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Sjl2p is specifically involved in early steps of endocytosis intimately
linked to actin dynamics via the Ark1p/Prk1p kinases
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Abstract Sjl2p is one of three yeast phosphoinositide 5 0-phos-
phatases that belong to the conserved family of synaptojanins.
Here, we show that Sjl2p is specifically associated with cortical
actin patches which aggregate upon loss of the actin-regulating
kinases Ark1p and Prk1p. The Sjl2p-containing clumps overlap
with clathrin and early endocytic structures generated indepen-
dently of NSF/Sec18p, but not with endosome- and trans Golgi
network-derived membranes. Consistent with the finding that
Sjl2p can bind to clathrin heavy chain in vitro, our results suggest
that Sjl2p localizes to smooth endocytic vesicles that may be de-
rived from clathrin-coated structures.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Phosphorylated derivatives of phosphatidylinositol, collec-

tively called phosphoinositides (PIs), are short-lived lipids with

signaling functions in diverse processes such as cell prolifera-

tion, actin cytoskeletal rearrangements, and vesicular traffic.

Different PIs are concentrated in diverse subcellular compart-

ments, with for example phosphatidylinositol 4-phosphate

found on Golgi membranes, phosphatidylinositol 4,5-bisphos-

phate at the plasma membrane, and phosphatidylinositol 3-

phosphate on early endosomes. The spatial segregation of

the various PIs may be part of the mechanism by which the

direction of membrane traffic is controlled [1]. PIs increase

the affinity of membranes for peripheral membrane proteins

with a role in the sorting of cargo molecules or in the docking

and fusion of transport vesicles. Therefore, membrane traffic is

likely regulated by the mechanisms that control the activity of

the enzymes producing and consuming PIs.

The differential phosphorylation of PIs is mediated by spe-

cific kinases localized to distinct subcellular compartments.

Conversely, a set of phosphatases and lipases regulates PI

turnover, thereby controlling the distribution and duration

of signaling events mediated by PI second messengers. Mem-

bers of the highly conserved synaptojanin protein family are
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PI 5 0-phosphatases that have been demonstrated to fulfill

essential roles in membrane trafficking and actin dynamics in

all eukaryotes. Genetic disruption of mouse synaptojanin 1,

the Caenorhabditis elegans ortholog unc-26, and the Drosophila

melanogaster ortholog Synl leads to the accumulation of regu-

larly spaced arrays of densely coated vesicles [2–4], suggesting

that synaptojanin proteins function in clathrin uncoating or

regulate cytoskeleton vesicle interactions during endocytosis,

or both.

Yeast cells express three synaptojanin-like proteins, Sjl1p,

Sjl2p, and Sjl3p, also designated as Inp51p, Inp52, Inp53p.

Single Dsjl1, Dsjl2, Dsjl3 null mutants, and the Dsjl1 Dsjl3 dou-

ble mutant are viable and display no obvious deficiencies.

However, the Dsjl1 Dsjl2 and Dsjl2 Dsjl3 double mutants and

temperature-sensitive sjl2 alleles in a triple Dsjl1 Dsjl2 Dsjl3
background exhibit various phenotypes, including impaired

cell growth, defects in receptor-mediated and fluid-phase endo-

cytosis and actin organization, and abnormal morphologies of

the plasma membrane with massive invaginations [5–8]. While

these mutant studies emphasized the redundant functions of

the three synaptojanin-like proteins, several lines of genetic

evidence rather suggested specific roles for the three family

members. Mutants in PAN1, SAC6, and in genes of the cell

integrity pathway show genetic interactions with the deletion

of SJL1, and mutations in SJL3 in combination with a temper-

ature-sensitive allele of clathrin heavy chain (CHC1) cause a

defect in clathrin-dependent sorting at the trans Golgi network

(TGN) [7,9–11].

In this work we present further evidence for a major and spe-

cific role of Sjl2p during early steps of endocytosis. We demon-

strate a direct and unique connection between Sjl2p and actin

dynamics via the actin-regulating kinases Ark1p and Prk1p

and provide multiple evidence for an association of Sjl2p with

primary endocytic vesicles. Our results corroborate the idea of

distinct roles and subcellular localizations of the yeast syna-

ptojanin-like proteins.
2. Materials and methods

2.1. Strains, media, and DNA manipulations
Yeast strains (Table 1) were grown in standard rich media (YPD) or

synthetic media (SD) supplemented with the appropriate amino acids.
SJL1-HA, SJL2-HA, SJL3-HA, SJL2-GFP, and SJL2-13-Myc spe-

cific fragments were generated by PCR using p3xHA-HIS5 (S. Munro,
Cambridge, UK), pFA6a-3HA-kanMX6, pFA6a-13Myc-kanMX6,
and pFA6a-GFP(S65T)-kanMX6 as templates [12] and were inserted
at the chromosomal SJL1, SJL2, and SJL3 loci by homologous
recombination. The 3-HA-CLC1 integration cassette was generated
blished by Elsevier B.V. All rights reserved.
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Table 1
Strains used Böttcher et al.

