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INTRODUCTION

In recent years, (co)homological methods have been a very useful tool in
the study of Hilbert functions. This line of research has its origin in Serre’s
computation of the multiplicity and in the expression of the difference
between the function and polynomial due to Serre and Grothendieck. The
last few years have witnessed many works in this direction, using either
Koszul-like complexes or the local cohomology of the graded rings associ-
ated to the ideal.

The aim of this work is to study Hilbert functions in local rings by
exploiting the interplay between these two points of view. Roughly speak-
ing, the second method is the first taken to the limit, since local cohomol-
ogy is an inductive limit of Koszul cohomologies. Therefore, we have
chosen to work systematically with the cohomological Koszul complex
instead of the homological one. With the cohomological approach we have
functorial properties which are lost in the homological case, due to the
nonnaturality of the duality between Koszul homology and cohomology.
This allows us to give a quick computation of the first local cohomology
module of the Rees algebra. Namely, in the [-adic case we get

1 _ T/ ifn>o0,
[k (R)], = A if n < 0.
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The cohomological approach also clarifies the relationship between the
various formulas for the difference between the Hilbert—Samuel function
and polynomial present in the literature.

We will work in the wider framework of good filtrations, rather than
I-adic. The study of good filtrations has an intrinsic interest in its own
right, for example, if A4 is analytically unramified, the filtration of integral
closures and the filtration of tight closures (provided that A4 contains a
field) are good filtrations. But, moreover, many of the results in the
literature concerning the I-adic case involve the use of nonadic filtrations,
such as {7%}, {JI" =%} with J a reduction of I, hence it seems worthwhile to
place ourselves in this more general setup. In this line, we extend the
concept of Ratliff-Rush closure to good filtrations. This Ratliff-Rush
closure is used to compute the first cohomology module of the Rees
algebra associated with any Hilbert filtration. We will also be able to
extend to Hilbert filtrations some results involving the Ratliff-Rush clo-
sure of ideals, e.g., Proposition 2.4 in [Sal93].

We show that, in the same way that the associated graded ring is used to
study the Hilbert function H?, the natural object to consider in the study
of the Hilbert—Samuel function H} is the extended Rees algebra R*(F).
Namely, Johnston and Verma [JV95] give a formula, which holds for
n > 0, for the difference H} — ht in terms of the local conomology of the
Rees algebra R(F). Since this formula is analogous to the one involving
H? and the associated graded ring, one expects that it should hold for all
n € Z. But for this end it is necessary to replace R(F) by R*(F) (see
Theorem 4.1). In fact, R*(F) appears naturally in the problem when one
considers that H} is extended by zero for negative integers, hence the
natural convention to take in order to study Hilbert functions is 1, = A if
n <a0.

The paper begins with the definition and study of the Ratliff-Rush
closure F of a good filtration F in Sect. 2. By using F we will be able to
extend to Hilbert filtrations some results involving the Ratliff-Rush clo-
sure of ideals. Section 3 is devoted to the definition and study of the
cohomological complexes C (s, k,n) which are strongly related to the
homological complexes studied in [KM81] and [HM95]. These complexes
will serve as a link between local and Koszul cohomology: we use C (d, k, n)
to compute the local cohomology of Rees algebras. In Sect. 4 we prove our
main result, Theorem 4.1, which expresses for all n € Z the difference
between the Hilbert function and polynomial in terms of the local coho-
mology of the extended Rees algebra. This result is somehow [KM81,
Theorem 2], taken to the limit, and generalizes Johnston and Verma's
formula to any Hilbert filtration and n < 0. We apply the preceding
results to recover and generalize Proposition 2.4 in [Sal93] and answer
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Question 3.2 of [JV95]. Finally, we give some applications in low dimen-
sions.

1. NOTATIONS

Let A be a Noetherian ring. A sequence of ideals F = {1}, . , is called
a filtration if it verifies I, =A, I, # A, I,,, €1, for all n >0, and
I.1,cl,,, forall n,m > 0. Itis called a good filtration if there exists
ny > 1 such that I,,, = I, 1, for all n > n, (see [HZ94, Remark 2.2]). If
A = (A, m)is alocal ring, a good filtration F is called a Hilbert filtration
if 7, is an m-primary ideal.

We will use the notation R =R(F) = &, _,I,t" C A[t] for the Rees
algebra associated with F, G = gre(A4) = &, _ 1, /1, , for the associated
graded ring of F and R* = R*(F) = &, _,I,t" C Alt,t '] for the ex-
tended Rees algebra associated with F, where we are taking I, = A for
n < 0. Hence, we will adopt the convention that I, = 0or [, = A4 if n <0,
depending on whether we want to study properties of the Rees algebra or
the extended Rees algebra. In case that F is an [-adic filtration, i.e.,
I,=1" for all n> 1, we will write R(I), gr,(A), and R*(I) instead of
R(F), gr=(A), and R*(F). For any ideal J c I, we will denote by F/J the
filtration in 4 /J given by {(1, +J)/J},. ,. Notice that if F is good, then
F/J is also good.

