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a b s t r a c t

Previous studies have shown that testisin promotes malignant transformation in cancer cells. To
define the mechanism of testisin-induced carcinogenesis, we performed yeast two-hybrid analysis
and identified maspin, a tumor suppressor protein, as a testisin-interacting molecule. The direct
interaction and cytoplasmic co-localization of testisin with maspin was confirmed by immunopre-
cipitation and confocal analysis, respectively. In cervical cancer cells, maspin modulated cell death
and invasion; however, these effects were inhibited by testisin in parallel experiments. Of interest,
the doxorubicin resistance was dramatically reduced by testisin knockdown (P = 0.016). Moreover,
testisin was found to be over-expressed in cervical cancer samples as compared to matched normal
cervical tissues. Thus, we postulate that testisin may promote carcinogenesis by inhibiting tumor
suppressor activity of maspin.

Structured summary:
MINT-7712215, MINT-7712176: Testisin (uniprotkb:Q9Y6M0) binds (MI:0407) to Maspin (uni-
protkb:P36952) by pull down (MI:0096)
MINT-7712188: Testisin (uniprotkb:Q9Y6M0) and Maspin (uniprotkb:P36952) colocalize (MI:0403) by
fluorescence microscopy (MI:0416)
MINT-7712115: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uni-
protkb:P36952) by two-hybrid (MI:0018)
MINT-7712162, MINT-7712128: Maspin (uniprotkb:P36952) physically interacts (MI:0915) with Testisin
(uniprotkb:Q9Y6M0) by anti bait co-immunoprecipitation (MI:0006)
MINT-7712147: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uni-
protkb:P36952) by anti tag co-immunoprecipitation (MI:0007)

� 2010 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

Testisin (also known as PRSS21 and ESP-1) is a serine protease
that is highly expressed in various tumor cell lines but shows little
expression in normal tissues, with the exception of testicular germ
cells [1–3]. Previous studies have shown that overexpression of
testisin induces colony formation and promotes malignant trans-
formation in ovarian cancer cells [4]. However, the action mecha-
nism or physiologic substrates for testisin have not been
on behalf of the Federation of Euro
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previously determined. Using a yeast-based screening system
and a HeLa-derived cDNA library, we identified maspin as a novel
testisin-interacting molecule.

Maspin is a type II tumor suppressor that has sequence homol-
ogy with members of serpin family of protease inhibitors [5]. In
many different cancers, maspin acts as a tumor suppressor capable
of inhibiting motility, invasion and metastasis [6–8]. Consistent
with this tumor suppressor function, impaired expression of mas-
pin has been reported in several epithelial-type human malignan-
cies, including breast, prostate and lung cancer [6,9]. In a
mammary tumor model, a strong correlation was found between
maspin overexpression and increased cell death, suggesting that
maspin may play an important role in cell death in vivo [10]. Mas-
pin was found to sensitize cancer cells to chemical induction of
pean Biochemical Societies.
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apoptosis [11,12], and in a transgenic mouse model, maspin was
found to inhibit tumor progression in vivo through a combination
of increased apoptosis, decreased angiogenesis, and inhibition of
tumor cell migration [10]. However, significant in vitro and
in vivo tumor growth variations have been noted among cells that
stably express maspin [13].

Here, we show that maspin is a novel target of testisin.
Although testisin proteins have previously been associated with
transformation, this is the first study to show how testisin modu-
late the apoptosis and invasion of cancer cells.

2. Materials and methods

2.1. Cell culture and transfection

Human cervical carcinoma CaSki cells were grown in RPMI
(Gibco Life Science, Grand Island, NY). SiHa, MS-751, and HeLa cells
were grown in DMEM (Gibco Life Science). All media were supple-
mented with 10% FBS, 1 mM NaCO3, 2 mM L-glutamine, penicillin–
streptomycin, and cells were grown in 5% CO2 at 37 �C. Maspin-
and testisin-targeting siRNA and control siRNA were obtained from
Dharmacon (Lafayette, CO). All transfections were performed using
Effectine (Qiagen, Valencia, CA) according to the manufacturer’s
instructions.