Yeast strain Genotype Source

BS64 MATa his4 ura3 leu2 lys2 bar1-1 [13]
BS1128 MATa ura3 leu2 lys2 SJL2::3-HA-HIS5 (S. pombe) bar1-1 This study
BS1175 MATa ura3 leu2 SJL2:: 3-HA-HIS5 (S. pombe) sec7 bar1-1 This study
BS1248 MATa ura3 leu2 lys2 his4 SJL2::13-Myc-kanr bar1-1 This study
BS1271 MATa ura3 leu2 SJL2::3-HA-HIS5 (S. pombe) Dark1::HIS3 Dprk1::LEU2 This study
BS1373 MATa ura3 leu2 lys2 Dark1::HIS3 Dprk1::LEU2 SJL1::3-HA-HIS5 (S. pombe) This study
BS1376 MATa ura3 leu2 lys2 Dark1::HIS3 Dprk1::LEU2 SJL3::3-HA-kanr This study
BS1417 BS1271 + pRS316-prk1-as3 This study
BS1430 BS1376 + pRS316-prk1-as3 This study
BS1446 MATa ura3 leu2 lys2 Dark1::HIS3 Dprk1::LEU2 SJL2::GFP-kanr + pRS316-

prk1-as3
This study

BS1516 MATa ura3 leu2 his3 ade2 lys2 CLC1::3-HA-kanr bar1-1 This study
BS1521 MATa ura3 leu2 his3 lys2 Dark1::HIS3 Dprk1::LEU2 CLC1::3-

HA-kanr + pRS316-prk1-as3
This study

BS1569 MATa ura3 leu2 lys2 Dark1::HIS3 Dprk1::LEU2 CLC1::3-HA-kanr SJL2::13-
Myc-kanr+ pRS316-prk1-as3

This study

CB42 MATa ura3 leu2 lys2 SJL1::3-HA-HIS5 (S. pombe) SJL2-13-Myc-kanr

SJL3::3-HA-kanr bar1-1
This study

CB84 MATa ura3 leu2 lys2 his4 CLC1::3-HA-kanr bar1-1 This study
CB175 MATa ura3 leu2 his4 SJL3::3-HA-kanr sec7 bar1-1 This study
DDY1885 MATa ura3 his3 lys2 leu2 prk1D::LEU2 ark1D::HIS3 David Drubin,

Berkeley, CA
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by subcloning the promotor of CLC1 (bp �538 to �1) into the BglII
and PacI restriction sites of pFA6a-kanMX6-PGAL1-3HA [12]. This
plasmid served as template to generate the kanr-pCLC1-3-HA-CLC1
cassette, which was integrated into the chromosomal CLC1 locus. Dip-
loid transformants were purified and correct integration was verified
by PCR. Strains with multiple epitope-tagged genes were generated
by crossing of haploids, sporulation of diploids, and selection of hap-
loids by expression analysis.
DNA manipulations and yeast transformations were performed by

standard techniques.

2.2. Immunofluorescence microscopy
Indirect immunofluorescence microscopy was performed as de-

scribed [13]. Single stainings were performed with the monoclonal
mouse a-HA antibody (16B12, Covance, 1:1000) and a Cy3-conjugated
goat anti-mouse Fab fragment (Jackson ImmunoResearch, 1:1000).
For double stainings, dilutions for the primary antibodies were as fol-
lows: monoclonal mouse a-HA (16B12, Covance) 1:1000, monoclonal
rat a-HA (clone 3F10, Roche) 1:50, monoclonal mouse a-Pep12p
(Molecular Probes) 1:100, affinity purified rabbit a-Ypt51p [13] 1:50,
rabbit a-c-Myc (Santa-Cruz Biotechnology) 1:150, and mouse a-c-
Myc (Oncogene) 1:100. All secondary antibodies were affinity purified
and used at a dilution of 1:1000; Alexa594-conjugated goat anti-mouse
IgG; Alexa488-conjugated goat anti-rat IgG; Alexa488-conjugated goat
anti-rabbit IgG (Molecular Probes). GFP-Act1p was directly observed
with appropriate filter sets.
FM4-64 labelling was performed essentially as described [14]. Inter-

nalization was carried out for 10 min at 25 �C in the presence of
DMSO or 0.04 mM 1NA-PP1. Cells were harvested, resuspended in
fresh SD medium with 10 mM NaF, 10 mM NaN3, and 0.04 mM
1NA-PP1, and viewed under a Zeiss Axiophot microscope equipped
with appropriate Zeiss filters for green fluorescent protein (GFP) and
FM4-64 fluorescence.

