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Let M be a closed connected manifold. We denote by M(M) the Morse number of M, i.e. the minimal possible
number of critical points of a Morse function f on M. M.Gromov posed the following question: Let N

k
, k3N be

a sequence of manifolds, such that each N
k

is an a
k
-fold cover of M where a

k
PR as kPR. What are the

asymptotic properties of the sequence M (N
k
) as kPR?

In this paper we study the case n
1
(M)+Zm, dimM*6. Let m3H1(M, Z), mO0. Let M(m) be the infinite cyclic

cover corresponding to m, with generating covering translation t: M (m)PM(m). Let M(m, k) be the quotient M (m)/tk.
We prove that lim

k?=
M(M (m, k))/k exists. For m outside a subset MLH1(M) which is the union of a finite family

of hyperplanes, we obtain the asymptotics of M(M(m, k)) as kPRin terms of homotopy invariants of M related to
the Novikov homology of M. It turns out that the limit above does not depend on m (if m NM). Similar results hold
for the stable Morse numbers. Generalizations for the case of non-cyclic coverings are obtained. ( 1999 Elsevier
Science Ltd. All rights reserved.

0. INTRODUCTION AND THE STATEMENT OF THE RESULT

Let M be a closed connected smooth manifold. Denote by M(M) the Morse number of M,
i.e. the minimal possible number of critical points of a Morse function on M. In the case
n
1
(M)"0, dimM*6, this number is easily computable in terms of homology of M (see

[14]). In the case of arbitrary fundamental group (even for dimM*6), the numberM(M) is
very difficult to compute: it depends on the simple homotopy type of M, the relevant
algebraic constructions are rather complicated, and it is not easy to extract the needed
numerical invariant (see [15] or [16, Chapter 7]).

M.Gromov posed the following question:

¸et N
k
, k3N be a sequence of manifolds, such that each N

k
is an a

k
-fold cover of the

manifold M where a
k
PR as kPR. ¼hat are the asymptotic properties of the sequence

M(N
k
) as kPR?

In the present article we study the problem for n
1
(M) free abelian and dimM*6. To

formulate our results, we need some terminology from algebra. Denote Z[Zm] by ". Let

C
*
"M0QC

0

L
1$& C

12
L
k$& C

k
Q0N

be a free finitely generated "-complex. Denote by B
i
(C

*
) the rank of the module

H
i
(C

*
) ?"M"N over the field of fractions M"N. Denote by B (C

*
) the sum of all B

i
(C

*
).

Consider now the homomorphism L
i`1

:C
i`1

PC
i
, and let d"rk C

i
. Recall that the

Fitting invariant F
t

of the homomorphism L
i`1

(see, e.g. [4, p. 278]) is the ideal of
" generated by the (d!t)](d!t) subdeterminants of the matrix of L

i`1
(for t*d one sets

F
t
"" by definition). We shall denote the sequence F

0
LF

1
L2LF

d
of the Fitting

invariants by F (i).
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Define the reduced Fitting sequence for L
i`1

to be the sequence

FR(i) F
s
L2LF

r

where F
s
, and F

r
, are, respectively, the first and last terms of the Fitting sequence F (i), not

equal to 0, respectively to ". The sequence F (i) is not a homotopy invariant of C
*
, but the

sequence FR (i) is (see e.g. [16, Chapter 4, Section 2]). We say that an ideal J of " is
numerically prime if there is no number l3Z, lO$1, such that every R3J is divisible by l,
and we denote by Q

i
(C

*
) the number of ideals in the sequence FR (i) which are not

numerically prime. Denote by Q(C
*
) the sum of all Q

i
(C

*
).

A subgroup GLZm will be called an integral hyperplane if it is a direct summand of Zm of
rank m!1.

Now let M be a closed connected manifold, n
1
(M)+Zm , m*1. It is convenient to set

m"n#1, n*0. For every non-zero m3H1(M) there is a unique connected infinite cyclic
covering Pm : M(m)PM such that P*m (m)"0. Denote by M(m, k)PM the k-fold cyclic
covering of M obtained from Pm . Let C

*
(M3 ) be the cellular chain complex of the universal

cover MI . We shall abbreviate B (C
*
(MI )) to B (M) and Q(C

*
(MI )) to Q(M).

MAIN THEOREM. ¸et dimM*6, n
1
(M)+Zn`1 , n*0. ¹hen

(1) For any non-zero m3H1 (M) the limit lim
k?=

M(M (m, k))/k exists.
(2) ¹here is a subset MLH1(M) which is a finite union of integral hyperplanes in H1 (M),

and for every non-zero m N M there is a real number a such that for every k3N we have

k(B (M)#2Q(M))!a)M(M(m, k)))k(B(M)#2Q(M))#a.

Remarks. (1) A similar result holds for the stable Morse numbers of M, see Section 5.
(2) The limit lim

k?=
M(M(m, k))/k will be denoted by k (M, m). The second point of the

Main Theorem implies that for a ‘‘generic’’ cohomology class m we have k (M, m)"
B(M)#2Q(M).

(3) Denote by M
i
(M) the minimal number of critical points of index i of a Morse

function on M. The methods of the present paper allow also to prove that (under the
assumptions of the Main Theorem) the limit lim

k?=
M

i
(M(m, k))/k exists, and that for all m,

except those belonging to a finite union of integral hyperplanes, there is a real number
a such that for every natural k we have

k (B
i
(M)#Q

i
(M)#Q

i~1
(M))!a)M

i
(M (m, k)))k (B

i
(M)#Q

i
(M)#Q

i~1
(M))#a.

