
Biochimica et Biophysica Acta 1818 (2012) 2725–2731

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbamem

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
The DNA–DNA spacing in gemini surfactants–DOPE–DNA complexes

Petra Pullmannová a,⁎, Sergio S. Funari b, Ferdinand Devínsky c, Daniela Uhríková a

a Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava, Slovakia
b HASYLAB at DESY, Notkestr. 85, D-22607 Hamburg, Germany
c Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava, Slovakia
Abbreviations: ACnGS12, CnGS12 surfactant head
cyltrimethylammonium bromide; CL, cationic liposom
bis(dodecyldimethylammonium bromide); DNA, d
dioleoylphosphatidylethanolammine; GS, gemini surfa
hexagonal phase; LαC , condensed lamellar phase; R4N+,
⁎ Corresponding author. Tel.: +421 250117289.

E-mail address: pullmannova@fpharm.uniba.sk (P. P

0005-2736/$ – see front matter © 2012 Elsevier B.V. All
doi:10.1016/j.bbamem.2012.05.021
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 27 September 2011
Received in revised form 10 May 2012
Accepted 18 May 2012
Available online 24 May 2012

Keywords:
DNA
Dioleoylphosphatidylethanolamine
Gemini surfactant
Small angle X-ray diffraction
Gemini surfactants from the homologous series of alkane-α,ω-diyl-bis(dodecyldimethylammonium bro-
mide) (CnCS12, number of spacer carbons n=2–12) and dioleoylphosphatidylethanolamine (DOPE) were
used for cationic liposome (CL) preparation. CLs condense highly polymerized DNA creating complexes.
Small-angle X-ray diffraction identified them as condensed lamellar phase LαC in the studied range of molar
ratios CnGS12/DOPE in the temperature range 20–60 °C. The DNA–DNA distance (dDNA) is studied in depen-
dence to CnGS12 spacer length and membrane surface charge density. The high membrane surface charge
densities (CnGS12/DOPE=0.35 and 0.4 mol/mol) lead to the linear dependence of dDNA vs. n correlating
with the interfacial area of the CnGS12 molecule.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Gemini surfactants (GS) were synthesized as promising amphi-
philic compounds due to their excellent self-assemble properties.
They contain two polar headgroups and two aliphatic chains linked
by a spacer [1,2]. GS show greatly enhanced surfactant properties rela-
tive to the corresponding monomeric (single chain, single head group)
compounds—their surface activity can be increased 1000-fold. This
makes them interesting for biological and especially biomedical research.

Generally, cationic surfactants can create complexes with pol-
yanions including nucleic acids, giving rise to various periodical struc-
tures of great interest for biomedical or industrial applications [3].
For example, DNA–cetyltrimethylammonium bromide–hexanol aggre-
gates express complex phase behavior in dependence on the increas-
ing hexanol content. The addition of hexanol leads to simultaneous
lowering of the charge density and bare rigidity of the bilayers. The
same effect can, in principle, be independently achieved by adding a
neutral lipid [4]. GS carrying a positive charge condense DNA and
can act as agent in nucleic acid transfection [5,6] and bacterial trans-
formation [7].

Within this study we focus on the simple type of GS alkane-α,ω-
diyl-bis(alkyldimethylammonium bromide) (CnGSm, where n=2–
group area; C12TMA, dode-
es; CnGS12, alkane-α,ω-diyl-
eoxyribonucleic acid; DOPE,
ctant; HII

C, condensed inverse
quaternary ammonium group

ullmannová).
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12 is the number of spacer carbons and m=12 is the number of
carbons in the alkyl tails) (Fig. 1). The physico-chemical and micellar
properties of CnGSm have attracted extensive scientific interest,
focusing particularly on the role of the spacer. For example, the critical
micelle concentration of homologous series CnGS12 with a hydropho-
bic polymethylene spacer express a maximum at n=4–6 [8–10]. The
surface occupied by one surfactant at air/solution interface reaches
a maximum at n=10–12 [10–13]. At n>10 the spacer becomes too
hydrophobic to remain in contact with water and adopts a looped
(wicket-like) conformation [12].