2.3. Generation of the prk1-as3 allele
A PRK1 fragment (nucleotide 302–1222) encoding the M108G

mutation was amplified with the Taq polymerase (Roche) from geno-
mic DNA using the oligonucleotides Nde,PRK1,mut (5 0-CAACCA-
TATGAGGTGTTTGTGTTAGGTGAATTTTGTGAACG-3 0) and
3 0Spe,PRK1 (5 0-CATCAGAAAGTGGAACG-3 0) and subcloned into
pGEMT-easy by NdeI/SpeI. Next, the C175A mutation was intro-
duced using the GeneEditorTM in vitro site-directed mutagenesis
system (Promega) and the primer 5 0prk1C175A (5 0-TGGCTTGTAC-
AAAGTTGCTGATTTTGGTTCC-3 0), generating pPRK1-M108G/
C175A. Another PRK1 fragment encoding nucleotide �441 to 340,
amplified by PCR, was subcloned into pPRK1-M108G/C175A via
SacI/NdeI restriction sites. The combined SacI/SpeI PRK1-M108G/
C175A fragment was subcloned into pRS316, opened with SpeI/SalI
and a third PRK1 SpeI/SalI fragment encoding nucleotide 1151–
2837, amplified by PCR, was inserted, generating pRS316-prk1-as3.
All PCR-amplified regions were sequenced to verify the mutations
and to exclude the presence of PCR errors.

2.4. Isolation of clathrin-coated vesicles
The procedure was performed according to [15], starting with 10 g

(wet weight) of CB42 cells. The 100000 · g pellet was homogenized
in 1 ml of isolation buffer and centrifuged for 1 min at 13000 rpm in
a microcentrifuge. The supernatant was separated on a Sephacryl S-
1000 column (80 cm long, 10 mm wide). Twenty five 4 ml fractions
were collected, of which fractions #6 to #19 were analyzed by SDS–
PAGE and immunoblotting using antibodies against Chc1p (S. Lem-
mon), PGK (Molecular Probes), actin (Roche), HA (Covance), Myc
(Oncogene), and [125I] Protein A. Quantitation of immunoreactive
bands was performed with the phosphorimager (Molecular Dynamics).
For electron microscopy fractions #10 to #13 were fixed overnight

in the presence of 2.5% (wt/vol) glutaraldehyde. After adsorption to
freshly glow-discharged grids coated with a carbon support film, the
mounted samples were washed with water and negatively stained with
2% aqueous uranyl acetate. Micrographs were taken at a primary mag-
nification of 52000· in a Philips CM 10 transmission electron micro-
scope.

2.5. Affinity chromatography with glutathione S-transferase fusion

proteins
Soluble glutathione S-transferase (GST), GST-Ypt7, and GST-

Sjl2890-1183 were purified according to the manufacturer’s instructions.
To prepare the yeast cell lysate, 1.75–2 · 1010 cells (CB84) were con-
verted to spheroplasts in 50 ml of 10 mM Tris/HCl (pH 7.5), 0.8 M sor-
bitol, 1 mM DTT, 0.5 mM PMSF, and 0.01 mg/ml Zymolyase 100T.
Spheroplasts were lysed by dounce homogenization in 7 ml ice-cold ly-
sis buffer (20 mM Hepes/KOH [pH 7.2], 0.1 M KCl, 2 mM MgCl2,
0.2 M sorbitol, 0.6% (wt/vol) Triton X-100, 1 mM DTT) containing
protease inhibitors (0.5 mM PMSF, chymostatin, leupeptin, antipain,
and pepstatin [each 5 lg/ml]). The lysate was centrifuged at
22000 · g for 30 min and one milliliter of the supernatant was incu-
bated with 40 ll bed volume of glutathione–Sepharose 4B preloaded
with 80 lg of GST or GST-fusion proteins at 0 �C for 1 h. After wash-
ing the beads four times (200 · g, 2 min) with lysis buffer, bound pro-
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teins were eluted by three consecutive incubations with 250 ll of
20 mM reduced glutathione, 100 mM Tris/HCl (pH 9.0), 0.2 M NaCl,
5 mM DTT, 0.1% Triton X-100. Proteins were TCA-precipitated from
the pooled eluates and analyzed by SDS–PAGE, Coomassie brilliant
blue staining, and immunoblotting with a-Chc1p antibodies.
Fig. 1. Sjl2p colocalizes with actin clumps upon inactivation of the
Ark1p/Prk1p kinases. (A) Untagged cells (BS64, control), cells
expressing HA-Sjl2p in a wild-type (BS1128, wt) and sec7 (BS1175)
background, and a mixture of untagged and wild-type epitope-
tagged cells were stained with an anti-HA antibody; sec7 cells were
fixed after a 2 h shift to 37 �C in medium containing 0.1% glucose;
bar, 5 lm. (B) Untagged Dark1 Dprk1 cells (DDY1885) and Dark1
Dprk1 cells expressing HA-Sjl2p (BS1271) were stained with an anti-
HA antibody. (C) BS1271 cells expressing GFP-Act1p were stained
for HA-Sjl2p using an Alexa594-conjugate as secondary antibody.
GFP-Act1p was detected by autofluorescence. (D) Dark1 prk1-as3
cells expressing HA-Sjl2p (BS1417) were incubated with 1NA-PP1 as
indicated, fixed, and processed for indirect immunofluorescence as
described in (A).
3. Results