(4) The numbers B
s
(M), Q

s
(M) are closely related to the Novikov homology of M.

Namely, B
s
(M) is equal to the Novikov Betti number b

s
(M, m) [7] for every non-zero class

m3H1 (M) (note that B
s
(M) is also equal to the ¸2-Betti number b (2)

s
(M)). Further, for every

non-zero m N M we have Q
s
(M))q

s
(M, m) where q

s
(M, m) is the Novikov torsion number

[7] (that follows from Remark 2.6 and Proposition 3.3 of the present paper).

The proof is outlined as follows. Assume that m3H1(M) is indivisible. Let f : MPS1 be
a Morse map, representing m, and let »"f~1 (j) be a regular level surface of f. We can
assume that » is connected and that n

1
(»)Pn

1
(M) is an isomorphism onto Ker m. Cut

M along », and obtain a cobordism ¼ such that the boundary L¼ has two connected
components L

0
¼ and L

1
¼, each diffeomorphic to ». The cyclic cover M(m) is the union of

a countable family of copies of ¼ glued successively to each other. The union ¼
k

of
k successive copies is a cobordism. Its boundary L¼

k
has two connected components L

0
¼

k
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and L
1
¼

k
, each diffeomorphic to » (see Section 4 for details). We show that M(M (m, k)) and

M(¼
k
, L

0
¼

k
) have the same asymptotics as kPR (see Section 4). Further, M (¼

k
, L

0
¼

k
)

is equal to the Morse number of the Z[Zn]-complex C
*
(¼I

k
,

'C
L
0
¼

k
), see Section 1 for

definitions. It turns out that the asymptotic behaviour of this Morse number (as kPR)
depends only on the chain homotopy type of C

*
(
'C
M(m)) (moreover it depends only on the

Novikov completion of this complex). The definition and the properties of the correspond-
ing invariant of chain complexes are the subject of Sections 1—3 of the paper. These sections
are purely algebraic. It follows from the author’s earlier result [9] that for m outside a finite
union of integral hyperplanes in H1 (M), the Novikov-completed chain homotopy type of
C

*
(
'C
M(m)) is easily computable. (This is the subject of the second half of Sections 2 and of

Sections 3.) This leads to the effective computation of the asymptotics presented in the main
theorem.

1. MORSE NUMBERS OF CHAIN COMPLEXES

In this section we define the notion of the Morse number for arbitrary chain complexes
over Z[Zn] and we develop some basic properties of these numbers. We assume that the
reader is familiar with Section 3 of [15] and with Section 1 of [11]. We denote Z[Zn] by R.

Terminological remark

Let A
*
, B

*
be chain complexes. We shall denote the chain maps from A

*
to B

*
as

follows: f
*

: A
*
PB

*
, so that f

k
is a homomorphism A

k
PB

k
.

Definition 1.1. An R-complex is a chain complex M0QC
0
QC

1
2QC

k
Q0N of finitely

generated R-modules. The length l (C
*
) of an R-complex C

*
is the maximal number l such

that C
l
O0. An R-complex C

*
is called a free R-complex (or simply f-complex) if every C

i
is

a free finitely generated module over R.

Definition 1.2 (Sharko [15]). Let C
*

be an f-complex over R. The minimal possible
number of free generators of an f-complex D

*
, having the same homotopy type as C

*
, is

called the Morse number of C
*

and denoted by M (C
*
) (or by M

R
(C

*
), if we want to stress

the base ring).

One of the consequences of the Quillen—Suslin theorem [13, 17] is that R is an s-ring, i.e.
every projective R-module is free (see [4, Chapter 5, Section 4]). R is also an IBN-ring, i.e.
the number of free generators of a free module is uniquely determined. Therefore, in the
homotopy type of every f-complex over R there exists a minimal chain complex, i.e.
a complex D

*
such that the number of free generators of D

*
in each dimension is minimal

over all the free complexes in this homotopy type (see [15, Theorem 3.7]).

Definition 1.3. Let A
*

be an R-complex. We call a free model of A
*

a free R-complex
A @

*
together with a chain map a

*
:A @

*
PA

*
which is epimorphic and induces an isomor-

phism in homology.s If a
*
: A @

*
PA

*
, b

*
:B @

*
PB

*
are free models, and f

*
: A

*
PB

*
is

a chain map, then a chain map F
*
: A @

*
PB @

*
is called covering of f if b

*
F

*
" f

*
a
*
. Similar

terminology is accepted for chain homotopies.

sSometimes we shall say (by abuse of terminology) that the complex A @
*

itself is a free model of A
*
.
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LEMMA 1.4. ¸et A
*

be an R-complex. ¹hen there is a free model of A
*

and

(1) Every chain map A
*
PB

*
admits a covering with respect to any free models of A

*
and B

*
.

(2) ¸et h
*

: A
*
PB

*`1
be a chain homotopy from f

*
to g

*
, and F

*
, G

*
be coverings

of f
*
, g

*
, respectively, with respect to some free models of A

*
, B

*
. ¹hen there is a

chain homotopy H
*

from F
*

to G
*
, covering h

*
.

(3) ¹wo free models of a complex A
*

are homotopy equivalent.

