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a b s t r a c t

This paper reports themagnetohydrodynamic (MHD) flow and heat transfer characteristics
of a second grade fluid in a channel. Analytic technique namely the homotopy analysis
method (HAM) is used to solve the momentum and energy equations. The important
findings in this paper are the effects of second grade parameter, Hartmann number,
Reynolds number, thermal radiation parameter, Prandtl and local Eckert numbers on the
velocity, temperature, skin friction coefficient and Nusselt number.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The flow behavior of rheological fluids is a topic of current interest because of its engineering and industrial importance;
for instance processing of polymers, biomechanics, enhanced oil recovery and food products etc. Different from the
viscous fluids, it is impossible to characterize all the rheological fluids by a single constitutive equation. Therefore several
constitutive equations of such fluids have been reported in the literature. Amongst these there is the simplest one which
is known as the second grade fluid. In view of its simplicity, various investigators [1–10] in the field have recently used it
in different flow descriptions. It is noticed that the second grade fluids can predict the normal stress effects. However, such
fluids do not exhibit the shear thinning/thickening effects [11–13]. These fluids also do not possess the characteristics of
relaxation and retardation phenomena.
The influence of complex rheological parameters on the heat transfer is a topic of great interest to the researchers

nowadays. Such analysis has potential applications in extrusion process, hemodialysis and oxygenation. In the light of
such motivations, the present work studies the effects of thermal radiation [14] on the MHD flow in a channel with
stretching walls. Constitutive equations of second grade fluid are considered. Series solutions for velocity and temperature
are constructed by homotopy analysis method [15,16]. This method has been already used by different authors for many
problems [17–30]. Here the convergence of the derived solutions is ensured. The variation of emerging parameters are
discussed on the flow quantities of interest.

2. Development of the flow problem

Let us consider the two-dimensional and steady flow of a second grade fluid in a channel bounded by the planes y = ±a.
The x- and y-axes are chosen parallel to the channel walls and perpendicular to the flow respectively. A constant magnetic
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field B0 is applied in a direction transverse to the flow. Symmetry in the flow is taken into account about the line y = 0.
The flow is generated due to stretching of the channel walls. The heat transfer in the channel is because of the constant
temperature to the channel walls. In addition heat radiation effects are included. Constitutive expressions in a second grade
fluid are

T = −pI+ µA1 + α1A2 + α2A21, (1)

A1 = ∇V+ (∇V)T, (2)

A2 =
dA1
dt
+ A1(∇V)+ (∇V)TA1, (3)

in which p is pressure, I is unit tensor, V is the velocity and d/dt , µ, α1, α2 are material derivative, dynamic viscosity,
viscoelasticity, cross viscosity respectively. Further more µ, α1 and α2 satisfy [13]

µ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (4)

The relevant boundary layer problems are

u
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u = bx, v = 0 at y = a; b > 0,
∂u
∂y
= 0 v = 0 at y = 0,

T = Tw, at y = a,
∂T
∂y
= 0 at y = 0, (7)

where u, v, T , Tw , ν, σ , ρ, k, cp and qr are components of velocity in x and y directions, temperature, the wall temperature,
kinematic viscosity, electrical conductivity, mass density, thermal conductivity, specific heat and heat flux respectively. All
the fluid properties are taken constant. By the Rosseland approximation the radiative heat flux can be reduced in the form

qr = −
4Γ
3k∗

∂T 4

∂y
, (8)

whereΓ and k∗ are the Stefan–Boltzmann constant and themean absorption coefficient respectively. Invoking Taylor series,
one has

T 4 ≈ 4T 30 T − 3T
4
0 , (9)

where in the above equation T0 is the temperature at the central line y = 0 and terms of higher order are neglected.
Employing the following transformations

u = bxf ′ (η) , v = −abf (η) , η =
y
a
, θ =

T
Tw
, (10)

we have

f ′′′ − Re
((
f ′
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− ff ′′

)
−M2f ′ + α

[
2f ′f ′′′ − ff (iv)

−
(
f ′′
)2 ]

= 0, (11)

f (0) = 0, f (1) = 0, f ′ (1) = 1, f ′′ (0) = 0, (12)(
3NR + 4
3NR

)
θ ′′ + Pr Re f θ ′ + Pr Ec
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+ α Pr Ec

(
f ′f ′′

2

−ff ′′f ′′′

)
= 0, (13)

θ ′(0) = 0, θ(1) = 1, (14)
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in which

M =
√
σ

µ
B0a, Re =

a2b
ν
, Pr =

µcp
k
,

Ec =
b2x2

Twcp
, NR =

kk∗

4Γ T 30
, α =

α1b
µ
,

are respectively the Hartmann number, Reynolds number, Prandtl number, local Eckert number, thermal radiation and
viscoelastic parameters. The local skin friction coefficient Cf and Nusselt number Nu are

Cf =
(
1+ α
Rex

)
f ′′ (1) , (15)

Nu = −θ ′ (1) , (16)

where Rex is local Reynolds number.

