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A b s t r a c t - - i n  this paper, two mesh-free methods, i.e., least square-based finite difference (LSFD) 
and radial basis function-based finite difference (RBFFD), are compared numerically in terms of 
their accuracy and efficiency. These two mesh-free methods are based on different approximation 
schemes, that is, the least square approximation and radial basis function (RBF) approximation. 
The two mesh-free methods exhibit veIT different behaviors in many ways. In this study, we examine 
the performance of the two methods by applying them to two example problems: Poisson equation 
and two-dimensional incompressible viscous lid-driven cavity flow, and some interesting findings are 
observcd. @ 2006 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

In the past decade, the so-called mesh-free methods have become one of the hot tes t  research areas 

in computa t ional  mechanics. The  te rm mesh-free or meshless is used to describe the special ways 

of constructing the approximation or interpolation scheme for the spatial  discretization. Tha t  is, 

the function and its derivatives at one central node are approximated entirely from the information 

of a set of scattered nodes within its local support ,  and there is no prespecified connectivi ty or 

relationships among tile nodes. 

The interest in these schemes is instinctively spurred by the perceived difficulty of generating 

appropriate meshes in the s tandard schemes for problems characterized by complex geometry or 
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complex physics. Instead of mesh generation, mesh-free methods usually require node generation. 
From the point of view of computational efforts, node generation is considered as an easier and 
faster job compared to the former one. After generating a set of nodes within the analysis domain, 
a local cloud of neighboring points, which is called "local support", is selected for the interior 
node. Then, a local approximation is constructed based on the local support to approximate 
the function and/or its derivatives in terms of point values. Finally, a set of algebraic equations 
can be obtained by substituting the approximation scheme into the governing equations. This 
is a common procedure to discretize partial differential equations by the mesh-free method. In 
addition, we can also enjoy the computational ease of adding and deleting nodes from the pre- 
existing of nodes. This property is highly appreciated in the flow problems with large deformation 
or moving boundaries. 

In the viewpoint of kernel interpolation/approximation techniques, the mesh-free methods 
to date can be grouped into two categories. One is based on the least square (LS) technique 
or its equivalents. This interpolation scheme has been adopted by many popular mesh-free 
methods [1-8]. The least-squares technique allows an optimized approximation derived from an 
overdetermined set of equations, and generally the resultant coefficient matrix has good properties 
such as positive, symmetric, and definite. Thus, by means of using more local supporting-points 
(more than the unknowns), the problem of singular/ill-conditioned coefficient matrix arising 
from the polynomial interpolation and local point distribution can be ultimately circumvented. 
Another is based on the radial basis functions (RBFs) interpolant. Employed as base functions for 
multivariate data interpolation, RBFs have already shown their capability to construct a scheme 
with favorable properties such as high efficiency and good quality. Madych et  al. [9] have shown 
that  the multiquadrie-RBF interpolation scheme converges faster as the dimension increases, and 
converges exponentially as the density of the nodes increases. Motivated by the above attractive 
merits, many researchers cast their sights on the development of RBFs-based methods in the past 
decades and a iot of literatures are available now in this field [10-18]. 

It is of great interest to make a comparison between the mesh-free schemes based on these two 
kernel approximation techniques in terms of accuracy and efficiency. In this study, we choose two 
mesh-free methods, i.e., least square-based finite difference (LSFD) [8] and radial basis function- 
based finite difference (RBFFD) method [18], as two examples to examine their performance. It 
must be noted that the RBFFD method is called a local multiquadrature-differential quadrature 
(LMQDQ) method in [18] which directly reflects the numerical techniques implemented in the 
method. However, in this paper we rename it the RBFFD method due to the fact that  this 
method is essentially equivalent to the finite-difference formulation with radial basis functions as 
the trial functions. Another reason is that  the new name is more simple and consistent. 