Proof. To prove the existence of a free model, we proceed by induction in the length of
A

*
. If l (A

*
)"0, then it follows from the fact that every finitely generated module over R has

a free finite resolution of finite length. To make the induction step, it suffices to construct
a free model for a complex of the type C

*
"M0QA

0

L
1

QC
1

L
2

QC
2
2

d
n

QC
n
Q0N, where

C
i

are free finitely generated modules and A
0

is a finitely generated module.
Let B

*
"M0QA

0
e

QE
0

d
1

QE
1

d
2

Q2N be a finite free resolution of A
0
. There is a chain

map /
*
:C

*
PB

*
, such that /

0
"id. Define now an R-complex

F
*
"M0QE

0

D
1

QC
1
=E

1

D
2

QC
2
=E

2
2N

setting D
1
(c

1
, e

1
)"/

1
(c

1
)#d

1
(e

1
) and D

i
(c

i
, e

i
)"(L

i
(c

i
), d

i
(e

i
)#(!1)i`1/

i
(c

i
)) for i*2.

Define further a map c
*
: F

*
PC

*
to be the projection (x, y)>x when **1 and set

c
0
"e. It is easy to check that F

*
is indeed an f-complex, and that c

*
is a free model. The

points (1) and (2) of our lemma are proved by a standard homological algebra argument;
(3) follows from (2). K

Definition 1.5. The Morse numberM(C
*
) of a complex C

*
is the Morse number of any of

its free models.

PROPOSITION 1.6. ¸et 0QA
*
QB

*
QC

*
Q0 be an exact sequence of R-complexes.

¹hen (1) M(B
*
))M (A

*
)#M(C

*
), and (2) M (A

*
))M(C

*
)#M (B

*
).

Proof. (1) The following lemma reduces the assertion to the case of free R-complexes.

LEMMA 1.7. ¸et 0QA
*
QB

*
QC

*
Q0 be an exact sequence of R-complexes.¹hen there

is a commutative diagram

where a
*
, b

*
, c

*
are free models.

Proof of the ¸emma. Let g @
*
:C @

*
PB @

*
be a covering of C

*
PB

*
with respect to some

free models B @
*
, C @

*
. We can assume that g @

*
is a monomorphism onto a direct summand (the

proof repeats almost verbatim the proof of Lemma 1.8 from [11] and will be omitted). Now,
setting A @

*
"B @

*
/ImC @

*
, we obtain the first line of the commutative diagram above. K

For the case of free complexes the assertion follows from the next one.
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LEMMA 1.8. ¸et 0QA
*
QB

*
QC

*
Q0 be an exact sequence of free R-complexes. ¹hen

there is an exact sequence 0QA @
*
QB @

*
QC @

*
Q0 of free R-complexes such that A @

*
\A

*
,

B @
*
\B

*
, C @

*
\C

*
, and A @

*
, C @

*
are minimal.

The proof of this lemma is an exercise in the theory of minimal complexes ([16, Section
4], and will be left to the reader.

To prove (2) observe that there is an exact sequence Z"M0Q&C
*
QD

*
QB

*
Q0N

where D
*

is the mapping cone of j
*
, and &C

*
is the suspension of C

*
. Now apply the point

(1) to the sequence Z. K

In some cases the first inequality of the preceding proposition turns to equality. We shall
say that a complex C

*
is concentrated in dimensions [k, r] if C

i
"0 for i(k and for i'r.

We denote by F (i, s)
*

the chain complex M0QRsQ0N concentrated in dimensions [i, i].

LEMMA 1.9. (1) For every f-complex C
*

we have M(C
*
=F (i, s)

*
)"M(C

*
)#s. (2) ¸et

C
*
, D

*
be f-complexes, concentrated, respectively, in dimensions [a, b], and [b, c]. ¹hen

M(C
*
=D

*
)"M(C

*
)#M (D

*
).

The proof of this lemma is easily obtained from V. V. Sharko’s criterion of minimality of
chain complexes (see [15, Lemma 3.6]). K

2. A NUMERICAL INVARIANT OF FREE CHAIN R((t))-COMPLEXES

We denote Z[Zn] by R (as in the previous section). Let us start with a free R[[t]]-
complex A

*
. For k3N denote by A[k]

*
the free R-complex A

*
/tkA

*
, and denote its Morse

number by k
k
(A

*
), so k

k
(A

*
)"M

R
(A[k]

*
). Note that k

k
(A

*
)#k

l
(A

*
)*k

k`l
(A

*
). (Indeed,

consider the short exact sequence 0QA[k]
*
QA[k#l]

*
QA[l]

*
Q0 and apply Proposi-

tion 1.6.) Therefore, the sequence Mk
k
/kN

k|N has a limit (see [12, Exercise 98]) which will be
denoted by p (A

*
). It is clear that p (A

*
) is a chain homotopy invariant of A

*
.

Now we shall consider free complexes over the ring R((t))"p~1R[[t]] where p is the
multiplicative set Mtl D l3NN. Let C

*
be such a complex. We say that a chain subcomplex

D
*
LC

*
is a basic subcomplex if (1) D

*
is a free R[[t]]-complex, and (2) p~1D

*
"C

*
. It is

clear that each free complex C
*

over R((t)) has basic subcomplexes.

PROPOSITION 2.1. ¸et C
*

be a free R ((t))-complex. ¹hen the number p (D
*
) is the same for

every basic subcomplex D
*
LC

*
.

Proof. Let D
*
, F

*
be basic subcomplexes. The Noetherian property of R[[t]] and the

condition (2) in the definition of a basic subcomplex imply immediately that there is s3N

such that tsF
*
LD

*
. Since p (D

*
)"p (tkD

*
) we can assume that tsF

*
LD

*
LF

*
. Now for

every l3N we obtain two exact sequences of finitely generated chain complexes over R.