The CnGSm can interact with DNA either as monomers, micelles
[14–17] or as a dispersion of CnGSm–phospholipid liposomes forming
complexes with regular inner microstructure [18–20]. Neutral lipid
used together with cationic components moderates the structural prop-
erties and the membrane surface charge density of the complex. Neutral
lipid also facilitates the transport of the complex through the cell's
membrane during transfection [21,22]. Several types of CnGSm-
phospholipid–DNA complexes arrangement have been observed:
condensed lamellar phase LαC with ordered DNAmonolayers intercalated
between lipid bilayers [18,20,23], condensed inverted hexagonal phase
HII
C with linear DNA molecules surrounded by lipid monolayers forming

inverted cylindrical micelles arranged on a hexagonal lattice [24–26]
and also a cubic phase [27]were reported. Themembrane surface charge
densitywas found to be a key parameter for the transfection efficiency of
Lα
C phase-forming complexes. Lin et al. [28] defines the optimal mem-
brane surface charge density σm⁎≈0.0104 e−/Å2≈1.04 e−/1 nm2 for
stable complexes allowing successful escape of DNA from the complexes
through their fusion with endosomal membranes.

Complexes CnGS12–dioleyphosphatidylethanolamine (DOPE)–DNA
have been tested as gene delivery carriers for somatic cells in vitro [20]
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Fig. 1. The scheme of the structure of alkane-α,ω-diyl-bis(dodecyldimethylammonium
bromide) molecule (CnCS12, n=2–12 is the number of spacer carbons, m=12 is the
number of alkyl carbons).
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and in vivo [29]. The character of the spacer has been found to play a role
in the transfection efficiency of DNA complexes based on GS [20,30,31].
The highest transfection activity in vitro was detected at CnGSm
compounds having the spacer of three carbons (C3GS12, C3GS16)
[20]. Generally, GS with short spacer length were reported regarding
their enhanced transfection activity. For example C2GS14/cholesterol/
DOPE=2:1:1 mol/mol/mol [32] and derivatives of N,N-bisdimethyl-
1,2-ethanediamine with 2 carbons in the spacer and 12 carbons in
alkyl chains, in a mixture with DOPE (1:2 mol/mol) have shown signif-
icantly higher tranfection activity in comparison to a standard commer-
cial transfection reagent [33].

In spite of published results in transfection efficiency of CnGSm–

neutral phospholipid carriers for DNA, information about the particle's
microstructure, their polymorphic behavior and the role of CnGSm
spacer length in DNA packing is rather scarce in literature. We used
small-angle X-ray diffraction (SAXD) to study the microstructure of
complexes formed due to DNA interaction with cationic liposomes
(CL) prepared as a mixture of CnGS12 with various spacer n=2–12
and DOPE. In this study we focus our attention on a role of the spacer's
length in the DNA packing in Lα

C phase.
2. Materials and methods

DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) was
obtained from Avanti Polar Lipids, Inc., USA; highly polymerized
calf thymus deoxyribonucleic acid (sodium salt) type I (DNA, av-
erageMr of nucleotide 308) from Sigma Chemicals Co., USA. Alkane-α,ω-
diyl-bis(dodecyldimethylammonium bromide) (CnCS12, number of
spacer carbons n=2–12)were prepared as described in ref. [1] and puri-
fied bymanyfold crystallization from amixture of acetone andmethanol.
Dodecyltrimethylammonium bromide (C12TMA) was purchased from
Fluka Chemie AG, Buchs, Switzerland. Sodium chloride (NaCl) was
obtained from Lachema, Brno, Czech Republic. The chemicals were of an-
alytical grade and were used without further purification. The aqueous
solution of NaClwas preparedwith redistilledwater, pH~6, at concentra-
tion 150 mM. The solution of DNA was prepared by dissolving DNA in
150 mMNaCl solution, the precise value ofDNA concentrationwas deter-
mined spectrophotometrically (Hewlett Packard 8452A Diode array
spectrophotometer), according to: cDNA=A260. 47×10−6 [g/ml], where
A260 is the absorbance at wavelength λ=260 nm. The concentration of
DNA is referred as molar concentration of DNA base pairs (mol bp). The
purity of DNA was checked by measuring the absorbance Aλ at λ=260,
230 and 280 nm. We have obtained the values of A260/A230=2.23 and
A260/A280=1.76. DOPE, CnGS12 and C12TMA were dissolved in organic
solvent (mixture of chloroform and methanol at volume ratio=3:1).
The appropriate amounts of organic stock solutionswere added to obtain
a lipid mixture with the desired ratio cationic surfactant/DOPE. The sol-
vent was evaporated under a stream of gaseous nitrogen and its residue
removed by vacuum. The drymixturewas hydrated by 150 mMNaCl so-
lution for 12 hours and afterwards homogenized (by vortexing, freezing-
thawing cycles or sonication in ultrasound bath) until an opalescent
liposome dispersion was created. A fully hydrated DOPE was used as a
control sample.