3. Solution by homotopy analysis method (HAM)

3.1. Zeroth-order deformation problem

In order to obtain series solutions, f (η) and θ(η) can be expressed by the set of base functions

{ηn, n ≥ 0} (17)

in the form

f (η) =
∞∑
n=0

an,nη2n+1, (18)

θ (η) =

∞∑
n=0

bn,nη2n, (19)

where an,n and bn,n are coefficients. The initial guesses and auxiliary linear operators are chosen as follows
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1
2
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)
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2, (21)
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, (23)

with

L1(C1 + C2η2 + C3η2 + C4η3) = 0, (24)

L2
(
C5 + C6η2

)
= 0, (25)

and Ci (i = 1− 6) are the arbitrary constants. Now the problems corresponding to zeroth-order deformation are

(1− q)L1 [Φ(η; q)− f0(η)] = q h̄1 N1 [Φ (η; q)] , (26)

(1− q)L2 [Ψ (η; q)− θ0(η)] = q h̄2 N2 [Ψ (η; q)] , (27)
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= 0, (29)
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where q ∈ [0, 1] and h̄i 6= 0 (i = 1, 2) are the respective embedding and auxiliary parameters such that Φ(η; 0) = f0 (η),
Φ(η; 1) = f (η) and Ψ (η; 0) = θ0 (η) ,Ψ (η; 1) = θ (η). Obviously when q varies from 0 to 1,Φ(η; q) changes from the
initial guess f0 (η) to an exact solution f (η) and Ψ (η; q) from θ0 (η) to θ (η). By Taylor series one has

Φ(η; q) = f0 (η)+
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. (35)

3.2. Higher-order deformation problem

Themth-order deformation problems are

L1 [fm(η)− χmfm−1(η)] = h̄1 R1m (fm−1(η)) ,

fm(0) = 0, fm(1) = 0, f ′m(1) = 0, f ′′m(0) = 0, (36)
L2 [θm(η)− χmθm−1(η)] = h̄2 R2m (θm−1(η)) ,

θm(1) = 0, θ ′m(0) = 0, (37)

whence
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1,m > 1. (40)
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Table 1
The values of skin friction coefficient for different values ofM , Re and α.

M Re α RexCf

6 10 0.0 7.7958
0.4 15.4094
0.6 22.1710
1.0 25.3590

6 0.0 0.6 17.7101
5 18.2930
15 19.4301
20 19.9843

0.0 10 0.6 9.9075
2 11.5515
4 14.9731
6 18.8663

Table 2
The values of Nusselt number for different values ofM, Re, α, Pr,NR and Ec.

M Re α Pr NR Ec Nu

6 10 0.6 0.0 10 0.6 0.0000
0.3 1.0189
0.6 2.0635
1.0 3.4988

6 10 0.6 0.3 10 0.0 0.0000
0.3 0.5094
0.9 1.5284
1.5 2.5474

6 5 10 0.6 0.3 0.6 0.4552
10 0.5094
15 0.5305
20 0.5414

0 10 0.6 0.3 10 0.3 0.3553
2 0.3742
4 0.4314
6 0.5094

6 10 0.0 0.3 10 0.3 0.3653
0.4 0.4625
0.8 0.5555
1.0 0.6010

6 0.0 0.6 0.3 10 0.3 0.5701
5 0.5857
15 0.6161
20 0.6309

If f ∗m(η) and θ
∗
m(η) are the particular solutions of Eqs. (36) and (37) then the solutions are

fm(η) = f ∗m(η)+ C
m
1 + C

m
2 η + C

m
3 η
2
+ Cm4 η

3, (41)

θm(η) = θ
∗

m(η)+ C
m
5 + C

m
6 η (42)

where coefficients Cmi (i = 1− 6) can be determined by the boundary conditions in Eqs. (36) and (37) i.e. Mathematica has
been used in solving the problems (36) and (37) form = 1, 2, 3 . . . .