0QF
*
/D

*
QF

*
/tlD

*
QD

*
/tlD

*
Q0 (1)

0QF
*
/tlD

*
QF

*
/tl`sF

*
QtlD

*
/tl`sF

*
Q0. (2)

Applying Proposition 1.6 we deduce from (1) and (2) that k
l`s

(F
*
))C#k

l
(D

*
) where

C does not depend on l. This implies easily that p (F
*
))p (D

*
); by symmetry we obtain

p(F
*
)"p (D

*
). K
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Now we can define an invariant of R ((t))-complexes. Namely, if C
*

is a free R ((t))-
complex, we set s(C

*
)"p (D

*
) where D

*
is any basic subcomplex of C

*
. The number s (C

*
)

depends only on the homotopy type of the R((t))-complex C
*
. Indeed, a version of the

Cockroft—Swan theorem [11, Proposition 1.7] shows that it is sufficient to check that p (C
*
)

does not change when we add to C
*

a complex of the form M0QR((t))
id
QR((t))Q0N. But

this is obvious.
For some free R((t))-complexes the asymptotic properties of the Morse numbers are still

better. We shall say that a sequence a
k
of real numbers is asymptotically linear if &C, a, ∀k :

ak!C)a
k
)ak#C. We shall say that a free R((t))-complex C

*
is of asymptotically linear

growth (abbreviation: aslg) if for some basic subcomplex D
*
LC

*
the sequence k

k
(D

*
) is

asymptotically linear. Similarly to the proof of Proposition 2.1, one can show that in an
aslg-complex every basic subcomplex D @

*
has an asymptotically linear sequence k

k
(D @

*
).

Note also that the property of being aslg is homotopy invariant. We do not know if every
R((t))-complex is aslg, but we shall prove that every complex of a certain class appearing in
our geometrical setting is aslg, and we shall calculate its s-invariant. We need some
definitions. A monomial of R is an element of the form ag where a3Z, and g3Zn. Let
Z"z

k
tk#2#z

l
tl3R[t, t~1] where l, k3Z, k)l, and z

k
, z

l
O0. We shall say that Z is:

f monic if z
k
"$g, g3Zn (Our terminology differs here from the standard one.)

f numerically prime if it is not divisible by an integer not equal to$1.
f special if each z

i
is a monomial in R.

We denote R((t)) by L.

Definition 2.2. Let C
*

be a complex over L. We shall say that C
*

is of principal type if
for every i an isomorphism

H
i
(C

*
)+A

bi
a
j/1

LB= A
qi

a
s/1

L/a (i)
s
LB (3)

is fixed, and for every i, s: (1) a (i)
s
3R[t, t~1] and a (i)

s
is special, non-zero and not monic

(2) a (i)
s

Da (i)
s`1

.

For a complex C
*

of principal type we denote by ,
i
the number of those polynomials

a (i)
s

which are not numerically prime.

THEOREM 2.3. ¸et C
*

be a free L-complex of principal type. ¹hen C
*

is of asymptotically
linear growth, and s (C

*
)"+

i
b
i
#2+

i
,
i
.

Proof. We can assume that all the elements a(i)
s

in (3) are of the form z
0
#2#z

k
tk

where z
0
3Z, z

0
O0. Denote by F (i)

*
the free L-complex M0QLbiQ0N concentrated in

dimensions [i, i]. For o3L and i3N, denote by q(o, i)
*

the free complex
M0QL

o
QLQ0N concentrated in dimensions [i, i#1]. Note that if o3R[[t]] then

q(o, i)
*

has a standard basic subcomplex M0QR[[t]]
o

QR[[t]]Q0N which will be denoted
by q@ (o, i)

*
.

For a given i denote by n (resp. by l) the set of all s such that a (i)
s

is numerically prime
(resp. not numerically prime). Set

TP (i)
*
"a

s|n
q(a (i)

s
, i)

*
, TN(i)

*
"a

s|l
q (a (i)

s
, i)

*
, T(i)

*
"TP(i)

*
=TN(i)

*
.
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(Morally, F(i)
*

corresponds to the free part of the homology H
i
(C

*
), and T(i)

*
to the

torsion part.) The complexes T(i)
*
, TP (i)

*
, TN (i)

*
have basic subcomplexes T @ (i)

*
,

TP@ (i)
*
, TN@ (i)

*
which are obtained as direct sums of the corresponding complexes

q@(o, i)
*
.

Lemma 5.1 of [8] implies that C
*

is homotopy equivalent to the direct sum (over all i) of
the complexes F(i)

*
=T(i)

*
. We call this direct sum principal model for C

*
. Applying

successively Lemma 1.9, it is easy to deduce our theorem from the next lemma.

LEMMA 2.4. For every i, k we have: (1) k
k
(TN@ (i)

*
)"2k,

i
, (2) k

k
(T@(i)

*
)*2k,

i
. (3) For

every i the sequence Mk
k
(TP @ (i)

*
)N

k|N is bounded.

Proof. (1) Fix some i. The condition (2) from the Definition 2.2 implies that there is
a prime number p such that every polynomial a (i)

s
which is not numerically prime is divisible

by p. Abbreviate TN@ (i)
*

to ¸
*
; the inequality k

k
(¸

*
))2k,

i
is immediate. To prove the

inverse inequality consider an F
p
-complex ¸[k]

*
?