The samples were prepared at the calculated isoelectric point
CnCS12/DNA=1 [mol/mol bp]. The DNA solution was added to the
liposome dispersion at once and the sample was shortly mixed. A pre-
cipitate was created spontaneously during the mixing. To exclude the
possibility of an incomplete binding of DNA in DNA–CL, we measured
the residual DNA concentration in the sample's supernatant spectro-
photometrically for CnGS12–DOPE–DNA and C12TMA–DOPE–DNA
complexes. The average DNA condensation efficiency was 98.1±1.9%
reporting to an effective binding of DNA. The samples were stored at
2–6 °C or in a freezer at approx. −20 °C.

Before the measurement the samples were shortly centrifuged.
The sedimented precipitate with a few drops of bulk solution was
enclosed between two Kapton (Dupont, France) windows of a sample
holder for X-ray diffraction. Small- (SAXD) and wide-angle (WAXD)
synchrotron radiation diffraction experiments were performed at
the soft condensed matter beamline A2 at HASYLAB at the Deutsches
Elektronen Synchrotron (DESY) in Hamburg (Germany), using a mono-
chromatic radiation of wavelength λ=0.15 nm. The sample was equil-
ibrated at selected temperature (20 or 60 °C) before exposure to
radiation. The evacuated double-focusing camera was equipped with
a linear position sensitive detector forWAXD and a 2DMarCCDdetector
or a linear position sensitive detector for SAXD. The raw data were
normalized against the incident beam intensity. The SAXD patterns
were calibrated using Ag behenate [34] or rat tail collagen [35] and
the WAXD patterns by tripalmitin or polyethylene terephthalate
[36,37]. Each diffraction peak of SAXD region was fitted with a
Lorentzian above a linear background using the Origin software. The
WAXD pattern of all measured samples exhibited onewide diffuse scat-
tering in the range s~1.8–3.2 nm−1, characteristic for liquid-like carbon
chains of phospholipid and CnGS12 molecules. We do not showWAXD
patterns because we observed no qualitative change in WAXD patterns
in the temperature range 20–60°.

3. Results and discussion

3.1. The effect of surface charge density

The structure of complexes C3GS12–DOPE–DNA was investigated
throughout the range of molar ratios 0.1≤C3GS12/DOPE≤0.5 mol/mol
(at 20 °C). We determined the structural parameters of complexes
with the aim to find out the appropriate range of molar ratios to study
the spacer's effect. Representative SAXD patterns are shown in Fig. 2A.
At the molar ratios C3GS12/DOPE≥0.15 we observed two sharp reflec-
tions L(1) and L(2) having the origin in a lamellar structure of lipid bila-
yers. The repeat distance dwas evaluated as d=1/s1, where s1 is the first
order reflection's maximum. The DNA exhibits a broad small peak at
sDNA=1/dDNA, where dDNA is the average distance of periodically spaced
DNA strands. The repeat distance d involves the thickness of phospho-
lipids bilayer dL and the water thickness containing a monolayer of
hydrated DNA strands dW, so d=dL+dW. The thickness of hydrated
DNA monolayer dW is assumed to be not less than dW ~2.45 nm [38].
The observed SAXD patterns are typical for a condensed lamellar phase
Lα
C of complexes DNA–CL. At low molar ratios C3GS12/DOPE≤0.12, the
coexistence of LαC phase and condensed hexagonal phase HII