For the LSFD method, Ding et at. [8] theoretically and experimentally showed that the use 
of the least-square technique does not cause a deterioration of the approximation accuracy. In 
other words, the order of the approximation accuracy remains the same as that  obtained by the 
multidimensional Taylor series expansion. However, the additional points in the local support 
(more than the unknowns) do not contribute to the accuracy improvement. On the contrary, they 
will decrease the accuracy due to the increment of h. For the accuracy of RBFFD method, it is 
very difficult to conduct theoretical analysis at this moment. This is because RBF approximation 
is completely different from the polynomial approximation. So, the powerfui tool for accuracy 
analysis, i.e., Taylor series expansion (it is implicitly based on polynomial approximation), cannot 
be applied in the accuracy analysis of RBFFD method. Nevertheless, the accuracy of RBFFD 
method has been studied through numerical tests [19], and the error of the second-order derivative 
approximation yields e ~ © ( ( h / c ) ~ ) ,  in which h is the mesh size, c the value of free shape 
parameter in the certain range, and n a positive constant and determined by the number of 
supporting points. 

Despite the previous analysis, a direct comparison of the two methods may be more appreciated. 
In this paper, we put the two methods under the same computational conditions in terms of 
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governing equation, boundary condition, node distribution, and number of supporting points. 
Therefore, we can examine their performance on the accuracy and efficiency. The numerical 
examples selected are the Poisson equation and lid-driven cavity flow. Since the analytical solution 
of the Poisson equation is given, this example can be used to examine the numerical error arising 
from the spatial discretization. The case of lid-driven cavity flow is a steady flow problem, and 
it was used to test the performance of two methods in the numerical simulation of complex 
phenomena. 

2.  B R I E F  D E S C R I P T I O N  O F  
T W O  M E S H - F R E E  M E T H O D S  

In this section, a brief introduction of the two mesh-free methods is provided. For the details 
of two methods, one can refer to [8] and [18]. 

2.1. Mesh-Free  Least  Square -Based  Fin i te -Di f ference  M e t h o d  

The LSFD method is based on the use of a weighted least square approximation procedure 
together with a Taylor series expansion of the unknown function. In theory, the multidimensional 
finite-difference method derived from multidimensional Taylor series expansion can be seen as a 
natural mesh-fi'ee method since the construction of Taylor series expansion approximation does 
not require the help of mesh or the connection between the local supporting points. For a smooth 
function f,  suppose that the two-dimensional Taylor series is expanded around one reference 
node 0 and truncated to the third-order derivative terms. Then, we can obtain a system of 
equations with nine derivatives as unknowns. It can be written in the matrix form by 

Cijdj  = fi. (1) 

The details of the matrix C, vector d, and f yield 

1 
Azl  Ayl ~Axl  (Ayl) 2 ~ 

C =  Ax2 Ay2 1Ax2(Ay2)2 

Ax9 Ay9 - "  1Axg(Ay9)2 

aT [(Of)(Of)(02f'~ (02f'~ (02f'~ 
= o' o'\O 2Jo'\Oy2Jo ' \ o x o v ) o '  

t, oy )o' t,o: 2oy)o' \oxov Jo ' 

(2a) 

(2b) 

fT = [ f l - f o  f 2 - f o  ""  f g - f o ] .  (2c) 

Then, if the coefficient matrix C is well conditioned, the derivative vector d can be uniquely 
determined by the node value f. However, the method suffers from an ill-conditioned coefficient 
matrix due to the distribution of local supporting points, especially when the Taylor series ex- 
pansion is truncated to a high-order derivative. This greatly hampers the applicability of the 
method to the practical problems in engineering and science. 

One approach to make the coefficient matrix invertible is to introduce the least square tech- 
nique. It uses more supporting/collocation points to make the modified matrix possess good 
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properties like symmetric, positive, and definite. Here, we skip the detailed mathematical proce- 
dure, and only give the final equation for the derivative approximation. The details can be found 
in [8]. By using the least square technique, equation (1) is modified as 

C r Cd  = C T f. (3) 

Then, the derivatives can be obtained by period 

d = ( c r c ) - '  cTf .  (4) 

It is noted that now the matrix C is Cmxn and m > n. So it is not a square matrix anymore. 
However, c r c  has much better condition than the previous Cnx , .  In equation (4), the compo- 
nent of the matrix ( c T c )  1 C r contains the information of the computed derivative coefficients. 
Once they are computed, they are stored and used to discretize the derivative in the governing 
equations. 