2.2. Yeast two-hybrid analysis

The testisin bait sequence was amplified from full-length wild
type human testisin cDNA and inserted into pLexA DNA-binding
domain (pBD; Clontech, Palo Alto, CA) to make the bait construct.
The reporter strain EGY48 (Clontech) was sequentially transfected
with pBD-testisin and the pB42 AD-tagged HeLa cDNA library.
Screening was performed according to the protocol provided with
the Matchmaker Two-Hybrid System (Clontech), and positive
clones were selected on supplemented minimal galactose medium.
To double-check the positive colonies, qualitative blue-white
screening with 40 lg/ml 5-bromo-4-chloro-3-indolyl-D-galactopy-
ranoside (X-gal) was performed. Controls consisted of pJG4-5/Daxx
and pLexA/sentrin in EGY48 (positive control; P) and pJG4-5/FADD
and LexA/sentrin (negative control; N) were streaked on S.D. med-
ium lacking uracil and histidine [14].

2.3. Constructs of expression plasmids for testisin and maspin

All constructs were generated by PCR using primers designed
from the coding regions of the relevant human cDNAs. The full-
length testisin open reading frame was cloned from HeLa mRNA
by reverse transcription-PCR (RT-PCR) for FLAG-tagged cloning
into pCMVTaq4C (Clonetech). Myc-tagged-maspin constructs were
ligated into pCDNA3.1 (Clonetech).

2.4. RT-PCR analysis of maspin and testisin

Expression of maspin and testisin was evaluated by RT-PCR. The
primer sequences, which were designed from the coding region of
the human maspin cDNA, were as followings: 50-AGGCCTTA-
CATGGTGTGACTCCAT-30 (sense) and 50-GATTTATGCCCCACTCTG-
TCCCTA-30 (antisense). The PCR conditions were as follows: 27 cy-
cles of 95 �C for 30 s, 52 �C for 30 s, and 72 �C for 30 s, followed by a
final incubation at 72 �C for 7 min. The testisin primer sequences,
which were designed from the coding region of the human testisin
cDNA, were as follows: 50-CTTAAGCTTATGGGCGCGCGCGGG-30

(sense) and 50-CAACTCGAGTTAGACCGGCCCCAGGAG-30 (anti-
sense). The PCR conditions were as follows: 27 cycles of 95 �C for
30 s, 58 �C for 60 s, and 72 �C for 40 s, followed by a final incuba-
tion at 72 �C for 7 min.
2.5. In vitro transcription, translation, and GST pull-down assay

The maspin cDNA was in-frame cloned into pGEX4T-1 (Amer-
sham Corp., Arlington Heights, IL). Glutathione S-transferase
(GST) fusion proteins were expressed in Escherichia coli BL21
(DE3) with IPTG (isopropyl-B-D-thiogalactopyranoside) induction.
Subsequently cells were sonicated in ice-cold lysis buffer
(200 mM Tris–Cl, pH 8.0, 0.5 M NaCl, 100 mM EDTA, 0.1% Triton
X-100, 0.4 mM PMSF, 10 lg/ml aprotinin, 10 lg/ml leupeptin). Re-
combinant GST fusion proteins were recovered by incubation with
glutathione-Sepharose beads (Amersham Pharmacia Biotech) for
16 h at 4 �C and normalized for protein concentration. The testisin
cDNA was subcloned into pcDNA3.1(+) (Invitrogen, Carlsbad, CA)
and the resulting pcDNA3.1(+)/testisin were subjected to in vitro
translation using the TNT transcription/translation system kit (Pro-
mega, Madison, WI). GST pull-down assay was performed as previ-
ously described [14].

2.6. Co-immunoprecipitation and immunoblotting

To test for an association between endogenous maspin and
testisin, cells (or tissue) were washed with phosphate-buffered
saline (PBS) and lysed in buffer (20 mM HEPES, pH 7.0, 150 mM
NaCl, 1 mM EDTA, 2 mM b-glycerophosphate, 1% Triton X-100,
10% glycerol, 1 mM PMSF, 1X protease inhibitor cocktail). The cell
(or tissue) debris was removed by centrifugation at 13 000 rpm
for 15 min at 4 �C, and the resulting supernatant was incubated
with anti-maspin (1:100, Santa Cruz, CA) or anti-FLAG (Sigma,
St. Louis, MO) antibody for 16 h at 4 �C on a rotary shaker. Subse-
quently, immune complexes were washed with the above-men-
tioned lysis buffer, boiled for 3 min in 2X SDS loading buffer,
and resolved by 10% SDS–PAGE. The proteins were then trans-
ferred to a nitrocellulose blot overnight at 4 �C, and developed
against anti-FLAG, testisin (Abnova, Taipei, Taiwan), and maspin
antibodies.