If F is a good filtration and x € I, we will say that x is a superficial
element of F if there exists ¢ > 0 such that (1,,,:x) N1, =1, for all
n > c. If grade(/;) > 1 it is shown in [HM95] that this is equivalent to
x &z(A)and (I, ,:x) = I, for n > 0. Unless otherwise specified, all our
superficial elements will be superficial of degree 1 (which always exist if 4
is local with infinite residue field). If x = x,,..., x, € I, we will say that x
is a superficial sequence if, for all 1 <i <s, x;., is superficial for
F/(xg,...,x).

Let us recall the definition of reduction of a filtration (see [HZ94]): Let
F={},., H=1{J,},., be good filtrations; H is called a good reduction
of F if H C F and there exists m > Osuchthat I, =1, _,J, + -~ +1,_,.J,
for all n > 0. A good reduction is called minimal (good) reduction of F if
it does not properly contain any good reduction of F. It is shown in [HZ94]
that H is a minimal reduction of F if and only if H = {J"}, _ ;, where J isa
minimal reduction of I,. Hence we can take m = 1 in the definition. We
will say that J is a minimal reduction of F. For such a reduction,
the reduction number of F with respect to J is defined as r;(F) = min
{nll,,, = JI, for all k > n}. The reduction number of F is then r(F) =
min{r,(F)IJ a minimal reduction of F}.
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By [HZ94, Lemma 2.11], any minimal reduction can be generated by a
superficial sequence. Conversely, any superficial sequence generates a
minimal reduction:

LEMMA 1.1. Let (A, m) be a d-dimensional Cohen—Macaulay local ring
and F a Hilbert filtration in A. Letx,, ...,x,, € I, with1l < m < d. Then the
following conditions are equivalent:

) xy,...,x,, is a superficial sequence for F;
(i) xy,...,x, is an A-sequence and there exists n, € N such that for
alll<i<m

(x,...,x)N L, =(x,....x)1,_, foralln > n,.

Moreover, if m = d the conditions above imply that (x,, ..., xd) is a minimal
reduction of F.

The proof is a standard argument using the claim in [HM95, Sect. 2] and
[KM82, Proposition 2.1(b)]. See also [Swa94, Lemma 1 and 2].

If F is a Hilbert filtration, it makes sense to define the Hilbert—Samuel
function of F by HZ(n) = A,(A/I,, ). It is well known that there exists a
polynomial At € Q[ X ] such that HF(n) h(n) for all n > 0; this is the
HiIbert—SamueI polynomial of F and it can be written as

h(n) zeo(n;d) —el(n Zﬁ; 1) + - +(—l)ded

with ¢, = ¢,(F) € Z, ¢, > 0. These are called the Hilbert coefficients of F.
We also define the Hilbert function of F by H(n) = A(1,/1,. ) for all
n > 0. Notice that H2(n) = H}(n) — HE(n — 1). In the case that the
Hilbert filtration F is an [-adic filtration, we will write H?, 4%, H}, and
e,(I) instead of H?, h%, HE, hi, and e,(F).

2. THE RATLIFF-RUSH CLOSURE OF A GOOD
FILTRATION

For any ideal I C A4, let

U Ik+1 Ik
k>1

be the Ratliff-Rush closure of I (see [RR78] and [HJILS92]). This ideal has
some nice properties; for instance, if A4 = (A, m) is local and I is
m-primary it is the biggest ideal containing I and having the same Hilbert
polynomial.
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DeriniTioN 2.1, Let F={I},., be a good filtration, We_define the
Ratliff-Rush closure of F to be the sequence of ideals F={I a0 given
by

= U (In+k:11k)-

k>1

Remark 2.2. Notice that it makes no sense to consider I for an ideal I
if I is not expressed as a piece of a good filtration. However, the usual
Ratliff-Rush closure I can be recovered from this definition (see Proposi-
tion 2.3(iv)).

ProPosITION 2.3.  Assume grade(I;) > 1. Then

0] = Upsillypsn: I¥) forall n > 0;

(i) for all n > 0 it holds that I, € T C I, with equality if n > 0;

(i) Fisa good filtration;

(iv) if F is an I-adic filtration then F=(I" e > 0

W if G={J},., is afiltration such that J, = I, for all n > 0, then
GeF

i) F=F;

(vii) let (x,,...,x,) be a minimal reduction of F; then Z, =
Uisillyir:(xF, ..., x5) foralln > 0.

Proof. (i) First of all notice that both sequences of ideals
(s IO o, and {(1, ., : IF)}, ., are increasing chains; hence, for all
m > 0,

U (Ink+n Iri() _( nm-+n Im) and I _( n+m I]l.n)
k>1

Let x € (1,,,,,: I)"). Since I1"x = (I{)"x < (1,)"x C I we get x €

= "nm+n’

I,. Conversely, since F is good we can consider n, such that 1, ., = I,1,

for all n > n,. Then if x € I, we may assume that x € (7, ,, : I;") with
m >ny. Hence ['x C [, x =1, I/""""x C 1L, I, ., S Lyyip that s,

X € Upoildypyn: Ik)

(i) By definition of I, we have I,= U, _,(IF¥"': I¥). Since I¥*!
I,., forall k>1we get (IF**: I") c,., .15, hence I.cI. Let
x € I} be a superficial element of degree s > 1 for F; we know that such
an element exists by [Rho71, Lemma 2.1]. Then for all n > 0 we have
(I,,,:x)=1I, hence I, c(I, ;1) ,:1})c - c(,  :I})C
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(I,,,:x)=1, that is, (I,,,:1,) =1, So, for all k> 1 it holds that
(I k- 11) ((In+k 11) Ilk D= (I +k—1- 11 b= (I +1- 11)_1
hence 1 =1, for n > 0.