C is observed.
We have shown earlier [26], that the heating of complexes CnGS12–
DOPE–DNA leads to the increase in the fraction of HII

C phase due to a
phase transition Lα

C→HII
C. The lattice parameter of the HII

C phase in com-
plexes at C3GS12/DOPE=0.12 mol/mol is a=2/√3 s1

’ =7.14 nm, where
s1
' is the first order reflection's maximum of HII

C phase. The fully hydrated
DOPE used as a control sample formed an inverted hexagonal phase HII

with the lattice parameter a=7.58 nm (at 20 °C). DOPE has an inverted
truncated cone-shaped molecule and confers a negative spontaneous
curvature to membranes. Although hydrated DOPE forms inverted hex-
agonal phase, the sufficient content of C3GS12 surfactant stabilizes the



Fig. 2. (A) Representative SAXD patterns of C3GS12–DOPE–DNA complexes at various molar ratio C3GS12/DOPE at 20 °C. The relative intensity is in logarithmic scale. The 1st re-
flection maxima of HII

C phase are marked by triangles. (B) The repeat distance d (●) [nm] and DNA interhelical distance dDNA (♦) [nm] vs. molar ratio C3GS12/DOPE in complexes
C3GS12-DOPE-DNA at 20 °C. The dashed lines are only guidelines.
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lamellar arrangement of lipid bilayers within the complexes C3GS12–
DOPE–DNA. At 20 °C, the molar ratio C3GS12/DOPE=0.15 mol/mol rep-
resents the lowest limit for the stable Lα

C phase of complexes.
The structural parameters d and dDNA of the C3GS12-DOPE-DNA

complexes are shown in Fig. 2B. The repeat distance d decreases linearly
with increasing molar ratio C3GS12/DOPE. The DNA interhelical
distance dDNA decreases non-linearly with increasing molar ratio up to
C3GS12/DOPE=0.35 mol/mol. Further increase of C3GS12 fraction
within the lipid mixture did not change dDNA significantly. The effective
surface charge density of membrane, provided by CnGS12 in our exper-
iment, is responsible for dDNA distance, as proven in [39]. The average
spacing dDNA between the DNA strands in an isoelectric complex can
be expressed in terms of the average anionic charge/length of DNA λ
and cationic charge/area of lipid σm within the DNA–CL complex [39]:

dDNA ¼ λ
σm

ð1Þ

The dDNA is directly proportional to the average cross-sectional area
per lipid molecule in the membrane and inversely proportional to the
mole fraction of the cationic content in the lipid mixture [40]. The
SAXD peak related to DNA–DNA packing is rather broad and its ampli-
tude is weaker in comparison to the peaks corresponding to the lipid bi-
layer stacking (discussed thoroughly in [41]). It is evident (Fig. 2) that
the C3GS12molar fraction determines its position. At low C3GS12 frac-
tion (C3GS12/DOPE=0.15), the position of DNA reflection coincides
with the 1st reflection maximum of lipid arrangement, and
deconvolution of peaks brings an uncertainty into the analysis. At the
high molar ratios C3GS12/DOPE≥0.4 the DNA–DNA spacing does not
respond significantly to the C3GS12 fraction changes. Based on these
experimental data, we have selected the suitable range of molar ratios
0.2bCnGS12/DOPEb0.4 to follow the effect of the CnGS12 spacer length
on DNA–DNA packing.