2.7. Confocal microscopy

Cells were grown on four-well Lab-Tek Chamber Slide Glass
(Nunc, Scotts Valley, CA) and fixed with 3.7% formaldehyde for
15 min at room temperature. Fixed cells were then incubated with
primary antibodies overnight, washed with PBS, and incubated
with the secondary antibodies conjugated to either rhodamine or
FITC. DAPI was used to counterstain the nuclei. Confocal scanning
analysis of the cells was done with RADIANCE 2100 confocal imag-
ing system (Bio-Rad, Hercules, CA).

2.8. Caspase-3 activity assay and cell death evaluation

Cells (1 � 105) were plated to six-well plate and evaluated for
caspase-3 activity using a caspase-3 activity assay kit from Peptron
(Seoul, Korea) according to the manufacturer’s instructions. For cell
death evaluation, cells were stained with trypan blue solution, and
the blue-stained dead cells were counted under microscope. The
percent of dead cell was calculated as the number of blue-stained
cells/number of total cells counted. Values represent the averages
of three independent experiments.

2.9. Cell viability analysis

Cells (5000 cells/well) were incubated in triplicate on a 96-well
plate in the presence or absence of the indicated test samples in a
final volume of 0.1 ml for 24 h at 37 �C. Thereafter, 0.025 ml MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
solution (5 mg/ml in PBS) was added to each well. MTT assay
was performed as previously described [15].
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2.10. Invasion assay

Cancer cells were plated at 5 � 104 cells/well in RPMI medium
with 1% serum in the upper chamber of a Transwell insert (8-lm
pores; Chemicon, Temecula, CA) coated with Matrigel. Medium
containing 10% serum was added to the bottom chamber, and
the chamber was incubated for 24 h. The cells in the upper cham-
ber were then removed by scraping, the cells remaining on the
lower surface of each insert were stained using CyQuant GR dye
(Chemicon), and cell numbers were counted.

2.11. Statistical analysis

Unless otherwise stated, the data are reported as the
mean ± S.D. from a representative experiment. The t-test was used
for comparing results, and statistical significance was based on
P < 0.05. All experiments were performed at least three times, each
time with three or more independent observations.

3. Results

3.1. Testisin interacts with maspin

In order to identify an intracellular target of testisin, we
searched for testisin binding proteins in a human HeLa cDNA li-
brary, using a yeast two-hybrid screening method. Following
screening of 1 � 107 colonies from the human HeLa cDNA library,
we isolated positive clones that appeared to specifically interact
with testisin. As an additional check of the positive clones, qualita-
tive blue-white screening with X-gal was performed (Fig. 1A). DNA
sequencing and basic alignment searches of the NCBI database re-
vealed that one positive clone corresponded to maspin, which was
previously reported as a tumor suppressor molecule in many dif-
ferent cancers [6–8]. To confirm the specific interaction between
maspin and testisin in mammalian cells, co-immunoprecipitation
experiments were performed with proteins extracted from 293
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Fig. 1. Testisin interacts with maspin in vitro and in vivo. (A) A yeast two-hybrid system w
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cells. As shown in Fig. 1B, testisin was detected by Western blot
analysis after co-precipitation with anti-maspin antibody, and vice
versa. Because testisin is reported to be a GPI-anchored serine pro-
tease [3], endogenously expressed testisin may be modified by
post-translational events. Therefore, to confirm that endogenous
maspin directly interacts with endogenous testisin under condi-
tions where both proteins are naturally expressed, co-immunopre-
cipitation experiments were performed using proteins extracted
from HeLa cells. As shown in Fig. 1C, testisin was detected by Wes-
tern blot analysis after co-precipitation with anti-maspin antibody.
In control experiments using purified preimmune IgG, neither
maspin nor testisin was precipitated.

To detect the direct binding of maspin and testisin, we showed
that in vitro translated testisin was pulled down with recombinant
GST-maspin (Fig. 1D, left) and in vitro translated maspin was
pulled down with recombinant GST-testisin (Fig. 1D, right). To
examine whether maspin associates with testisin in vivo, localiza-
tion of maspin and testisin was observed under a confocal micro-
scope. As shown in Fig. 1E, maspin and testisin proteins appeared
to colocalize in cytoplasm, indicating that the putative interaction
of maspin with testisin may take place in the cytoplasm.