The derivative coefficients computed by using the standard least square technique (as shown 
in equation (3)) may not generate an optimal distribution of approximation errors. One would 
normally prefer the approximation error to be small in the crucial central region around the 
reference node, where the derivatives are evaluated, and be willing to tolerate higher errors for 
points further away, since the latter is expected to have smaller influence on the desired deriva- 
tives. The redistribution of errors can be achieved by introducing a distance-related weighting 
function that assigns larger weights to the points nearer to the reference node. That is the so- 
called weighted least square optimization. With the use of weighted least square technique, the 
derivative approximation (3) can be further improved as 

d = (CTHC)-I C T H f  ' (5) 

where H is a diagonal matrix such as 

Wl 

W2 
H = (6) " . .  

Wrn 

Here w is distance-related weighting function, and m is the number of supporting points for the 
specified reference node. In this study, the following function is selected as a distance-related 
weighting function [8], 

W i = ~ (1 --  ~"/2) 4 , (7)  

where i~ = v / ( x i  - Xo) ~ + (Yi - Yo)2/do,  the subscript i denotes the i TM supporting point, do the 
radius of local support, and 0 __ ~ _< 1. It should be noted that if only the first- and second-order 
derivative approximations are required; only the first five entries of d need to be considered and 
stored during computation. However, the inclusion of high-order terms can increase the accuracy 
of the method. It is also interesting to point out that at each node the coefficient matrix remains 
unchanged for a fixed set of supporting points, so that its inverted matrix needs to be calculated 
only once. 

2.2.  R a d i a l  B a s i s  F u n c t i o n - B a s e d  F i n i t e - D i f f e r e n c e  M e t h o d  

The radial basis function-based finite-difference method can be considered as an extension 
of the conventional differential quadrature (DQ) method. The conventional DQ method is a 
numerical discretization technique for tile derivatives of the smooth functions. The essence of the 
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DQ method is that  the partial derivative of an unknown function with respect to an independent 
variable can be approximated by a weighted linear sum of function values at all discrete points 
within its support. Suppose that a function f ( x )  is sufficiently smooth. Then its ruth-order 
derivative with respect to x at a point xi can be approximated by DQ as 

x=a:i  N (rn)  O'~f = ~-~wij  f ( x j ) ,  
02C rn 

j= l  
i = 1,2 . . . . .  N, (8) 

where xj are the discrete points in the domain, N the number of supporting points, f ( x j )  and w}~ ~) 
are the function values at these points and the related weighting coefficients. Obviously, the key 
procedure in the DQ method is the determination of the weighting coefficients ~ (m) Shu and uJ i j . 

Richards [20] indicated that the weighting coefficients can be easily computed under the analysis 
of a linear vector space. As compared with the conventional DQ method, the RBFFD method 
takes the MQ RBF instead of high-order polynomials as the basis functions. The MQ RBF is 
defined as follows: 

Cj( , v) = V/(x -  j)2 + (v - yj)2 + °2, (9) 

where e is a free shape parameter and defined by the practitioner• This simple replacement 
combines the merits of MQ RBF and the DQ scheme together, such as simplicity of the scheme, 
mesh-free property, and high accuracy, etc. The coefficient matrix 151 in the RBFFD method can 
be obtained by substituting the MQ RBF into equation (8)• For the derivative approximation at 
the reference node x~, it yields 

g~ = G W ,  (10) 

where 

O"~ Omen (z~, y,.)] v [ °'`¢z 0'~¢2 (~ v~), ~,a 
g~ = [ ~ ( x , . , y ~ . ) ,  Ox--~-~- , , Ox ' -~ - -C (x r , y r ) , . . . ,  Ox  ~ 

G = 

¢I(Xl,Yl)  ¢l(X2,Y2) 

¢2(x~,v~) ¢2(x2,v2) 

CN,.(Xl,Yl) C N . ( X 2 , Y 2 )  

• . ¢2 (~u~, YN~) I • , , 

"" CN,. (XN~, YN~ ) J 

r (~ )w(m) .  (m) ,w(~r;)]q- 
W ~-  [ W r ,  1 ~ r,2 W r 3  ~ ' ' "  r.~v j ,  ,. 