(i) Let us first show that F is a filtration. It is obvious that I = A,
and if n >0, for all k>1 we have (I, s I U, 1D, hence
I .,cI.oOn the _other side, I =, I)and I, =,,,:IF) for
k > 0, hence LI, =(I, .I")(I .I ) C (I Y S 12") c
U, pion I 1., Then by (i) we have

~

In+1

I, =11, QZLZ: QT;H

for all n > 0, hence 7“1 = flfn that is, F is good.

(iv) It is obvious from the definitions.

(v) Let k>0 be such that J, =1, for all m > k. Then for all
n>0wehave I}J, cL,J, =J,J, CJ .. =1, hence J, C I,

(vi) It is obvious from (ii) and (v)

(vii) Since (1,,,:I{) c U, s c(xk L xR) for all k,n>0, it is
obvious that I, C Uk>1( e (ko x®) for all n > 0. Conversely,
recall that by [H294 Proposition 2.6], (x,, ..., x,) is also a reduction of I,
and let r be the corresponding reduction number. Then a computation
analogous to that in [Sal82], Proposition 2(i)], shows that 7;*s*-D+1 =
(xf,..., x5 k=D 1=k for all k > 1. So we get (1, : (xl,...,xf)) c
(I +r+s(k—1)+1 " 11r+S(k 1)+1) CI for allk > 1 I

Remark 2.4. When trying to generalize the concept of Ratliff-Rush
closure to good filtrations, the first object that comes to mind is {7,:},,20.
But, unlike F, this sequence of ideals is not a filtration in general: for
instance, Iet A =k[3, t* T and m = (¢3,¢*). Define F = {I,},., by I, =
and I, = *m"~* for all n > 1. Since 2m” = m"** for all n > 2, Weget
that F is a Hilbert filtration; but I, ¢ I, (see [HLS92, Example 1.11]).

The proposition below generalizes a result known for I-adic filtrations to
any good filtration:

PrRoPosITION 2.5. Let F be a good filtration such that grade(l;) > 1,
and let G be the associated graded ring of F. Then

I.,nI,
HS(G)= @ A

n>0 In+1

In particular grade(G_) > 0 if and only if F = F.
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Proof. For any x € A, let x* denote its initial form in G. If x* €
[H¢ (G)],, then there exists k > 1 such that G{x* = 0 and in particular
[Gflx* =0.Since [Gh], = U} + I, 1) /11, we get Ifx € (If + I, x
Cl, r+r,hence xel, NI,

Conversely, if x* € (I +1NI1)/I, .., we must show that there exists
k > 0 such that G*x* = 0. Since Gkc &, _,G,, it is enough to show
that G, x* =0 for all m > 0. From Proposition 2.3(ii) we can take n,
such that I =1, forall m = ny then I, x C 1, x gImIH1 glmﬂ+1
L., forall m > n, Therefore G, x* = 0 for all m > n,.

Now it is obvious that if F=F then grade(G,) > 0. Conversely, if
grade(G,) >0 then I, ., NI, =1, for all n>0. For n =0 we get

I, = I, and then by mductlon ILo.=1L, .. nl,=1_,nI=1_, 1

Another graded ring which can be naturally obtained from G and whose
irrelevant ideal has positive grade is G/H§+(G). Let us compare these two
rings:

THEOREM 2.6. Let F be a_Hilbert filtration such that grade(l,) > 1, let

= grA(F) (resp. G = grA(F)) be the associated graded rings, and let
G G /HG (G). Then G is isomorphic to a graded subalgebra of G, and they
coincide if and only if F=F.

Proof. By Proposition 2.5 we have

=~ (

+
f

I
2l

-8t e

nz=0 n+lmI

c @~

Moreover G = G if and only if 1, +j;,+1 =Z1 for all » >0, and by
Proposition 2.3(ii) this is equivalent to I, = I, forall n > 0. |

As an immediate application of the Ratliff—Rush closure we can give a
short proof of the following well-known result:

PropPosITION 2.7. Let (A, m) be a Cohen—Macaulay local ring, F a
Hilbert filtration in A. If e,(F) = -+ = e,(F) = 0, then r(F) = 0, that is, F
is I-adic with 1 a complete intersection.