3.1. Sjl2p localizes to punctate structures, which fully collapse in

a mutant devoid of the actin-regulating kinases Ark1p and

Prk1p

To address the question where in the cell Sjl2p functions, we

analyzed its subcellular localization by indirect immunofluo-

rescence and cell fractionation. We followed epitope-tagged

versions of Sjl2p that either carried three copies of the hemag-

glutinin (HA), 13 copies of the c-Myc epitope, or the GFP at

the C-terminus. These functional Sjl2p proteins were expressed

from the chromosomal locus at wild-type levels (see Section 2).

Staining of HA-Sjl2p by indirect immunofluorescence re-

vealed small punctate structures that were clearly visible above

the background distributed evenly throughout the cell

(Fig. 1A). These dots were not derived from endosomes or

the Golgi complex, since they did not colocalize with endo-

somal marker proteins (Wicky and Singer-Krüger, unpub-

lished) and did not collapse into large clusters in a vps27

(not shown) and a sec7 (Fig. 1A) mutant, in which a reorgani-

zation of endosomal and Golgi proteins has been demon-

strated in various cases [16,17]. Furthermore, a concentration

of HA-Sjl2p within a defined subcellular region, like sites of ac-

tive growth, was not readily obvious. This finding was a bit

surprising, since Bsp1p, a recently identified Sjl2p-binding pro-

tein, was found to colocalize with cortical patches [18], but

may be explained by lower expression levels of Sjl2p. The colo-

calization of Bsp1p with actin scaffolds was most apparent in

the Dark1Dprk1 mutant [19], in which the HA-Bsp1p staining

pattern collapsed into large cytoplasmic clumps that contained

actin and further cortical patch components [18]. The Ark1p/

Prk1p kinases are members of a new family of serine/threonine

kinases implicated in the regulation of critical components of

the endocytic network [20]. When we studied the localization

of HA-Sjl2p in Dark1 Dprk1 cells, we in fact observed a dra-

matic collapsing of the Sjl2p-positive structures generally into

one or few large aggregate(s) per cell (Fig. 1B). Double label

immunofluorescence revealed that the Sjl2p containg clumps

were positive for actin (Fig. 2C) and Abp1p (not shown), an

actin-binding protein intimately associated with cortical actin.

Hence, in the Dark1 Dprk1 mutant we could indeed demon-

strate a localization of Sjl2p to cortical actin patches.

To exclude the possibility that the loss of ARK1 and PRK1

indirectly affects the localization of Sjl2p, we made use of a

mutant allele of PRK1, prk1-as3, a drug-sensitized kinase tar-

get, which can be specifically and almost instantaneously inac-

tivated by a chemically-modified kinase inhibitor [21,22].

Mutant Dark1 prk1-as3 cells were incubated with this cell per-

meable inhibitor 4-amino-1-tert-butyl-3-(1 0-naphthyl)pyrazo-

lo[3,4-d]pyrimidine [21] for 2, 5, and 20 min to specifically

inactivate Prk1-as3p and subsequently fixed and processed

for indirect immunofluorescence. While in DMSO mock-trea-

ted cells the typical faint punctate HA-Sjl2p staining pattern

was not affected (Fig. 1D, 0 min), incubation with the PP1-

analog immediately led to a striking aggregation of Sjl2p with-



Fig. 2. Sjl1p and Sjl3p do not aggregate and colocalize with actin
clumps upon inactivation of Ark1p/Prk1p. (A) Untagged Dark1 Dprk1
cells (DDY1885) and Dark1 Dprk1 cells expressing either HA-Sjl1p
(BS1373) or HA-Sjl3p (BS1376) were stained with an anti-HA
antibody; bar, 5 lm. (B) Transformants of BS1271 and BS1376 cells
expressing GFP-Act1p were stained for HA-Sjl2p or HA-Sjl3p and
GFP-Act1p as described in Fig. 1C. (C) Temperature-sensitive sec7
cells expressing either HA-Sjl2p (BS1175, lanes 1 and 2) or HA-Sjl3p
(CB175, lanes 3 and 4) were harvested after growth at 25 �C and after a
2 h incubation at 37 �C in medium containing 0.1% glucose. Samples
were processed for immunoblotting with an anti-HA and an anti-PGK
antiserum.
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in the cell. After 2 min, the Sjl2p-positive aggregates were fre-

quently present within the buds and bud-necks of small bud-

ded cells and after 5–20 min, they were found usually in the

mother cells (Fig. 1D).
3.2. Sjl1p and Sjl3p do not respond to Ark1p/Prk1p inhibition

and likely act at distinct subcellular locations

Remarkably, the incorporation of Sjl2p into large actin

clumps was unique among the three synaptojanin-like pro-

teins. In cells lacking PRK1 and ARK1 the staining pattern

of HA-Sjl1p, which was hardly detectable over background

[11], did not collapse into clumps and the slightly stronger

punctate and diffuse cytoplasmic HA-Sjl3p staining was also

unaffected (Fig. 2A). The absent response to Ark1p/Prk1p

inhibition was also confirmed by treatment with 1NA-PP1 in

Dark1 prk1-as3 cells expressing HA-Sjl3p (data not shown).