R
F
p

(where F
p

is considered as
R"Z[Zn]-module via the trivial F

p
-representation of Zn). It is obvious that M (¸[k]

*
) is

not less than dimH
*
(¸[k]

*
?F

p
) which equals 2k,

i
. A similar argument proves the point

(2). To prove (3) it suffices to show that if o"a
0
#a

1
t#2#a

r
tr3R[t] is special,

numerically prime, and has a
0
O0, then k

k
(q@(o, i)

*
) is bounded. Write a

j
"A

j
g
j
with g

j
3Zn

and A
j
, a

0
3Z, and note that a

0
, A

1
,2, A

r
are relatively prime. Abbreviate q@(o, i)

*
to S

*
. If

k*1 then S[k#r]
*

is a free R-complex of the form M0QRk`r
A

k
QRk`rQ0N where A

k
is

the following (k#r)](k#r)-matrix

A
k
"A

a
0

0 2 0 0

a
1

a
0

2 0 0

F F } F F
a
r

a
r~1

2 0 0

0 a
r

2 a
0

0

2 2 2 a
1

a
0

B . (4)

Denote by B
k
the matrix formed by the first k columns of the matrix A

k
, and denote by

I
k

the ideal of R generated by all k]k subdeterminants of B
k
. The point (2) of the next

lemma implies our assertion.

LEMMA 2.5. (1) I
k
"R; (2) ¹he submodule A

k
(Rk`r) of Rk`r contains a direct summand of

Rk`r, which is a free module of rank k.

Proof. The point (2) follows from the point (1) by a standard argument based on the
Quillen—Suslin theorem (we leave the details to the reader). Proceeding to the proof of the
point (1), note that ak

0
3I

k
. Therefore we can assume that a

0
O$1. It suffices to show that

for every prime number p from the prime decomposition of a
0
there is an element C3R such

that 1#pC3I
k
. To show this, recall that the numbers A

j
are relatively prime. So there is

i such that p DA
j

for j(i, and p°A
i
. Consider the k]k subdeterminant of the matrix

B
k
formed by all the columns and by the lines from i#1 to i#k. The terms of the principal

diagonal are all equal to A
i
, and the terms above the diagonal are divisible by p. Therefore

this subdeterminant equals Q#pC where Q is a monomial of the form Q"qg with
(q, p)"1, and Lemma 2.5 follows. This finishes the proof of Theorem 2.3. K
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Remark 2.6. Let ¸"Z[t, t~1], Ķ "Z ((t)). The homomorphism e :ZnPM1N extends to
ring homomorphisms e :R[t, t~1]P¸ and eL :LP Ķ . Therefore, for every L-complex C

*
we can form an Ķ -complex CM

*
"C

*
?L Ķ . Assume that C

*
is of principal type. Using the

homotopy equivalence C
*
\=

i
(F(i)

*
=T(i)

*
) from the proof of Theorem 2.3, it is easy to

see that CM
*

is also of principal type and

H
i
(CM

*
)+A

bi
a
j/1

ª̧ B= A
qi

a
s/1

Ķ /a(i)
s

Ķ B (5)

with a (i)
s
"e(a (i)

s
). Since a (i)

s
are special and not monic, b

i
and q

i
are equal, respectively, to the

rank and to the torsion number of H
i
(CM

*
) over the principal ring Ķ . It is easy to see that the

above decomposition satisfies Definition 2.2; therefore, CM
*
, is aslg. Further, a (i)

s
is numer-

ically prime if and only if a (i)
s

is, and this implies s (C
*
)"s (C

*
).

3. A NUMERICAL INVARIANT S (C
*
, m)

In this section ""Z[Zn`1], C
*

is a free "-complex, and m : Zn`1PZ is a non-zero
homomorphism. We define a numerical invariant S (C

*
, m). For the cohomology classes

m outside a finite union of integer hyperplanes we calculate S (C
*
, m) in terms of the reduced

Fitting sequences of the boundary operators of C
*

(the mentioned finite union of integer
hyperplanes depends on C

*
). An element z3" is called m-monic if z"$g#z

0
where

g3Zn`1 and supp z
0
LMh3Zn`1 Dm (h)(m (g)N. An element z is called m-special if any two

different elements a, b3supp z satisfy m (a)Om(b). We denote by Sm the multiplicative subset
of all m-monic polynomials, and we denote by "

(m) the localization S~1m ".

Definition 3.1. A subset XLZk will be called small if it is a finite union of integer
hyperplanes.

THEOREM 3.2 [9, Theorem 0.1]). ¹here is a small subset NLHom(Zn`1, Z) such that for
every m N N and every p we have

S~1m H
p
(C

*
)+A

bp(C*,m)
a
i/1

"
(m)B=A

qp (C*,m)
a
j/1

"
(m)/a (p)

j
"

(m)B (6)

where a(p)
j

3" are non-zero and not m-monic elements of " (depending on m), and a (p)
j

D a(p)
j`1

.

Proof (Sketch). We shall recall here the basic idea of the proof of Theorem 3.2 following
[8, 9]; see [9] for the full proof. Let m :Zn`1PR be a non-zero homomorphism. Similar to
the above, we define the notion of m-monic polynomial, and we introduce the ring
"

(m)"S~1m ".s (sWe take here the occasion to note that for the first time the localization
technique was applied to Novikov rings and Novikov inequalities in paper [2] of Farber. In
this paper Farber considers the ring S~1m ", where ""Z[Z], and m is the inclusion of Z to
R.) Recall next the definition of the Novikov ring "~m (see, e.g. [11, p. 326]). Denote by "ªª the
abelian group of all the linear combinations of the form j"+

g|Zn`1 n
g
g where n

g
3Z and the

sum may be infinite. Let "~m be the subset of "ª ª consisting of j3"ª ª such that for every c3R

the set supp jWm~1([c,R[) is finite. This subset is called Novikov ring (it is not difficult to
see that "~m has a natural ring structure).