Proof. Consider the filtration G = {J"},.,, with J=(x;,...,x,) a
minimal reduction of F. Then the two filtrations have the same Hilbert
polynomial and G c F; hence J" = I, for n > 0. Then by Proposition 2.3
weget FC G=G, hence F=G. |
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3. KOSZUL COMPLEXES AND LOCAL COHOMOLOGY
OF REES ALGEBRAS

Let R= &, _,R, be a Noetherian graded ring, x,,..., x, € R homo-
geneous elements of degrees k..., k,, respectively. In the case that
R = (A, m) is a local ring, we will consider it as a graded ring with the
trivial graduation. Let us recall the definition of the (graded) cohomologi-
cal Koszul complex K'(xy,..., x,; R); we will use [BH93] and [HIO88] as
general references.

The complex (K (x,, ..., x;; R), d") is defined as the dual complex of the
homological Koszul complex (K (x4, ..., x,;; R),d"), that is,

K"(xy,..., x5 R) = K,(x1,...,x;; R)* = Homg(K,(xy,..., x; R), R)

and d'=d* K"(x,,...,x,; R) can be identified with the graded free
R-module of rank (¢) given by

&b R(k; + - +k; ) = &b Re, .,

1<iy< - <i, <s 1<iy< -+ <i,<s

where deg(e;, ;)= —(k; + -+ +k; ). With this notation the differential
d": K"(x,,...,x; R) > K" Xx,,...,x,; R) is given by

n+1

k-1 )

dn(3i1 ,,,,, i) = b by (-1) XiCi i i iy
k=1 iy ,<j<iy
ig=0,i,,,=5+1

notice that 4" is a homogeneous morphism. We will denote by
Hi(xy,...,x; R) = H(K (xy,..., x;; R) the ith cohomology module of
this complex. Since the differentials are homogeneous morphisms, it has a
natural structure of graded R-module. It holds that

H%(xy,...,x;;R) = (0:(xy,...,x)))
and
R

HS(Xl,...,Xs;R) = ﬁ
11 X

(ky + - +k,).

Let H(x,,...,x,; R) = H(K (x,,..., x;; R)). If we forget about the grad-
uation of R we have nonnatural isomorphisms of R-modules
Hi(xy...,x; B =H,_{(x;,...,x;R) for all 0<i<s (see [BHO93,
Proposition 1.6.10]). These morphisms are not homogeneous except in the
special case k;, = -+ =k, = k, where we get homogeneous isomorphisms
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Hi(x;,...,x; R =H,_(x,,...,x,; Rik). If R is either a local ring or a
positively graded ring with &k, > 0 for all 1 <i <s, then it holds that
Xy,..., X, is an R-sequence if and only if H'(x,,...,x,; R) =0 for all
i + s (see, for example, [Mat86, Theorem 16.5]).

Now let (A4, m) be a local ring, let F = {I,},., be a Hilbert filtration,
and let x,,...,x, € I,. Let us adopt the convention that /, = 0 if n < 0.
We will define, for 1 <s <m, k> 1, and n € Z, cohomological com-
plexes C (s, k, n),

0- C%s,k,n) > C(s, k,n) » -+ > C*(s,k,n)
- C*(s,k,n) =0,

as follows: C (s, k, n) is the complex
0> A/1, = (A/1 )Y > (A/1,.00)2

(A/ +(s— 1)k)5 v = A/ 4 — 0,

where the differentials are induced by the differentials of the Koszul
complex K'(x¥,...,x% A). In other words, we have an epimorphism of
complexes

K'(xf,...,xf;A) - C'(s,k,n).
such that, with our convention about the negative pieces, it becomes an
equality if n < —sk.

Remark 3.1. Several homological analogues of these complexes appear
in the literature. For example, C'(d, k, n) is a cohomological particular
case of the complex K of the proof of Theorem 2 in [KM81]. Also, in the
case k=1 our C'(s,1,n —s) is the cohomological counterpart of the
complex C.(xy,..., x,, F, n) defined in [HM95].

Part of the cohomology of C (s, k, n) can be computed:
PropPoSITION 3.2. Forall 1 <s <m, k> 1, n € Z, the following hold:

i) HYC(s,k,n)=(,,,:(xk . ... xN/L;
(i) H(C'(s,k,n)=A/U,  , + (xf,..., x5
(i) ifxq,..., x, is an A-sequence,

(Xf, ) N In+sk

H " YC'(s,k,n)) = 3 )
(C( ) () o
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Proof. Parts (i) and (ii) are straightforward. To prove (iii), consider the

top part of the Koszul complex K'(x%,..., x*; A),
ds—? ds—t
AGSY s g 5 (xf,....x{) = 0.