Most significantly, double staining of GFP-Act1p and HA-

Sjl1p or of HA-Sjl3p after 20 min of inhibitor treatment did

not reveal an overlap between cortical actin and Sjl1p (not

shown) or Sjl3p, respectively (Fig. 2B). This is in sharp con-

trast to Sjl2p, whose staining pattern perfectly matched that

of actin (Figs. 2B and 1C). The specific response of Sjl2p to

Prk1p-inactivation is the first biochemical evidence for an indi-

vidual and discrete subcellular role of Sjl2p in the context of

the two other synaptojanin family members.

Further support for distinct subcellular localizations and

features of Sjl2p and Sjl3p was provided by analyzing the effect

of the sec7 mutation on the localization and stability of HA-

Sjl3p. While in the sec7 mutant after shift to 37 �C the HA-

Sjl2p staining pattern was similar to wild-type (Fig. 1A), the

HA-Sjl3p signal was lost after shift to 37 �C (data not shown).

This result was confirmed by immunoblotting of cell extracts

prepared from sec7 cells after incubation at 25 and 37 �C.
Whereas the amounts of HA-Sjl2p were comparable under

both conditions, the levels of HA-Sjl3p were strongly reduced

after incubation at restrictive temperature (Fig. 2C). Although

the basis for this effect is presently not understood, the defect

in the biogenesis of phospholipids may result in the dissocia-

tion of the lipid phosphatase from the membrane and subse-

quent degradation, consistent with a function of HA-Sjl3p at

the late Golgi, where an improper lipid and protein composi-

tion likely becomes evident first. Another interesting observa-

tion was that the apparent molecular weight of HA-Sjl2p

slightly increased after incubation at restrictive conditions in

sec7 cells (Fig. 2C). We are currently investigating the nature

of this alteration.

3.3. Sjl2p overlaps with structures containing endocytosed

FM4-64

To provide evidence for a shared role of Sjl2p within the

cortical actin cytoskeleton and in endocytosis as previously

proposed [7,8,18,23], we analyzed whether FM4-64, a fluores-

cent membrane marker for endocytosis, colocalized with

GFP-Sjl2p after drug inhibition of Prk1-as3p. Cells were al-

lowed to bind FM4-64 at 0 �C, washed with ice-cold medium

to remove unbound dye, and incubated at 25 �C for 10 min in

the absence and presence of 1NA-PP1. Subsequently, endocy-

tosis was terminated by the addition of energy poisons. While

in the absence of 1NA-PP1 no overlap between the endo-

somal FM4-64 labeling and GFP-Sjl2p was detected (likely

due to the low GFP-Sjl2p signal in small punctate structures),

treatment with 1NA-PP1 affected the collapsing of both the

GFP-Sjl2p- and a fraction of the FM4-64-positive structures

(Fig. 3A). The overlap of those structures (Fig. 3A) clearly

suggests that the aggregates containing Sjl2p, actin, and other

cortical patch components also enclose endocytic membranes.

This is consistent with the previous observation that vesicles



Fig. 3. The Sjl2p- and actin-containing clusters colocalize with
endocytosed FM4-64, but not with endosomal or TGN-derived
structures. (A) Dark1 prk1-as3 cells expressing GFP-Sjl2p (BS1446)
were labeled with FM4-64 as described. Cells were photographed with
appropriate filters for GFP and FM4-64 fluorescence; bar, 5 lm. (B)
Fixed cells (BS1271) were first stained with an anti-HA antibody to
label HA-Sjl2p and second with either a-Pep12p, a-Ypt51p, or a-Myc
antibodies. (C) Wild-type (BS64) and Dark1 Dprk1 (DDY1885) cells
expressing Myc-Tlg1p or HA-Kex2p were stained with an anti-Myc or
anti-HA antibody, respectively.
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of likely endocytic origin accumulate within the actin clumps

of inhibitor-treated Dark1 prk1-as3 cells [22]. The additional

FM4-64 positive structures that did not cluster and colocalize

with Sjl2p upon inhibitor treatment likely represent more dis-

tally located endocytic compartments (see below).