In the above expressions, N~ denotes the number of supporting points in the local support for the 
reference node x~. For the practical computation, it may vary at different nodes. The subscript 
1, 2 , . . . ,  N~ indicates a local point within the local support similar to that  ila the finite-element 
method. 

If the local support of all the reference nodes is extended to the maximum limit, i.e., the 
nmnber of supporting points N~ equals the number of nodes in the domain, then the local RBFFD 
method becomes a global RBFFD method. This global RBFFD method is essentially equivalent 
to Kansa's collocation method. As observed by Dubal et al. [21] and Fornberg et al. [22], the global 
RBFs-based methods suffer from the progressively more ill-conditioned coefficient matrix as the 
rank increases. They noted that the coefficient matrix of using about 2000 knots is extremely 
ill-conditioned. This problem also occurs in the global RBFFD method. 

A unique solution of equation (10) can be obtained only if the collocation matrix [G] is nonsin- 
gular. Micchelli [23] proved that  matrix [G] is conditionally positive definite for MQ RBFs. In 
general, the problem of ill-conditioned/singular coefficient matrix is not serious for the RBFFD 
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method since the supporting points are distinct and the number is comparatively small. Then, 
the weighting coefficient vector w can be computed by 

W : c T - l g x .  (11) 

Similar to the mesh-free LSFD method, the inverted matrix of G is only required to compute 
once if the local support is fixed. The computed coefficient will be stored to discretize the partial 
derivatives in the governing equations. 

2.3. C o m p a r i s o n  of  L S F D  and  R B F F D  M e t h o d s  

Actually, the LSFD method shares many common features with the RBFFD method with 
regard to the mesh-fl-ee derivative approximation. Both of them use a fixed cloud of supporting 
points, and discretize the governing equations in the strong form. They even can share the 
same iterative solver to obtain the solution of resultant algebraic equations. However, due to 
the use of different kernel approximation, the first difference occm's in the way of calculating the 
weighting coefficients for derivative approximation. Consequently, the two methods differ in the 
computational aspects, for example, the contribution of the number of supporting points. Ding 
et al. [8] pointed out that the order of accuracy of the LSFD method is determined by the order 
of truncated Taylor series expansion. The additional supporting points do not contribute to the 
accuracy improvement. Instead, they are used to improve the condition of the coefficient matrix. 
However, this is not the case in the RBFFD method. As shown in reference [18,19], the increasing 
number of supporting points may directly accelerate the speed of the convergence. From the free 
parameter's point of view, the practitioner of the RBFFD method is required to define a not-bad 
value for the free shape parameter c. It is well known that the fl'ee shape parameter plays an 
important role in the determination of solution accuracy. An optimal shape parameter c needs 
no additional computation cost and can improve the accuracy of solution. On the other hand, it 
may be an uncertain factor in the practical applications due to the difficulties in finding a "good" 
shape parameter on a specified nodal distribution. For the practitioners of LSFD method, they 
do not have such great concern. They may have to consider the selection of weighting function 
to obtain an optimal error distribution. However, the effect of the weighting function on the 
solution accuracy in the LSFD method is much less than the shape parameter e does in the 
RBFFD method according to [8,18]. 

It is important to examine the performance of the two methods with respect to the computa- 
tional efficiency and accuracy under the same conditions. Two numerical examples are designed 
for this pro'pose in the study, and they are described in the next section. 