Since xf,...,x* is an A-sequence, this is an exact sequence. Tensoring by
A/1, . s—1y We get an exact sequence

- 0.

k

k
In+(s—l)k In+(s—l)k xlv---:xs)lm(s—l)k

( A )(sjz) a2 ( A )X ast (xf,...,xf)
(

Let d;. denote the differential of C (s, k, n). Since Im(d},2) = Im(d%?) it
is clear that there is a commutative diagram of exact sequences,

A P xk xk
0 — Im(d2) ( ) u k( i ) 0
L sk (xll""xs)1n+(s—1)k
aJ{ idJ{ YJ(
A\ a A
0 — Ker(di™Y) :
In+(s—l)k In+sk

Then by the snake lemma we get

(xf""'xf)mInJrsk I

H*"}(C'(s,k,n)) = Coker a = Kery = (= )1
1o A Jn+(s—Dk

Recall the definition of tensor product of complexes: if K, L are
complexes of graded R-modules, then (K ® L) is the complex given by
(K® L)' =&, K ®L/ with differential d(x ® y) =dx®y +
(-1D'x ® dy forx € K', y € L. Notice that (K ® L)" is a graded R-mod-
ule with the graduation given by deg(x ® y) = deg(x) + deg(y). Hence
(K ® L) is a complex of graded modules with homogeneous differential.
If f, g are morphisms of complexes, then f ® g is again a morphism of
complexes, and if f* and g”" are homogeneous morphisms for all n, so are
(f®g)'. Then it is easily shown that K'(x;,...,x,;R) =K '(x;R)
® -+ ® K(x;; R).
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Now let a,,...,a, € R be homogeneous elements of degrees v, ..., v,

respectively. Then the homogeneous morphisms of complexes K'(aj’-‘; R)
— K'(a}**; R) given by

0 — R — R(kvj) — 0

ol "

k1

0 — R —— R((k+1ly) — 0

give us a homogeneous morphism K'(af,...,d" R) - K'(aF*?,
..,a**%; R) whose component of degree j is the multiplication by the

())-tuple (a; - a;ll <i; < -+ <i;<s). Hence we have an inductive

system of complexes which gives us the local cohomology of R; for all
i > 0 it holds that

s

H(’;,)(R) = IimHi(a’l‘,...,a"' R)
- k

(see [H1088, Theorem 35.18]). When R is the Rees algebra R = R(F)
and (x,,..., x,) is a reduction of F, then the ideals (x,¢,...,x,;¢) and R,
have the same radical, so

Hi (R) = imH((x,0)",..., (x,0)"; R).
P
THEOREM 3.3. Let (A, m) be a d-dimensional local Cohen—Macaulay

ring, let F be a Hilbert filtration and let x = x, ..., x, € I, be an A-sequence.
Then for alln € 7.

(i) Forall k > 0 we have
[Hi((x_t)/{; R)]nzHi_l(C'(s,k,n)) forall 0 <i<s—1
and an exact sequence of A-modules
0 > H*"}(C'(s,k,n)) > [H*((x); R)|
- H'(x*; A) - H*(C(s,k,n)) - 0.
(i) If moreover s = d and x is a superficial sequence for F then

[Ha (R)], = limH"(C(d kom))  forall0<i<d -1,
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and we have an exact sequence of A-modules

(J_Ck) A o

0 - lim - [HE (R)
£ (X)) vien [ R ]"
] A
- Hi(A) — lim ————= — 0.

K Lagsn + (J_Ck)

In particular if d > 2 it holds that

1 - Z,/In ifn >0,
[HR*(R)]"_ A ifn <O0.

Proof. Let us look at the epimorphism of complexes
K'(xf,...,xf; A) - C'(s,k,n).

It is easily seen that the kernel of this epimorphism is the nth-degree
component K, ((x,t)%,...,(x,0)*; R) of the (graded) Koszul complex
K '((x; )5, ..., (x,0); R), where R is the Rees algebra associated with F.
Hence, we have an exact sequence of complexes of 4-modules

0- K,‘,((xlt)k,...,(xst)k; R) - K'(xf,...,xf;A) - C(s,k,n) > 0.

The morphisms K'(x¥,..., xk 4A) - K'(xk*1, ... x¥*1 A) obtained
above can obviously be restricted to K,((x,t)*,...,(x,)*; R), hence for
all k > 1 we obtain morphisms of exact sequences

0> K((xD...,(x,t)5R) - KGf...,x54 - C(s,k,n) -0

s

0 5K () * L o (e, R) 5K (kY L x5 A) 5 C (s, k + 1,n) -0

which provide us with an inductive system of exact sequences of com-
plexes. So we obtain the theorem due to the naturality of the cohomology
long exact sequence.

The only thing left to complete the proof is the last claim in (ii). For this,
since

(In+k : (xf,...,x’j))
T ,

n

[Hi (R)], = limH(C(d, k,n)) = lim
k k

where the morphisms in the inductive system are the natural inclusions, it
is enough to show that (7., :(xf,...,x%) =1 for large k and n > 0.
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This we get from Proposition 2.3(vii), since (x,, ..., x,) is a reduction of F
and the ideals (I, , : (x¥,..., x*)) form an increasing chain. On the other
side, if n < Owe have (7, : (xl,...,x’;)) =Aforlarge kand I, = 0. 1

Remark 3.4. The combination of Proposition 2.4 in [Sal93] and Theo-
rem 2.4 in [JV95] shows that if 4 is two-dimensional Cohen—Macaulay
and F is I-adic then A(H}E (R),) = AT" /1) for all n > 0. We have
extended this result to any Hilbert filtration for all n € Z and d > 2 in (ii).
Moreover, it is obvious that the last claim holds true with the weaker
assumption depth(A4) > 2.