3.4. Sjl2p-positive clumps do not overlap with endosomes and the

TGN and are formed regardless of Sec18p/NSF

To elucidate what sort of endocytic structures colocalize

with the Sjl2p-containing actin clumps, we performed double

immunofluorescence. Consistent with the lack of colocaliza-

tion of HA-Sjl2p with the early and late endosomal markers

Tlg1p, Ypt51p, and Pep12p in wild-type and vps27 cells (see

above), in inhibitor-treated Dark1 prk1-as3 cells the staining

patterns of Sjl2p and each of the three endosomal markers

did not largely overlap (Fig. 3B). Although Tlg1p, a marker

of recycling endosomes and the TGN, was usually found in

close proximity of the Sjl2p clumps, it did not aggregate itself

upon 1NA-PP1 treatment, but rather localized to smaller dots

dispersed in a larger region of the cell (Fig. 3C). This was also
the case for Ypt51p, Pep12p (data not shown) and a marker of

the TGN, Kex2p (Fig. 3C). Hence, as opposed to the aggrega-

tion of FM4-64 containing vesicles Ark1p/Prk1p inhibition

does not affect the subcellular organization of endosomes

and the TGN.

Since the data suggested that the Sjl2p-positive endosomal

structures may represent primary endocytic vesicles, we as-

sumed that inactivation of Sec18p/N-ethylmaleimide-sensitive

fusion protein (NSF), a cytoplasmic AAA+-ATPase required

for most intracellular membrane fusion events including an

early postinternalization step within the endocytic pathway

[24], would not affect clump formation. We introduced the

temperature-sensitive sec18–20 allele into the Dark1 prk1-as3

strain background. Sec18p encoded by this allele is active at

25 �C but is inactivated immediately upon shift to 32 �C [24].

Indeed, FM4-64 internalization and FM4-64 and GFP-Sjl2p

clump formation occured at 25 and 32 �C regardless of the

activity of Sec18p (data not shown). Thus, the endosomal

structures that cluster upon loss of the Ark1p/Prk1p kinases

likely represent nascent endocytic vesicles derived from the

plasma membrane after budding.

3.5. The Synaptojanin-like proteins display distinct elution

profiles from a Sephacryl S-1000 gel filtration column

Since in yeast biochemical evidence for an association of

any of the synaptojanin-like 5 0-phosphatases with vesicular

structures is still lacking, we isolated clathrin-coated vesicles

from a yeast strain carrying epitope-tagged versions of Sjl1p,

Sjl2p, and Sjl3p, thus allowing the simultaneous detection of

each synaptojanin-like protein in one and the same cell ex-

tract. Similar to Chc1p, each synaptojanin-like protein was

enriched in a 100000 · g microsomal pellet, obtained after

hypotonic lysis of spheroplasts (Fig. 4A). However, gel filtra-

tion chromatography of the homogenized P100 fraction on a

Sephacryl S-1000 column revealed clear differences among

Sjl1p, Sjl2p, and Sjl3p. While Sjl2p and Sjl3p eluted from

the column very similar to Chc1p (Fig. 4B), the Sjl1p peak

was clearly separated from Chc1p, but corresponded to the

profiles of cytosolic PGK and actin (not shown), peaking in

fraction #15. Unlike Sjl3p, the Sjl2p elution profile contained

a typical shoulder (Fig. 4B). The amounts of Sjl2p in frac-

tions #14 and #15 following the major Sjl2p-peak could

represent a soluble pool that dissociated from membranes

during the preparation. The specific elution profiles of the

individual synaptojanin-like proteins, Chc1p, and other mar-

ker proteins were highly reproducible and indicated a differ-

ential localization of Sjl2p/Sjl3p and Sjl1p to membrane

vesicles or the cytoplasm, respectively.

Analysis of the Sephacryl S-1000 column fractions by elec-

tron microscopy after negative staining confirmed the presence

and high enrichment of authentic clathrin-coated vesicles in

addition to uncoated vesicles (Fig. 4C). A quantitative analysis

revealed that the proportion of clathrin-coated structures

(average diameter 64 ± 7 nm) was highest in fraction #10

(87%, n = 175) and #11 (56%, n = 177). Fraction #12 was lar-

gely composed of smooth membrane vesicles (83%, n = 138)

with an average diameter of 38 ± 3 nm (Fig. 4B). Finally, some

of the few vesicular structures found in fraction #13 contained

coats that appeared more dense than those of authentic clath-

rin-coated vesicles (Fig. 4C). In fraction #13, we also observed

the high enrichment of a symmetric protein structure, most

likely fatty acid synthase [25] (Fig. 4C).