3.2. The effect of the spacer on dDNA at molar ratio CnGS12/DOPE=0.3

We started to study the effect of n at the intermediate molar ratio
CnGS12/DOPE=0.3. Complexes with monoalkylammonium bromide
C12TMA were used as a reference model for charged surfactant mole-
cules freely distributed in the membrane surface. The SAXD patterns
of the CnGS12–DOPE–DNA and C12TMA–DOPE–DNA complexes at
20 °C are shown in Fig. 3A, where CnGS12/DOPE=0.3; C12TMA/
DOPE=0.6 mol/mol. In both cases the ratio between cationic quaterna-
ry ammonium group and DOPE (R4N+/DOPE) is the same 0.6 mol/mol.
At the chosen molar ratios, all studied complexes have shown Lα

C phase
up to 60 °C (Supplementary material, Fig. 6sA).

The structural parameters d and dDNA as a function of the number of
spacer carbons n are shown in Fig. 3B. The experiment was repeated
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Fig. 3. (A) SAXD patterns of CnGS12–DOPE–DNA and C12TMA–DOPE–DNA complexes at molar ratio CnGS12/DOPE=0.3 and C12TMA/DOPE=0.6 at 20 °C. The relative intensity is
in logarithmic scale. (B) The repeat distance d (●) [nm] and DNA interhelical distance dDNA (♦) [nm] vs. number of spacer carbons n in complexes CnGS12–DOPE–DNA and
C12TMA–DOPE–DNA at 20 °C; n=0 for the complex containing C12TMA. The molar ratio CnGS12/DOPE=0.3 and C12TMA/DOPE=0.6. Each point represents the average of sep-
arate determinations, and the vertical bars on each point indicate the standard deviation for data of independent experiments.
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three times. The d and dDNA values in Fig. 3B represent the average
values and error bars represent the standard deviations. For C12TMA–
DOPE–DNA complexes we adapted n=0.

With increasing n, the lamellar periodicity d linearly decreases from
6.73 nmat n=0 to 6.31 nmatn=12 (at 20 °C). Complexeswere heated
to 60 °C,where the repeat distance dhas attained the values in the range
from 6.52 nm at n=0 to~6.2 nm at n=10 and 12 (Supplementary
material, Fig. 6sB). The repeat distance d decreases with the increase of
the temperature in all complexes. The decrease of d of LαC phase can be
induced either by the higher temperature or by the addition of higher
fraction of CnGS12 into the phospholipids bilayer, as determined in the
Fig. 2B. Generally, both factors induce a lateral expansion of the mem-
brane linkedwith a decrease of the lipid bilayer thickness and a decrease
of the hydration level of hydrophilic segments [42–44]. The increasing
number of spacer carbons n also resulted in a decrease of the repeat
distance d. The spacer's elongation probably causes the reduction of LαC

repeat distance d due to the lateral membrane expansion and/or the
changes in the hydrophilic region hydration.

As is evident in the Fig. 3B, the DNA–DNA interhelical distance dDNA
slightly increases with the increasing number of spacer carbons n. We
have found the smallest value of dDNA=3.92±0.06 nm in complexes
with C12TMA monoalkylammonium surfactant and the maximum at
n=12 is equal to dDNA=4.32±0.16 nm. However, the detailed inspec-
tion of the dependence dDNA vs. n in Fig. 3B shows small deviations from
the linear character (namely at the n=3and 10). At 60 °C, the dDNA vs. n
dependence has shown similar course with dDNA slightly shifted to
higher values (dDNA changed from 4.15 nm at n=0 to 4.42 nm at
n=12) due to thermally induced lateral expansion of the membrane
(Supplementary material, Fig. 6sB). The changes of dDNA in the DNA–
CL complexes significantly depend on the increasing n. The spacer
length affects the spatial arrangement of the lipid membrane and the
resulting membrane surface charge density. The simplest explanation
of the spacer effect would be that those changes of the membrane rise
due to the increase of the CnGS12 headgroup area as the spacer elon-
gates. The bigger headgroup area of CnGS12 with longer spacer leads
to the lower membrane surface charge density σm (expressed as the
charge per surface area). Consequently the dDNA increases. However,
the relationship between number of spacer carbons n and dDNA is not
simply linear. Several other factors must participate in the effect of
various n on the DNA arrangement.