Now consider the extended Rees algebra R*. It has a natural structure
of an R-module given by the natural inclusion R = R*, so we will
consider its local cohomology modules with respect to R,. In the same
way as C'(s, k, n) has been constructed, we can construct cohomological
complexes C (s, k,n)* for all n € Z, k > 0, taking the convention that
I, = A for n < 0. All the results in this section hold also in this case by
changing the convention about the negative pieces. In particular we get:

THEOREM 3.5. Assume that (A, m) has infinite residue field and
depth(A) = 2. Then it holds that

i,;/[n ifn >0,

[H'lq*( R*)]” 1o ifn <O0.

In fact, the isomorphisms of Theorems 3.3 and 3.5 can be refined to
isomorphisms of graded R-modules:

THEOREM 3.6. Let (A, m) be a local ring with infinite residue field and
depth(A) > 2, let F be a Hilbert filtration, let R = R(F), and let R* =
R*(F). Consider in R* = R*(F) the structure of R-module given by the
natural inclusion. Then there are isomorphisms of graded R-modules

H: (R) =R*/R and Hi (R*) = R*/R*.

Proof. Consider the exact sequence of graded R-modules

0> R->R*> R*/R - 0.

Since [ R*/R] =0 for all n> 0 we get H} (ﬁ*/R) R*/R. More-
over, Hy (R*) = 0, since I, contains a nonzero divisor, and

Hy (R¥) = HY (R*) =0
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by Theorem 3.5. Hence the first isomorphism follows from the local
cohomology long exact sequence. The second one follows similarly from
the exact sequence

0 » R* > R* > R*/R* > 0. |

The following two results are the key tools we will use in our computa-
tions with the local cohomology of the extended Rees algebra. The first
one is a well-known result, and a proof can be found in [Kor95, Proposi-
tion A.6]:

THEOREM 3.7. Let R= @, _ (R, be a graded ring such that A = R, is
Noetherian and R is an A-algebra finitely generated by elements of R,. Let
M= & __ M, be a finitely generated graded R-module. Then:

nez

() Let r=ara(R,) the minimum integer such that there exists an
ideal generated by r elements and having the same radical as R.. Then
Hy (M) =0 foralli>r.

(i) Foralli > 0 we have Hy (M), = 0 for n > 0.
(i) Hi (M), is a finitely generated A-module.

The next theorem relates the local cohomology groups of the Rees
algebra and the extended Rees algebra:

THEOREM 3.8. Let A be a Noetherian ring, F a good filtration in A. For
all i > 2 there are isomorphisms of graded R-modules

Hg (R) = Hg (R¥),

and there is an exact sequence of graded R-modules

0- H,Oh( R) - H,%+( R*) - R*/R —>H1R+( R) - H1R+( R*) — 0.
In particular

(12, (R, = (A (R, and (1 (RO], = (113, (R¥)],

foralln = 0.

Proof. Let us consider the exact sequence of graded R-modules

0-R—->R*>R*R - 0.

Since R*/R= @, _,A4t" we get Hy (R*/R)=R*/R and hence

H§+( R*/R) = 0 for all i > 0. Then the theorem follows from the local
cohomology long exact sequence. |
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4. HILBERT FUNCTIONS

Our purpose in this section is to give a formula for the difference
between the Hilbert—Samuel function and polynomial which extends John-
ston and Verma'’s formula [JV95, Theorem 2.4] to n < 0 and holds for any
Hilbert filtration, namely:

THEOREM 4.1. Let (A, m) be a local ring, let F = {1}, ., be a Hilbert
filtration, and let R (resp. R*) be the Rees algebra (resp. the extended Rees
algebra) associated with F. Then we have:

(i) Foralli >0 it holds that A ,(Hg (R*),) < + foralln € 7.
(ii) Forall n € Z it holds that

d .
() = HE(n) = X (=1 (R),00),

Proof. Let R=R(I)= ®,_,I't" be the Rees algebra associated
with I;. Since F is a good filtration, R = R(F) is a finitely generated
R- module hence by Theorem 3.7 we have that Hf .(R), are finitely
generated A4-modules and they vanish for n > 0. Furthermore H} (R)
= 0 for all i > d. Consider the inclusion of graded rings R — R: we 'have
R.R=®&, L1, t" Since F is a good filtration, it holds that /,I, , =
I, for n >0, hence R,Rand R, have the same radical. So Hj_ (R) =
HL (R)forall i > 0. Therefore by Theorem 3.8, Hg L(R¥), vanishes for
n >>+ 0.

Nowlet G = @, .1,/1,., be the associated graded ring of F: we have
an exact sequence of graded R-modules

0 - R*(1) > R* - G - 0.