Fig. 4. Sjl2p and Sjl3p fractionate similar to clathrin-coated vesicles, while Sjl1p does not. (A) A precleared lysate of cells (CB42) was centrifuged at
100000 · g to generate the pellet and supernatant fractions P100 and S100. Equal protein amounts were analyzed by immunoblotting with antibodies
against the HA- and the Myc-epitope, Chc1p, and PGK. (B) The P100 fraction was fractionated by Sephacryl S-1000 gel filtration chromatography.
Fractions #6 to #19 were analyzed by immunoblotting as described. The immunoreactive bands were quantified with the phosphorimager. The
isolation was performed seven times, shown is one representative experiment. (C) Fractions #10 to #13 were fixed with 2.5% glutaraldehyde. After
negative staining, samples were viewed in the electron microscope at a magnification of 52000; bar, 100 nm; *, densely coated vesicle; �, fatty acid
synthase particle.
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Unfortunately, so far we could not detect Sjl2p and Sjl3p on

the vesicular structures by immuno EM. It appears however,

that Sjl2p and Sjl3p reside on clathrin-coated and/or non-

coated vesicular structures with a diameter close to that of

clathrin-coated vesicles. This would be consistent with a role

of the lipid phosphatases Sjl2p and Sjl3p, but not Sjl1p, in

the uncoating of yeast clathrin-coated vesicles.

3.6. Inclusion of clathrin in the Sjl2p-containing actin clumps

To provide further independent evidence for the idea that

Sjl2p-positive vesicles are derived from clathrin-coated struc-

tures, we analyzed the cellular distribution of clathrin in

wild-type and Dark1 prk1-as3 cells. Since the Sjl3p-containing

vesicles, which are likely TGN-derived [26], do not aggregate

in response to Prk1-as3 inhibition (Fig. 2A/B), clathrin-con-

taining clumps induced by Prk1-as3 inactivation likely contain

Sjl2p, cortical patch components, and early endocytic vesicles.

By indirect immunofluorescence, we labeled functional

clathrin light chain (Clc1p) tagged N-terminally with an HA-

epitope. As expected for an association with TGN- and plasma

membrane-derived vesicles, in wild type HA-Clc1p was found

in punctate structures (Fig. 5A). The weak cytoplasmic stain-

ing probably reflects the presence of Clc1p in non-assembled

triskelions (Fig. 5A). In prk1-as3 cells, in the absence of

1NA-PP1, the Clc1p staining pattern was comparable to that

in wild type (Fig. 5A). In contrast, treatment with 1NA-PP1

resulted in the instantaneous clustering of clathrin structures.
After 5 min of drug administration, usually one to two large

Clc1p-aggregates per cell were observed in addition to smaller

structures that did not cluster (Fig. 5A). Double staining of 13-

Myc-Sjl2p and HA-Clc1p in Dark1 prk1-as3 cells after 10 min

of drug treatment revealed a colocalization of both proteins in

the clumps (Fig. 5B). Since clathrin is also implicated in mem-

brane trafficking from the TGN, a structure unaffected by

Ark1p/Prk1p inhibition, a lack of complete colocalization be-

tween Clc1p and Sjl2p is in fact not surprising.

3.7. Physical interaction between the proline-rich domain of

Sjl2p and Chc1p

Because the proline-rich domain of Sjl2p contains the se-

quence LIDLD that matches the L(L/I)(D/E/N)(L/F)(D/E)

consensus motif for binding to the terminal domain of clathrin

heavy chain [27], we tested whether the Sjl2p proline-rich do-

main can bind to Chc1p. A glutathione S-transferase (GST)

fusion containing amino acids 890–1183 (GST-Sjl2890–1183)

was expressed in Escherichia coli and purified by glutathi-

one–Sepharose affinity purification. Similarly, GST alone

and a GST-Ypt7p fusion were purified to serve as negative

controls during the subsequent binding studies. GST and

GST-fusions were immobilized on glutathione–Sepharose

beads and incubated with a yeast cell lysate. We detected spe-

cific binding of Chc1p to GST-Sjl2890–1183 but no binding to

the control recombinant proteins (Fig. 5C). Thus, Sjl2p can

bind to clathrin in vitro.



Fig. 5. Clathrin aggregates immediately after Prk1-as3p inactivation
and interacts with Sjl2p in vitro. (A) Untagged cells (BS64) and ARK1
PRK1 cells expressing HA-Clc1p (BS1516, wt) were stained with an
anti-HA antibody. Similarly, Dark1 prk1-as3 cells expressing HA-
Clc1p cells were incubated with DMSO (minus 1NA-PP1) or 1NA-
PP1, fixed and stained as described above; bar, 5 lm. (B) Double
indirect immunofluorescence with Dark1 prk1-as3 cells expressing HA-
Clc1p and Myc-Sjl2p (BS1569) incubated with 1NA-PP1 for 10 min.
(C) GST and GST-fusions were immobilized onto glutathione–
Sepharose beads and incubated with a yeast cell lysate. After extensive
washing, bound proteins were eluted and separated by SDS–PAGE.
Recombinant proteins were stained with Coomassie brilliant blue (Co),
Chc1p was detected by immunoblotting. The input lane 4 represents
3% of the cell lysate that was incubated with each immobilized protein.
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In a reverse GST pull-down experiment in which the termi-