3.3. The effect of spacer on dDNA at various molar ratios CnGS12/DOPE

The non-linear dependence dDNA vs. n led us to test the role of spacer
in DNA arrangement at different surface charge densities. We prepared
three series of samples at different molar ratios R4N+/DOPE=0.5, 0.7
and 0.8. All complexes have shown the condensed lamellar phase Lα

C

at 20 °C. The repeat distance d decreases with increasing number of
spacer carbons n in the all cases (Supplementary material, Fig. 7s).
While at molar ratios R4N+/DOPE=0.7 and 0.8 the dependence of d
vs. n has a linear character (R2~0.91–0.98), at R4N+/DOPE=0.5 anom-
alies are present in the dependence.

The dependences of dDNA vs. n for the discussed molar ratios R4N+/
DOPE are plotted in Fig. 4. At the lowmolar ratio R4N+/DOPE=0.5, we
observe a non-linear course of dDNA vs. n. The dDNA values are consider-
ably higher in comparison with those at the high molar ratios R4N+/
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Fig. 5. The DNA interhelical distance dDNA [nm] vs. the headgroup area adopted from
[11,12]; at molar ratios CnGS12/DOPE=0.4 (▲); CnGS12/DOPE=0.35 (▼); CnGS12/
DOPE=0.3 (♦) and CnGS12/DOPE=0.25 (■). The dashed lines represent linear fits.

Fig. 4. The DNA interhelical distance dDNA [nm] vs. number of spacer carbons n at the
molar ratios CnGS12/DOPE=0.4 and C12TMA/DOPE=0.8 (▲); CnGS12/DOPE=0.35
and C12TMA/DOPE=0.7 (▼); CnGS12/DOPE=0.3 and C12TMA/DOPE=0.6 (♦);
CnGS12/DOPE=0.25 and C12TMA/DOPE=0.5 (■) at 20 °C; the headgroup area vs.
number of spacer carbons n (●), adapted from [11,12]; n=0 for the complex con-
taining C12TMA. The dashed lines represent linear fits.
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DOPE. At the high molar ratios R4N+/DOPE=0.7 and 0.8 the course of
the dDNA vs. n dependence is linear for n=2–12 (Fig. 4) and the best-
fitting lines to data differ in the slope. The dDNA values converge at
R4N+/DOPE=0.7 and 0.8 with increasing n. The molar ratio R4N+/
DOPE=0.8 lays on the upper bound of the appropriate molar ratio's in-
terval estimated from Fig. 2B. That can be the reason why dDNA does not
change significantly for CnGS12 with n≥6 when the molar ratio R4N+/
DOPE increases from 0.7 to 0.8. Fig. 4 shows also the dependence of
CnGS12 headgroup area (ACnGS12) as a function of n having linear char-
acter. The values of ACnGS12 were adopted from refs. [11,12], determined
for CnGS12molecules atwater/air interface. The ACnGS12 are in excellent
agreement with data published in [10] and correlate with [13]. Both our
dependences dDNA vs. n at high molar ratios correlate with the depen-
dence of ACnGS12 vs. n.

Comparing the effect of CnGS12 and C12TMA molecules, we have
found that dDNA(C12TMA)bdDNA (CnGS12) (indices are related to the repre-
sentative surfactant) at molar ratios R4N+/DOPE=0.5 and 0.6. At the
high molar ratios R4N+/DOPE=0.7 and 0.8, dDNA (C12TMA)≥dDNA
(CnGS12) at n≤6 and at n≤2, respectively.

In Fig. 5we summarize the dDNA values of CnGS12–DOPE–DNA com-
plexes at all studied molar ratios as a function of ACnGS12. At the high
molar ratios R4N+/DOPE=0.7 and 0.8, we fitted dDNA vs. ACnGS12 by
straight lines (R2~0.95–0.98) what indicates a good correlation
betweenDNA–DNA packing and the area per CnGS12molecule for indi-
vidual length of spacer (n=2–12).