Since Hy (G) = H (G) for all i > 0, the local cohomology long exact
sequence gives, for all n € Z,

0 _)ng+( R*)n+l - Hl%+( R*)n - H((5)+(G)n _)HI1?+( R*)n+l
- =+ > Hg (R*),,1 > Hg (R*), > Hg (G), > 0. (%)

Let us prove (i) by decreasing induction on n. For n > 0 it is obvious
since H"R+( R*), = 0. Then we have, for all n € Z,

- > Hg (R*),41 > Hg (R*), = Hg (G), > -,
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Hg (R*), ., has finite length by induction hypothesis, and H¢ (G), has
f|n|te length since G, is Artinian. Hence Hg _(R*), has finite Iength

To prove (ii), define f(n) = L4 (— 1)’)\A(H’ J(R%),,,) forall neZ
From the exact sequence () we get

f(n) =f(n = 1) = = L (=1)'M(HE (6),).
i>0
On the other side, G is a Noetherian graded ring with G, Artinian. Hence,
a proof analogous to that of Lemma 1.3 in [Mar93] shows that

HR(n) — hi(n) = ¥ (=1)'A,(HE, (6),).

i=0
Let g(n) = ht(n) — HA(n). We have obtained, for all n € Z,

f(n) —f(n—1) =g(n) —g(n —1).

Hence, since f(n) = g(n) = 0 for n > 0 we get f(n) = g(n) forall n € Z.
|

Remark 4.2. Kirby and Mehran [KM81] consider, for all m € Z, inter-
mediate Rees modules given by R = @& _ I.t" c Alr,r7*], and they
express the difference between the Hilbert—Samuel function and polyno-
mial in terms of the Euler characteristic of the graded Koszul complex
K (xpe™, ..., xiat"e; RI™). Namely, in Theorem 2 they show that if N =
n, + -+ +n, then

d
Z (_1)i/\A(Hi(Kn+N(xfltnlv o, XDagh R[m])))
i=0

= (-1)"(ht(n — 1) — Ht(n - 1))

for all n > m and n, > i, — n, where i, is the regularity index of H}.
They also show that the individual homology modules are independent of
n,,...,n, provided they are big enough.

The formula proved for an I-adic filtration in [JV95, Theorem 2.4] is

d .
B (n = 1) = HE(n = 1) = B (-1 0(Hi (R),)

for all n > 0. Notice that, by the duality between Koszul homology and
cohomology, this is Kirby and Mehran’s formula taken to the limit in the
case m = 0. Since Johnston and Verma’s formula is analogous to the one
involving H? and the associated graded ring, one expects that it should
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hold for all » € Z. Anyway, in the Cohen—Macaulay case they find the
obstruction for this: it is the fact that H,lh( R)_, = A. By replacing R(F)
by R*(F), that is, making m tend to — in Kirby and Mehran’s result, this
obstruction has been avoided.

Our aim is now to give an affirmative answer to Question 3.2 of [JV95].
Namely, we want to show that if depth(gr,(F)) >d — 1, then, for all
nelz,

he(n) — HE(n) = (1) "0 (HE (R*),01)-

This gives a cohomological explanation to the fact that the Hilbert func-
tions of filtrations with depth(gr,(F)) = d and d — 1 behave in the same
way; see [Mar89], whose results hold also for Hilbert filtrations.

Let (A, m) be a local ring, let F be a Hilbert filtration in A, let
R = R(F), and let R* = R*(F). Although R* is not a finitely generated
R-module, it is a Noetherian ring; therefore, by [Mat86, Remark before
Theorem 16.6], all the maximal R*-regular sequences contained in R
have the same (and finite) length. Hence we will denote this well-defined
integer by depth, (R*). Again by the remark in [Mat86], the same
argument as in the finite case shows that

depth ( R*) = min{ilHg ( R*) # 0}.

The proposition below, together with Theorems 3.3 and 3.8, generalizes
Proposition 2(iv) of [Sal82]:

PropPosITION 4.3. Assume that A is Cohen—Macaulay and let G =
gr,(F). Then it holds that

() if G is not Cohen—Macaulay then depthz (R*) = depth(G) + 1
(i) if G is Cohen—Macaulay then depth (R*) =d

Proof. (i) Let s =depth(G) <d—1 and let us first show that
depthz (R*) > s + 1 by induction on s.

In the case s = 0, since 4 is Cohen— Macaulay it is clear that H0
(R*) =0. -

In the case s =1 by Proposition 2.5 we get F = F. Since G is not
Cohen- Macaulay we have d > 2. Hence by Theorem 3.5 we get Hg ( R*)

®, . 1,/1, =

Assume s > 2. Let x € I, be such that x* € G is a nonzero divisor.
This is equivalent to x &z(A) and I, N (x) =xI,_, for all n e Z, or
equivalently (7,:x) =1,_, forall n A Hence, |f A A/(x) and F =
F/(x), we get that G = gri(F) = G/x*G and R* = R*(F) = R*/xt R*.

Although R = R(F) # R/xt R (they differ in the degree-zero piece) we
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have a homogeneous epimorphism of graded rings R — R. Notice that we
have a commutative diagram of morphisms of R-modules

R — R*
l |
R — R*= R*/xR*

hence the two possible structures of R-module on R* coincide. Since
R,R =R, we have Hj (R® =Hg (R® forall i > 0.

Slnce depth(G) =5 -1, by mductlon hypothesis we get depth z (R*) >
s. Hence Hi (R®) = 0 for all i <s — 1. Consider the exact sequence of
graded R- modules

0> R*(-1) — R* > R* - 0.
The local cohomology long exact sequence gives
Hf{f(?)n =0- Hfh( R*), , — H{h( R*),

for all i<s and all n € Z. Since Hg (R*), =0 for n> 0 we get
Hg (R*) =0 forall i <s, that is, depthR (R*)>s + 1.