4. Results and discussion

As proposed by Liao [15], the convergence of homotopy series solutions (18) and (19) depend upon the values of
convergence — control parameters h̄1 and h̄2. Therefore h̄-curves (Figs. 1–3) are plotted to determine the region of
convergence. The range of admissible values of h̄1 and h̄2 here are−1.70 ≤ h̄1 ≤ −0.2 and−0.55 ≤ h̄2 ≤ −0.3 respectively.
The series solutions (18) and (19) converge in the interval 0 ≤ η ≤ 1 when h̄1 = −0.3 and h̄2 = −0.4 respectively.
Figs. 4–9 are made to analyze the effects of Hartmann number M , Reynolds number Re and the parameter α on the

velocity. Figs. 10–15 illustrate the influence ofM , Re, Pr, NR and α on the temperature.
Fig. 3 shows that f (η) decreases with an increase in Hartmann number M . From Fig. 5 one can see that for different

values ofM , the magnitude of velocity f ′ (η) decreases. This is due to the effect of the magnetic force against the direction of
the flow. Figs. 6 and 7 illustrate the variations of velocity components f (η) and f ′ (η) for various values of the viscoelastic
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Fig. 3. h̄-curve for 11th-order approximation.

parameter α. It is noticed from these figures that the velocity components increase when α increases. Fig. 8 reveals that
velocity component f (η) decreases when Re increases. Fig. 9 depicts that magnitude of f ′ (η) increases for η > 0.6 but
decreases for η < 0.6 with an increase of Reynold number Re. Figs. 9–12 indicate that the temperature is an increasing
function of α, Pr, Ec and Re. Figs. 13 and 14 depict that the temperature decreases as M and NR increase. Tables 1 and 2
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are drawn to analyze the effects of involved physical constants on the skin friction coefficient and Nusselt number. From
Table 1, it is clear that the skin friction coefficient Cf increases by increasing M , Re and α. Table 2 shows that Nu increases
with an increase ofM , Re, α, Pr,NR and Ec.
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5. Concluding remarks

The present study describes the analytic solution of theMHD second grade fluid flow in a channel. The nonlinear problem
of velocity is solved by HAM. Using this velocity, energy equation is also solved analytically. The effects of various key
parameters including the second grade parameter (α), Hartmann number (M), Reynolds number (Re), thermal radiation
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parameter (NR) , Prandtl number (Pr) and local Eckert number (Ec) are examined. The convergent series solutions are
obtained. The main results of the present analysis are as follows.

1. The velocity components f (η) and f ′(η) are decreasing functions ofM . This is because of the fact that magnetic force acts
against the direction of flow.

2. The velocity components are increasing functions of α.



378 T. Hayat et al. / Computers and Mathematics with Applications 58 (2009) 369–379

( 
 )

= 0.2, Pr = 0.2,     = –0.3, M = 6,     = –0.4, NR = 5,  Ec = 0.1

0 0.2 0.4 0.6 0.8 1

η

η

2

Re = 0.0

Re = 10.0

Re = 15.0

Re = 20.0

1.01

1.008

1.006

1

1.004

1.002

Fig. 13. Variation of θ(η)with η for different values of Re.

( 
 )

0 0.2 0.4 0.6 0.8 1

η

η

NR = 5.0

NR = 10.0

NR = 15.0

NR = 20.0

1.0025

1

0.9975

0.995

0.9925

0.99

0.9875

0.985

M = 6, Re = 10,    = 0.2,     = –0.3,     = –0.4, Ec = 0.1, Pr = 0.22

Fig. 14. Variation of θ(η)with η for different values of NR .

( 
 )

0 0.2 0.4 0.6 0.8 1

η

η

M = 0.0

M = 2.0

M = 4.0

M = 6.0

1.02

1.015

1.01

1.005

1

Re = 10, Pr = 0.2,     = –0.3,     = –0.4, Ec = 0.4, NR = 12

Fig. 15. Variation of θ(η)with η for different values ofM.

3. The velocity components f (η) and f ′(η) decrease when Re increases. Such effects occur due to decrease in viscosity.
4. Temperature increases with an increase of α, Ec and Re but decreases with an increase ofM and NR. The increase in the
temperature by increasing Pr is due to increase in viscous effects.

5. The skin friction coefficient Cf increases by increasingM, Re and α.
6. The Nusselt number Nu is an increasing function ofM, Re, α, Pr, NR and Ec.
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