3.2. Testisin blocks maspin-induced activation of capase-3

To examine the possible roles of maspin and testisin in human
cervical cancer, we first evaluated several cervical cancer cell lines
for mRNA expression of maspin and testisin. RT-PCR analysis dem-
onstrated that maspin and testisin mRNA was expressed in HeLa
and MS-751, but not in CaSki cells (Fig. 2A). Based on the previous
findings that maspin sensitizes cancer cells to apoptosis [16] and tes-
tisin decreases apoptosis [4], we tested whether testisin might influ-
ence maspin-mediated increase in caspase-3 activity and cell death.
To test for the possible involvement of testisin in modulating mas-
pin-mediated apoptosis, we examined whether down-regulation
of testisin or maspin modulated caspase-3 activity using a siRNA
knockdown strategy in HeLa and MS-751 cells. As shown in Fig. 2B,
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maspin increased caspase-3 activity in testisin-depleted HeLa and
MS-751 cells (lane 3 vs 5, P < 0.001). However, in the presence of tes-
tisin, maspin did not increase caspase-3 activity (lane 2 vs 4).

3.3. Testisin targets and inactivates maspin in cell death

As testisin blocked maspin-mediated activation of caspase-3,
we further tested whether testisin might prevent the maspin-in-
duced cell death. As shown in Fig. 2C, knockdown of maspin de-
creased cell death of testisin-depleted HeLa and MS-751 cells
(lane 2 vs 4, P < 0.02). However, without testisin knockdown, mas-
pin knockdown did not affect cell death (lane 1 vs 3, P > 0.05). To
further confirm the inactivation of maspin by testisin, we per-
formed the experiment using CaSki cells, which do not normally
express either testisin or maspin. Expression of recombinant mas-
pin increased cell death in CaSki cells (lane 2 vs 4, P < 0.001), while
co-expression of recombinant testisin blocked maspin-induced cell
death in this system (lane 3 vs 5, P > 0.05). In the absence of mas-
pin, recombinant testisin alone did not significantly affect cell
death (lane 2 vs 3, P > 0.05).

3.4. Testisin knockdown alleviates the doxorubicin resistance of HeLa
cells

To determine whether testisin influences drug resistance, we
examined the effects of doxorubicin on cell survival of HeLa cells
transiently transfected with siTestsin. The knockdown of testisin
in these cells was confirmed by RT-PCR analysis (Fig. 3A). Testisin
knockdown significantly increased the cell death of doxorubicin
treated HeLa cells (Fig. 3B). As shown in Fig. 3C, the median inhib-
itory concentration (IC50) of doxorubicin was 2.30 lM in control
siRNA-transfected HeLa cells, whereas that of siTestisin-transfec-
ted HeLa cells was 0.54 lM (P = 0.016). These findings suggest that
knockdown or inactivation of testisin may sensitize cervical cancer
cells to doxorubicin.

3.5. Testisin inactivates maspin-induced suppression of cancer cell
invasiveness

As testisin inhibited maspin-mediated cell death, we further
tested whether testisin might affect the maspin-mediated suppres-
sion of invasion in vitro. As shown in Fig. 4A, knockdown of maspin
increased the invasiveness of HeLa and MS-751 (lane 1 vs 3,
P < 0.005; lane 2 vs 4, P < 0.02), even in the presence of testisin,
while knockdown of testisin decreased invasion in HeLa and MS-
751 cells regardless of maspin expression (lane 1 vs 2, P < 0.004;
lane 3 vs 4, P < 0.02).

As an additional validation, we performed similar experiments
using CaSki cells, which do not endogenously express testisin or
maspin (Fig. 4B). Invasion by CaSki cells was increased by testisin
expression (lane 1 vs 2, P < 0.001); this effect was decreased by
co-expression of maspin, but not to control levels (lane 1 vs 3,
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P < 0.01). Furthermore, maspin expression decreased the invasive-
ness of CaSki cells (lane 2 vs 4, P < 0.01), but this invasiveness was
restored by co-expression of testisin (lane 3 vs 4, P < 0.001). These
results indicate that testisin and maspin may oppose each other in
the control of invasion.