nal domain of Chc1p (GST-Chc1p1–369) was incubated with an

extract containing Myc-Sjl2p, no interaction was observed be-

tween the two proteins (data not shown). This may either re-

flect a deficiency in the proper folding of the b-propeller
domain. Conversely, the association of Chc1p with the pro-

line-rich domain of Sjl2p may be mediated or stabilized by

additional regions within the clathrin molecule.
4. Discussion

4.1. Sjl2p specifically functions within the early endocytic

pathway

The two partially redundant kinases, Prk1p and Ark1p, have

emerged as excellent candidates that control the timing and le-

vel of endocytic actin polymerization. They were recently sug-

gested to act in the transition from vesicle formation to

targeting and fusion via Pan1p [28], one of the three yeast

Arp2/3p activators. Because members of the conserved

Ark1p/Prk1p kinases specifically control endocytic membrane

trafficking in all eukaryotes [20], the specific and immediate re-

sponse of Sjl2p to Ark1p/Prk1p inhibition and the colocaliza-

tion of Sjl2p with the endosomal tracer FM4-64 and cortical

actin strongly support a major role of Sjl2p during endocyto-

sis. The Sjl2p-positive structures isolated by subcellular

fractionation most likely represent, or are derived from, clath-

rin-coated vesicles generated after budding from the plasma

membrane. Firstly, Sjl2p is largely membrane-associated

(Böttcher and Singer-Krüger, unpublished results) and frac-

tionates very similar to clathrin-coated vesicles. Secondly, a

fraction of clathrin is also sensitive to Ark1p/Prk1p inhibition

and colocalizes with Sjl2p. Thus, it likely represents the endo-

cytic pool. Neither TGN-localized Sjl3p nor Kex2p, which are

functionally connected to clathrin [10,26], aggregate upon loss

of Ark1p/Prk1p activity. Thirdly, a physical interaction was

identified between the proline-rich domain of Sjl2p and Chc1p

which in part may be mediated by a conserved clathrin binding

box. In summary, Sjl2p appears to reside mainly on plasma

membrane-derived primary clathrin-coated and/or uncoated

endocytic vesicles that are generated prior to the activity of

Sec18p/NSF during endocytosis. If any, only minor quantities

of Sjl2p localize to the plasma membrane and/or endosomes. It

will be important to determine the precise regulation of Sjl2p’s

enzymatic activity during endocytic vesicle maturation and the

sequence of interactions with cytoskeletal elements, the vesicle

membrane, coat and adaptor components during this process.

4.2. Physical linkage of the synaptojanin-like proteins to cortical

actin and to clathrin

Evidence for a physical link between the yeast synaptojanin-

like proteins and cortical actin was initially provided by studies

in which GFP-tagged PPIP- and proline-rich domains of Sjl2p

and Sjl3p were overexpressed and their transient colocalization

with actin patches observed under conditions of hyperosmotic

stress [29]. Subsequently, two-hybrid and biochemical studies

led to the identification of Bsp1p and Abp1p as binding part-

ners of Sjl2p/Sjl3p [18,23]. Furthermore, the staining pattern of

Sjl2p-GFP was recently found to overlap with actin patches

[24], similar to the colocalization of Sjl2p with actin clumps

in ark1 prk1 cells shown here. Taking advantage of the possi-

bility to detect endogenous levels of each synaptojanin-like
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protein in one and the same cell extract, we could demonstrate

the association of Sjl1p, Sjl2p, and Sjl3p with actin polymer-

ized in vitro (Böttcher and Singer-Krüger, unpublished results)

using an established biochemical assay [30]. Yet, despite this

common feature of the yeast Synaptojanin-like proteins, loss

of the Ark1p/Prk1p kinases mainly affects the subcellular dis-

tribution of Sjl2p. Conversely, in a sec7 mutant which accumu-

lates Golgi stacks and is impaired in the biogenesis of TGN

proteins and lipids the localization and stability of Sjl3p, but

not Sjl2p, was found to be affected lending further support

of the idea of distinct subcellular localizations of these syna-

ptojanin family members. Similar to our finding of a colocal-

ization of clathrin and Sjl2p within cortical actin patches, the

association of clathrin with cortical actin was demonstrated

by recent work of Lemmon and coworkers [31]. It is interesting

that Sjl2p and Sjl3p bind to clathrin heavy chain (this work

and [26]), likely via the conserved L(L/I)(D/E/N)(L/F)(D/E)

motif, and migrate similar to clathrin-coated vesicles, while

in the case of Sjl1p no evidence for a colocalization with clath-

rin exists until now. In conclusion, our studies corroborate the

functional connection between some yeast synaptojanin family

members and clathrin as has been originally proposed by the

phenotypic characterization of the synaptojanin 1 knock-out

mouse [32]. This work also revealed distinct features of the

three yeast synaptojanin-like proteins. Future studies will

likely shed more light on the exact roles of synaptojanin and

clathrin during the process of clathrin-uncoating.
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