3.4. Discussion

In our experiment, CnGS12 molecules are inserted in DOPE phos-
pholipid bilayer, i.e. the membrane represents a two-components
system. Nuclear magnetic resonance studies have revealed the influ-
ence of electric surface charge on P−–N+ dipole of the phospholipid
headgroup in a zwitterionic phosphocholine-cationic surfactant system.
As a consequence of P−–N+ dipole reorientation, the decrease of
the surface lipid area was reported [45,46]. The reorientation of the
P−–N+ dipole was enhanced in the system with DNA molecules
condensed with cationic liposomes [47,48]. The mentioned effect of
cationic surfactant to phospholipid headgroup is referred as “stitching”
in the experiment with the supported phospholipid bilayers [49]. The
experimental data are in agreementwith the theoretical studies [50,51].

The obtained correlation dDNA vs. n indicates that at the highmolar
ratio R4N+/DOPE the partial area per CnGS12–DOPE follows simple
proportional addition of areas per 1 molecule of both components.
Because of steric and electrostatic interactions between charged
R4N+ and P−–N+ dipole of the phospholipid headgroup, the last
assumption is rather strong, however frequently used in systems
DNA–cationic liposomes forming LαC, for example in calculation ofmem-
brane surface charge density [20,28,39,52]. To the best of our knowl-
edge, any data related to the membrane surface area of species in
phosphatidylethanolamine–cationic surfactant mixture have not been
reported so far. Because of that, we will discuss the obtained structural
characteristics of CnGS12–DOPE–DNA complexes in view of the relative
changes occurring due to the elongation of the polymethylene spacer.

Theoretical models of LαC phase assume DNA as “stiff rods”with uni-
form distribution of negative charge, justified in view of the fact that the
persistence length of double-stranded DNA, (~50 nm), is much larger
than its ~2 nmdiameter [53] and alsomuch larger comparable tomem-
brane dimensions (both, the thicknesses of the lipid bilayer and water
layer) [54]. Natural tendency for the charge screening of both, cationic
headgroup of CnGS12 and DNA leads to an energetically favorable orga-
nization. As we observe in Fig. 2A, the DNA–CL system with the low
content of C3GS12 forms the coexisting condensed lamellar–condensed
inverse hexagonal phases. The theoretical analysis of systems con-
taining DNA, cationic lipids, and nonionic (helper) lipids revealed that
the phase behavior, in particular the preferred lipid-DNA complex
geometry, is governed by a subtle interplay between the electrostatic,
elastic, and mixing terms, which depend, in turn, on the lipid composi-
tion and lipid/DNA ratio. The “soft” membranes with low bending
modulus exhibit the formation of both lamellar and hexagonal com-
plexes, sometimes coexisting with each other [40]. The increase of the
microviscosity of the phosphocholine membrane caused by added cat-
ionic surfactant has been proven also experimentally [55]. The Lα

C and
HII
C coexistence at lowmolar ratio C3GS12/DOPE reflects the lowmem-

brane rigidity and tendency to adopt negative curvature of the mem-
brane. The DNA and cationic lipid membrane tend to compensate
their charge as effectively as possible, using the entire accessible mem-
brane surface. HII

C phase minimizes the charge separation between the
anionic groups on the DNA chain and the cationic lipids. Reduction in
the elastic energy barrier allows the preferential forming of HII

C phase,
which is favored by the electrostatic interactions [56].

DNA–CL complexes with high surface charge density form Lα
C

phase with DNA incorporated between lipid membranes. The DNA
strands distribution in Lα

C phase represents one-dimensional smectic
phase. Energetically favorable DNA–DNA distance reflects the surface
charge density of the membrane. On the other hand, too tight ar-
rangement of the DNA strands is accompanied with the rise of the hy-
dration repulsion between them [39]. The hydration repulsion is
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assumed to be a force restricting the DNA strands to get nearer. The
hydration repulsion forces dominate the interaction between polar
biopolymers at surface separations less than 1.0–1.5 nm [57], what
corresponds to the DNA strands separation 3.2–3.5 nm [38]. As we
mentioned above, in the region R4N+/DOPE≥0.8 a “plateau” was
observed in the dependence dDNA vs. n of C3GS12–DOPE–DNA com-
plexes (Fig. 2B). In this region dDNA approaches the values relevant
for the occurrence of the hydration repulsion.