3.6. Expression of testisin is increased in human cervical cancer

Despite some evidence that testisin may be correlated with cell
transformation, testisin gene expression seems to be restricted to
male germ cells, and is lost in germ cell tumors. Therefore, to ex-
clude possible cell line artifacts, we further validated the presence
of testisin in human cervical cancer specimens. As shown in Fig. 5,
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the expression level of testisin was found to be increased in four of
six tumor samples, compared to normal controls, by both RT-PCR
and Western blot analysis.
4. Discussion

In order for tumor to progress, they must bypass the program
leading to cell death and enter one promoting metastasis, most
likely via multiple interactions of intracellular molecules. There-
fore, identification of interacting molecules responsible for control-
ling apoptosis and metastasis may facilitate the development of
new cancer treatment options. Testisin and maspin have been
implicated in malignant transformation as an inhibitor and a pro-
moter, respectively. However, this is the first report of an interac-
tion between these two proteins.

Serine proteases are engaged in critical intracellular functions
including apoptosis and tumor growth [17–19]. Recent evidence
also suggests that proteases from cancer cells may function as
modulators of tumor–stroma interactions [20,21]. Testisin is a gel-
atin-hydrolyzing serine protease, which has a distinct carboxy-ter-
minal peptide modified with a glycosylphosphatidylinositol anchor
to enable localization on the cell surface [4]. Testisin mRNA expres-
sion has been found in several tumor cell lines of different cellular
origins, including ovarian cancer, cervical cancer, melanoma, and
lymphoma [1–4]. Although testisin induces colony formation and
promotes malignant transformation in cancer cells [4], the action
mechanism or physiologic substrates for testisin have not been
previously determined. This is the first study to examine how tes-
tisin might promote cervical carcinogenesis. We used a yeast two-
hybrid system to identify maspin as a novel target of testisin.

Maspin was found to be a Bax-activating protein, thereby con-
tributing to apoptosis and tumor suppression [16]. Maspin has
been found to interact with diverse intra- and extracellular mole-
cules, such as tissue-type plasminogen activator [22], pro–uroki-
nase type plasminogen activator [23], IFN responsive factor 6
[24], collagen type I [25], glutathione S-transferase [26], and his-
tone deacetylase 1 [27]. Considering that testisin is a serine prote-
ase [1] that is frequently amplified in human cancers, it is not
surprising that testisin interact with maspin, which has a high se-
quence homology with serine protease inhibitors [5]. Despite hav-
ing high sequence homology to the serpin family protease
inhibitor, maspin is known as a non-inhibitory serpin [28,29].
Although we do not have sufficient evidence to conclude whether
proteolytic activity of testisin is critical for inhibition of maspin,
Western blot data in Figs. 2 and 4 clearly show that maspin is
not a proteolytic substrate of testisin.

We examined the testisin and maspin interaction and its conse-
quences in malignant cervical cancer cells. Knockdown of maspin
decreased the cell death in testisin-depleted cervical cancer cells
but not in cells expressing endogenous levels of testisin. Additional
experiments revealed that expression of testisin increased the sur-
vival of CaSki cells under doxorubicin-mediated DNA damage-
inducing conditions, but only in the presence of maspin, suggesting
that testisin may negatively regulate maspin-induced cell death in
human cancer cells. Using siRNA specific for testisin, we also
showed that testisin knockdown decreased doxorubicin resistance
of HeLa cells.

Previous studies have shown that knockdown of testisin expres-
sion leads to increased apoptosis [4]. However, we herein found
that this effect requires the presence of maspin, as evidenced by
the prevention of cell death by recombinant testisin expression
only in the presence of maspin in CaSki cells. Out results may pro-
vide the basis for better understanding of the role of testisin and
maspin in cancer progression. Furthermore, this emerging testisin
function may provide a mechanistic explanation for the poor prog-
nosis of some maspin-overexpressing cancers [30,31]. Therefore,
further studies will be necessary to clarify the contribution of tes-
tisin and maspin in other cancers.

In conclusion, we herein show for the first time that the tumor
suppressor maspin is a target of testisin. On the basis of our results,
we conclude that testisin not only blocks the maspin-mediated cell
death pathway, but also increases the invasion of cells, thereby
contributing to carcinogenesis.
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