.

References