At the low molar ratios R4N+/DOPE=0.5 and 0.6 the dependence
dDNA vs. n express a non-linear character with the lowest value of
dDNA in the complexes C12TMA–DOPE–DNA, containing the cationic
moieties freely distributed in the membrane (Fig. 4). The DNA strands
in complexes without restriction given by the spacer favor the tighter
organization, in comparison with thosewhere the spacer's effect is pre-
sent. Moreover, the dDNA distance in complexes based on CnGS12
changes non-linearly with n. The natural tendency of the complex to
come to the energetically optimal organization could be the driving
force, which modulates the dDNA distance at various spacer lengths. At
the low molar ratio R4N+/DOPE complexes tend to minimize the dDNA
distance and to reach more tight complex arrangement. From this
point of view, the spacer seems to be a barrier in this effort. The actual
length of spacer is determined not only by the nominal n, but also by
its flexibility and adopted conformation. The distance between cationic
moieties of short spacer (n=2, 3) is fixed, whereas the longer spacer at
n=10–12 is flexible as well as hydrophobic enough to fold into the
lipophilic phase at the interface [12,13]. Thus, the adopted CnGS12mol-
ecule conformation can affect the spatial arrangement of the cationic
moieties in the membrane. In the case, that the complex tends to form
the tight packing of DNA, the changes of CnGS12 molecule conforma-
tion leading to the higher surface charge density would be favored.
The flexible long spacers can decrease the distance of cationic
headgroups by adopting a suitable looped-like conformation. Because
each CnGS12 surfactant differs in the ability to adopt various conforma-
tions, the ability to modulate dDNA distance varies also. Finally we ob-
serve a non-linear dependence of dDNA vs. n at the conditions of low
molar ratios R4N+/DOPE.

Reversely, at the high molar ratios R4N+/DOPE, the dependence
dDNA vs. n has a linear character for n=2–12, where the smallest
value dDNA is attained in the complex containing the surfactant with
the shortest spacer C2GS12. The DNA strands spread out more in
C12TMA–DOPE–DNA complexes, probably due to the hydration repul-
sion between them. The favorable DNA spacing in C12TMA–DOPE–
DNA complexes without the presence of spacer does not represent a
minimal value of dDNA in the series. The CnGS12–DOPE–DNA complexes
tend to organize itself in the way to attain the optimal DNA–DNA
distance and to avoid a too tight arrangement. Thus, a large membrane
surface area of CnGS12 would be desirable. In the effort to extend the
distance between cationic moieties, the spacer length is a limiting fac-
tor. The all-trans conformation of CnGS12 spacer chain maximizes the
distance between cationic headgroups and the molecular area ACnGS12
manifested on the membrane surface. Moreover, the high fraction of
CnGS12within the lipidmembrane can act as a limitation for themobil-
ity of cationic headgroups and surface charge density variation. Under
the conditions of the sufficiently high molar ratios R4N+/DOPE, the
resulting dependence of dDNA vs. n is linear and correlates with
ACnGS12, which probably play a main role in the structural arrangement
of the complexes. The various flexibility and conformational properties
of the spacer become more protracted at lower molar ratios R4N+/
DOPE, under the tendency to achieve the optimal DNA–DNA distance.

4. Conclusions

We have shown that CnGS12–DOPE–DNA complexes form Lα
C

phase with regularly spaced DNA strands having average distance
dDNA. The presence and length of the spacer in CnGS12 surfactant
molecule affected the structure of complexes and DNA–DNA spacing.
The dDNA correlated with the area of CnGS12 surfactant ACnGS12 and
increased linearly with increasing n at the high studied membrane
surface charge densities of the complexes CnGS12/DOPE=0.35 and
0.4 mol/mol. Lower membrane surface charge densities disrupt the
correlation dDNA vs. ACnGS12. The low membrane surface charge densi-
ties, i.e. a lack of charged molecules per unit lipid membrane area,
facilitate the modulation of dDNA probably due to conformational var-
iability of CnGS12 molecules.
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