Proceeding to Theorem 3.2, recall that Theorem 1.4 of [8] asserts that if m is injective
then "

(m) is euclidean. (The proof is based on a theorem by Sikorav, which asserts that if m is
injective then "~m is euclidean, see [8, Theorem 1.1]).
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Therefore, we obtain the decomposition (6) for any monomorphism m. This implies that
(6) is true for every homomorphism g belonging to an open conical set containing m (see [8,
the beginning of Section 7]). Since the monomorphisms are dense in Hom(Zn`1, R), we
obtain the decomposition (6) for every m belonging to some open and dense conical subset
º in Hom(Zn`1, R).

Analysing further the algebraic structure of the rings "~m , "
(m) (it is done in [9]), one can

prove that º can be chosen in such a way that the complement Hom(Zn`1, R)Cº is a finite
union R"Z

i
¸
i

of hyperplanes ¸
i
. Moreover, each ¸

i
is of the form l

i
?R where

l
i
3Hom(Zn`1, Z) is an integer hyperplane. That proves Theorem 3.2. (See [9] for more

information about the numbers b
p
(C

*
, m), q

p
(C

*
, m).) K

The following proposition relates the above numbers and the elements a (p)
j

to the Fitting
invariants of the boundary operators of C

*
. We need some definitions. Let A : F

1
PF

2
be

a homomorphism of free finitely generated "-modules. Let J
0
L2LJ

r
be the reduced

Fitting sequence of A, let o
i
3" be the g.c.d. of the elements of J

i
, and denote o

i
/o

i`1
by

f
i
(A). Let m :Zn`1PZ be a non-zero homomorphism. Denote by k (A, m) the number of

those o
i

which are not m-monic. Set R
j
(A, m)"f

k~j
(A, m) where k"k (A, m). Now let

C
*
"M0Q2QC

i~1

L
i

QC
i
Q2N be a free "-complex.

PROPOSITION 3.3. Assume that for m3Hom(Zn`1, Z) and every p the decomposition (6)
holds. ¹hen (1) b

p
(C

*
, m)"B

p
(C

*
). (2) q

p
(C

*
, m)"k (L

p`1
, m). (3) For every p, s the elements

a (p)
s

and R
s
(L

p`1
, m) are equal up to multiplication by a m-monic element. (4) Q

p
(C

*
) equals to

the number of not numerically prime a (p)
s

.

Proof. Recall that the reduced Fitting sequences are homotopy invariants of C
*
. This

implies that k(L
i
, m) and , (L

i
, m) are homotopy invariants of C

*
for fixed m. (1) is obvious.

Further, let 0)p)n and let J
0
L2LJ

r
be the reduced Fitting sequence for

L
p`1

: C
p`1

PC
p
. Then the reduced Fitting sequence FR(p) of the localized complex is

a part of the sequence S~1m J
0
L2LS~1m J

r
, and the g.c.d. of S~1m J

i
is still o

i
. Therefore, the

sequence FR(p) has k(L
p`1

, m) terms. Using the principal model for C
*
, it is easy to prove

that FR(p) equals to the sequence of principal ideals (a (p)
1

)2 ) a (p)
N

), (a (p)
1

)2 ) a (p)
N~1

),2,(a (p)
1

)
where N"q

p
(C

*
, m). (2)— (4) follow easily. K

Let m"lmM where mM : Zn`1PZ is an epimorphism. Choose an isomorphism Ker m+Zn,
and an element t3Zn`1 such that mM (t)"!1. We obtain a decomposition Zn`1"Ker m=Z

and an isomorphism I (m) :"+R[t, t~1]. Consider the free L-complex CK
*
(m)"C

*
?"L,

where C
*

is an R[t, t~1]-module via the isomorphism I(m)~1. Set S (C
*
, m)"s (CK

*
(m)) (it is

easy to check that S (C
*
, m) depends indeed only on m and C

*
).

THEOREM 3.4. ¹here is a small subset MLHom(Zn`1, Z) such that for every m N M the
complex CK

*
(m) is of asymptotically linear growth and S(C

*
, m)"B (C

*
)#2Q(C

*
).

Proof. The I (m)-image of a m-monic polynomial is obviously invertible in L; therefore,
the homomorphism "PR[t, t~1]PR((t)) factors through "

(m) . Therefore, for every m out-
side a small subset N formula (3) holds with C

*
"CK

*
(m). The complex CK

*
(m) is not

necessarily of principal type, since the polynomials a (i)
s

in the decomposition (3) are not
necessarily special. But Proposition 3.3 implies that the elements a (i)

s
in the decomposition
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(3) can be chosen between the elements of the finite set Mf
j
(L

i`1
)N. Therefore, adding to

N some integer hyperplanes if necessary, we can assume that all a (i)
s

are special. Now our
theorem follows from Theorem 2.3. K

4. PROOF OF THE MAIN THEOREM

Let M be a closed connected manifold and m3H1(M, Z) be an indivisible cohomology
class. Denote by Pm : M(m)PM the infinite cyclic covering such that P*

m (m)"0. Choose
a generator t3Z+n

1
(M)/Ker m of the structure group of Pm such that m (t)"!1. Let

f :MPS1 be a Morse map representing m, and let » be its regular level surface, say,
»" f~1(j). Then f lifts to a Morse function F : M(m)PR and » lifts to F~1(j@)LM (m).
Denote by »~ the subset F~1(]!R, j@]). For k*1 denote by ¼

k
the cobordism

F~1([j@!k, j@]), L¼
k
+»\tk», and denote by a (k, ») its Morse number, i.e. the minimal

number of critical points of a Morse function on the cobordism ¼
k
. Note that

a(k#n, »))a (k, »)#a (n, »). Therefore, the sequence a (k, »)/k has a limit as kPR.
Denote this limit by a (»). It is easy to see that a(» ) depends only on M and m, so we denote
it by a (M, m). An elementary construction, using the gluing of the upper part » of L¼

k
to the

lower part tk», allows to obtain the inequality M (M(m, k)))a(k, »)#2M(» ). In particu-
lar, if m is represented by a fibration over S1, the sequence M(M(m, k)) is bounded.