Let us now show that depth(G) + 1 > p = depth; (R*). Consider the
exact sequence of graded R-modules

0 > R*(1) 25> R* - G - 0.

Since H;§+(G) = H{h(G) for all i, the local cohomology long exact se-
guence gives, for all i < p — 2,

0 =Hg (R*) = Hg (G) - Hg '(R*)(1) = 0.

Hence Hg (G) = 0 forall i <p — 2, that is, depth(G) > p — 1.
(i) In the case where G is Cohen— Macaulay, the above exact sequence
gives, forall i <d and n € Z,

Hfh( R*),:1 — Hfh( R*), - 0= Hé+(G)n.

Since Hg (R*), = 0forall n > Oweget Hy (R*) =0foralli<d. |
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We can now answer the question of Johnston and Verma:

PrRopPoOSITION 4.4,  Let (A, m) be a Cohen—Macaulay local ring, let F be
a Hilbert filtration, let R = R(F), and let s = depth(gr,(F)). Then it holds
that

() if min{s + 1,d} > 1 then, foralln € Z,

d

Re(n) —HEm) = X (=D M (Hi (R),ea);

i=min{s+1, d}

(i) if min{s + 1,d} = 1 then, foralln > —1,

d

he(n) —HE(n) = ¥ (=1)'Ay(Hg, (R),e1)

i=1

and the formula cannot be extended to all n € 7 since, when A is
Cohen—Macaulay, \,(Hg (R), ;) = = foralln < —1.

Remark 45. If d=1 and gr,(F) is Cohen—Macaulay we have
hi(n) — H¢(n) = —A,(Hg (R),,,) forall n > —1 and Hi (R), does
not have finite length for all » < —1: by the exact sequence of Theorem
38, since Hg (R*) =0 and A,(Hg (R%),) <o for all n, H (R),
cannot have finite length if n <O0. This contradicts the d = 1 case of
Proposition 3.1 of [JV95], where it should say “for all n > 0.”

We can generalize Proposition 2.4 of [Sal93] to Hilbert filtrations and
extendittoall d > 2 and all n € Z:

PrRoPOSITION 4.6. Let (A, m) be a local ring such that depth(A4) > 2,
and let F be a Hilbert filtration. Then for all n € 7 it holds that

d

_Z( 1M Hg (R),) =ht(n—1) — A(A4/L).

In particular if d = 2 and A is Cohen—Macaulay then N\ H% (R),) = e,(F)
and NHE (R))) = e)(F) — e,(F) + ex(F) — MA/L.

Proof. Apply Theorem 4.1 to the filtration F, and then use Theorems
35and 38. 1

LEMMA 4.7. Foralld = 1 and for alln € Z,

MHg, (R),) < MHE (R),-1).



458 CRISTINA BLANCAFORT

Proof. It follows from the exact sequences:

- xt
0> R(-1) 3R> R/xtR - 0,
0->K-— R/xtR—>I3—>O,

where x is a superficial element of F. |i

In particular we get the following facts in dimensions 1 and 2, which
generalize results obtained by Sally for the maximal ideal [Sal82, Corollary
to Proposition 4, (ii)]:

PropPosITION 4.8. Let (A, m) be a Cohen—Macaulay local ring with
d = 2, and let F be a Hilbert filtration. Then it holds that:

() ey —e, = NA/L) ifand only if e, = 0 and I, = 1,. In particular,
if 1 is an m-primary ideal in a Cohen—Macaulay two-dimensional ring, such
that e, = 0, then gri( A) is Cohen—Macaulay

(i) h2(n) < XI /I ., foralln € Z.

(iii) Letd = dim(A) < 2 and R = R(F). Then r(F) = 0 if and only
if [H& (R))_, = 0.

Proof. (i) Assume e, —e; = MA/IL). Then by the Huneke—Ooishi
theorem (see [HMO5, Corollary 4.9]) we get that gr:(A4) is Cohen—Macaulay
and r(F) < 1. In particular, I, = Il, and also e, = 0. Conversely if e, = 0
by Proposition 4.6 we get HR (R), = 0. Then, by Remark_4.7,
H (R); =0, hence, again by Proposition 4.6, ey — e, = MA/IL) =
A(A /1).

(ii) By Lemma 4.7 we have, for all n € Z,

0 <A(HZ (R),) — M(Hk, (R) 41
= hi(n = 1) = A(A/L,) = e (n) + MA/L )
= ML /IL,,,) = h&(n).

(iii) By Proposition 2.7 it is enough to show that e; = -+ =¢, = 0.
Since e, = \,(Hg (R),) in the one-dimensional case and e, =
M(HE (R),) and el +e, = M\,(Hg (R)_,) in the two-dimensional case,
we are done. |

Note added in proof. After submitting this paper, the author learned
about a recent preprint by L. T. Hoa, where he also introduces the
Ratliff-Rush closure for good filtrations.
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