In general, only that much we can say about the numbers a (k, ») and their relation to
the asymptotics of the Morse numbers of cyclic covers. However, if the fundamental group
of M is free abelian and dimM*6, one can say much more.

PROPOSITION 4.1. ¸et M be a closed connected manifold with a free abelian fundamental
group. Assume that dimM*6. ¸et m3H1 (M), mO0. ¹hen the sequence a (k, »)!
M(M(m, k)) is bounded.

Proof. Let n
1
(M)+Zn`1, n*0. An argument similar to the one used in [3, p. 325]

shows that one can choose » above such that the embedding »)M induces an isomor-
phism n

1
(»)PKer m (such » will be called admissible m-splittings, see [8, p. 371]). In this

case all the embeddings »L¼
k
LM (m)Mtk» induce isomorphisms of n

0
and of n

1
.

Choose an element ¹3Zn`1, such that m (¹ )"!1. Let M(m, k)"MI /¹k, then there is
a Zn-covering M(m, k)PM(m, k). Choose a triangulation of M such that » is a subcomplex
of M; then we obtain a t-invariant triangulation of M(m) and the corresponding triangula-
tions of all the covers. There are two exact sequences of corresponding Z[Zn]-complexes:

0PC
*
(»I )PC

*
(M (m, k))PC

*
(M(m, k), »I )P0 (7)

0PC
*
(»I )PC

*
(¼I

k
,
'C
tk» )PC

*
(M(m, k), »I )P0 (8)

Proposition 1.6 implies that there is C"C(» ) such that for every k'0 we have:
M(C

*
(M (m, k)))*M (C

*
(¼I

k
,
'C
tk» ))!C. Since M(C

*
(¼I

k
,
'C
tk» ))"a (k, ») (see the proof

of Corollary 6.3 in [15]), our Proposition is proved. K

Proof of the Main ¹heorem. The point (1) follows immediately from Proposition 4.1
(with a (M, m)"lim

k?=
M(M(m, k))/k). To prove (2) note that Theorem 3.4 implies that for

all m3H1(M) outside a small subset MLH1(M) the complex (C
*
(MI )) K (m) is aslg, and

S(C
*
(MI ), m)"B(M)#2Q(M). Note further that for every admissible m-splitting » the
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complex D
*
"C

*
(»I ~) ?" R[[t]] is a basic subcomplex of C

*
(MI ) ?" R((t)), and that

k
k
(D

*
)"M(C

*
(¼I

k
,
'C
tk» ))"a(k, »). Now just apply Proposition 4.1. K

Remark 4.2. A similar argument, together with Remark 2.6, shows that for m outside
a small subset of H1 (M) the sequence (B(M)#2Q(M))k!MZ(C

*
(M(m, k))) is bounded

where C
*
(M(m, k)) is the chain complex of M (m, k), defined over Z (see Definition 1.2 for the

definition of MZ( ) )).

5. FURTHER RESULTS AND CONJECTURES

5.1. Stable Morse numbers

Let M be a closed connected manifold. Recall that a stable Morse function on M is
a Morse function f : M]RNPR such that there is a compact KLM]RN, and a non-
degenerate quadratic form Q of index 0 on RN such that f (x, y)"Q(y) outside K. Let
f : M]RNPR be a stable Morse function. Denote by mJ

p
( f ) the number of critical points of

f of index p#N/2. The Morse—Pitcher inequalities hold: mJ
p
( f )*b

p
(M)#q

p
(M)#

q
p~1

(M).
Denote by MS(M) the minimal possible number of critical points of a stable Morse

function on M; we have MS(M))M(M).

THEOREM 5.1. ¸et dimM*6, n
1
(M)+Zn`1, n*0. ¹here is a subset M3H1 (M) which

is a finite union of integral hyperplanes in H1(M), and for every m NM there is a real number
a such that for every k3N we have

k (B(M)#2Q(M))!a)MS(M (m, k)))k (B(M)#2Q(M))#a.

For the proof just recall that (by Remark 4.2) for every m outside a small subset of H1(M)
we have k(B (M)#2Q(M)))MZ(C

*
(M(m, k)))#C.

We refer to [1] for a systematic exposition of the theory of stable Morse functions and
its applications to Lagrangian intersection theory.

5.2. Non-generic cohomology classes m3H1 (M)

Here we construct a manifold M with n
1
(M)+Z2 and dimM*6, and a class m3H1(M)

such that k (M, m)OB (M)#2Q(M). Let N be a closed connected manifold with n
1
(N)+Z,

dimN*5 and B (N)O0. Set M"N]S1. Let j :n
1
(M)PZ, resp. m : n

1
(M)PZ, be epi-

morphisms with Ker j"n
1
(N), resp. Ker m"n

1
(S1). Then j is represented by the fibration

N]S1PS1. Therefore, there is an open cone CLH1 (M, R) containing j, such that every
integral non-divisible j@3C can be represented by a fibration, and so k (M, j@)"
B(M)#2Q(M)"0.

Now we shall show that k (M, m)O0. Note that M(m, k)"N
k
]S1 where N

k
is the k-fold

cyclic cover of N, and therefore M(M(m, k))*MZ (C
*
(N

k
]S1)). We shall obtain a lower

estimate for MZ(C
*
(N

k
]S1)). Let m

0
:n

1
NPZ be the restriction m D n

1
N. Let NM PN be the

infinite cyclic covering and »LN be an admissible m
0
-splitting. Let ¼

k
be the correspond-

ing cobordism in NM . Using exact sequences similar to the exact sequences (7) and (8) from
Section 4, it is easy to prove that MZ(C

*
(N

k
]S1))!MZ(C

*
(¼

k
]S1, tk»]S1)) is bounded.

Let X
k
"¼

k
/tk», ½

k
"(¼

k
/tk»)]S1. Then MZ(C

*
(½

k
))"+

p
(b

p
(½

k
)#q

p
(½

k
)#q

p~1
(½

k
)).

Since H
*
(X

k
]S1)"H

*
(X

k
)=H

*~1
(X

k
) we have q

p
(X

k
]S1)*q

p
(X

k
), and MZ(C

*
(½

k
))*
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MZ(C
*
(X

k
)). Recall from Proposition 4.1 that the sequence M (N

k
)!

MZ(C
*
(X

k
)) is bounded. Therefore, MZ(C

*
(N

k
]S1))*M(N

k
)#C*kB(N)#C@ (where

C and C@ do not depend on k), and, finally, k(M, m)*B (N).

5.3. Non-cyclic finite coverings

The Main Theorem of the present paper allows also to deal with some non-cyclic finite
coverings.

PROPOSITION 5.2. ¸et M be a closed connected manifold, dimM*6, and
n
1
(M)+Zn`1, n*0. ¸et M

k
PM be the finite covering corresponding to the subgroup

kZn`1. ¹hen

lim
k?=

M(M
k
)

kn`1
"B(M)#2Q(M).

Proof. We shall give only the main idea of the proof. Let m : n
1
(M)PZ be an epimor-

phism not belonging to the small set M of the Main Theorem. Then M
k
PM factors

through M(m, k)PM, and therefore M (M
k
)/kn)k(B (M)#2Q(M))#C. To obtain the

lower estimate, note that the Zn-covering M(m, k)PM(m, k) factors through M (m, k)PM
k

which corresponds to the subgroup G
k
"kZnLZn. Therefore, M(M

k
)*

MZ[G
k
] (C*

(M(m, k))). To obtain the lower estimate for MZ[G
k
] (C*

(M(m, k))), use (7) and (8) to
reduce the question to finding the corresponding lower estimate for MZ[G

k
] (C*

(¼I
k
,
'C
tk» )).

Then proceed similarly to the proof of the Main Theorem. K

It seems that a similar result must hold for more general systems of non-cyclic finite
coverings. To discuss a more general setting we need some definitions. Let G be a group.
A sequence of subgroups G"G

0
MG

1
M2 will be called a tower if for every i the index of

G
i
in G is finite. It will be called a nested tower if, moreover, Y

n
G

n
"M0N.

If M is a closed connected manifold with n
1
(M)"G and G"MG

n
N is a tower of

subgroups of n
1
(M), then there is the corresponding tower of finite coverings

M"M
0
Q2QM

n
2 of M. The sequence M(M

k
)/ DG/G

k
D is decreasing. Therefore, it has

a limit which will be denoted by k (G). Recall a theorem of Lück [5], saying that if G is
nested, then the limit of the sequence b

p
(M

k
)/ DG/G

k
D exists and is equal to b(2)

p
(M).

Problem. Is it true in general (at least for dimM*6) that k(G) does not depend on the
choice of the nested tower G?

We believe that k (G) does not depend on G for the case of free abelian fundamental
group. Here is a result in this direction. Let G"Zn`1. For a tower G"

MG"G
0
MG

1
M2N we denote max

i
m(G/G

i
) by r (G) (here m(H) stands for the minimal

number of generators of H). Denote by G*i+ the tower G
i
MG

i`1
M2 The sequence

r(G*i+) is decreasing, denote its limit by o (G); then o (G))rkG.

PROPOSITION 5.3. ¸et M be a closed connected manifold, dimM*6, n
1
(M)+Zn`1,

n*0. ¸et G"MG
k
N be a tower, and let M

k
PM be the finite covering corresponding to

G
k
Ln

1
(M). Assume that o (G)"n#1. ¹hen

lim
k?=

M (M
k
)

DG/G
k
D
"B (M)#2Q(M) (9)
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Proof. It is not difficult to show that if o (G)"n#1 then for each k there are a
k
, b

k
3N

such that a
k
GMG

k
Mb

k
G with a

k
, b

k
PR as kPR. Now our proposition follows from

Proposition 5.2. K

CONJECTURE. Equality (9) is true for every nested tower in Zn`1.

Acknowledgements—I am grateful to M. Gromov for a stimulating discussion on the subject. He suggested, in
particular, that asymptotically the numbers M (N) above should be related to Novikov numbers. He indicated also
that the Morse numberM (M (m, k)) should have the same asymptotics as the Morse number of the pair (¼

k
, L

0
¼

k
)

(see Proposition 4.1 of the present paper).
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