3. N U M E R I C A L  E X P E R I M E N T S  

In this section, numerical experiments are carried out to study the convergence properties of 
the two mesh-free methods by solving sample problems. The sample problems selected are the 
computation of two-dimensional Poisson equation and simulation of lid-driven cavity flow. The 
solutions of both cases are restricted in a unit square domain (0 < x < 1, 0 < y < 1). 

3.1. Po isson  E q u a t i o n  

The two-dimensional Poisson equation is 

02u 02u (12) 
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For simplicity, we first specify the exact solution of equation (12), and the Dirichlet conditions 
are imposed on the four boundaries, i.e., Uboundary = ~ t  . . . .  t .  The source function f (x ,y )  on 
the right side of equation (12) is determined from the given exact solution, which is also used 
to measure the numerical error. Relative error is taken to measure the accuracy of numerical 
results, which is defined as 

/i__~l(Ui,num -- U/,exact) 2 

I[ErrorH = 
t) 2 ..... ( l a )  

In this study, the analytical solution of equation (12) is selected from the work of Lyche et al. [24], 
and has the following form: 

u2 = ( 1 -  2 )6  ( 1 -  2 ) 6 +  1000(1-  z ) 3 z 3 ( 1 -  y)3y3 + y6 ( 1 -  2 )  6 + z  6 ( 1 -  y ) 6 .  (14) 

The initial condition for the unknown function at the interior nodes is set to zero. After the 
spatial discretization by RBFFD or LSFD methods, tile successive overrelaxation (SOR) iterative 
method was employed to solve the resultant algebraic equations. 

To study the effect of the number of supporting points on the numerical error of the solution, 
we carried out numerical experiments with two numbers of supporting points, i.e., 12 and 14. Due 
to its great effect on the solution accuracy, the value of the shape parameter was, respectively, 
chosen as 0.05, 0.1, and 0.2 in the tests of the RBFFD method. The numerical experiments 
were performed on three uniformly distributed grids, i.e., 41 x 41, 57 × 57, and 81 × 81. The 
numerical solutions are presented in Figures 1 and 2 in terms of the error in the log-log scale. It 
can be obviously seen that  with the increment of the number of supporting point from 12 to 14, 
the convergence rate of the LSFD method does not change but that  of the RBFFD method is 
improved, which is in line with the analysis and findings in [8] and [19]. From Figures 1 and 2, 
it can also be found that the shape parameter c has a great influence on the accuracy of the 
RBFFD scheme and the optimization of c can make the solution much more accurate. The 

0 . 0 0 4  V-~ YTiY~ iiZiilY~211~21!-TJiYi.  77~/iii Yi!~77121~iYYi~72i'~'?,2-72/,;iUi!;-.J/!( - 

0 . 0 0 3  

0 . 0 0 2  

iij 

0 .001  

! !!!.!J ............. 
................ : !!!,! I 
_ i i i i ~ i i i i J t 

0.015 0.02 0.02 
h 

F i g u r e  1. C o n v e r g e n c e  r a t e  o f  r e l a t i v e  error  v e r s u s  m e s h  s i z e  for  12 s u p p o r t i n g  p o i n t s .  
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i 

1 0 -s 

0.01 5 0.02 0,025 
I1 

F i g u r e  2. C o n v e r g e n c e  r a t e  o f  r e l a t i v e  e r r o r  v e r s u s  m e s h  s i z e  fo r  14 s u p p o r t i n g  p o i n t s .  

numerical solutions are also quantitatively listed in Table 1 in terms of the error. It can be 
observed that the accuracy of the LSFD method is actually impaired by the enlargement of local 
support. Ding et al. [8] pointed out that the accuracy of the LSFD method is proportional to h ~, 
where h is the radius of the local support and n the order of accuracy. In these experiments, the 
enlargement of local support yields a larger h but not the order of accuracy as shown in Figures 1 
and 2. As a result, the solution with larger local support is less accurate. In comparison to the 
LSFD method, the RBFFD method shows a completely different behavior. It can be seen in 
Table 1 that the solution with 14 supporting points is generally more accurate than that with 12 
supporting points. It is also interesting to make a comparison of solution-accuracy between the 
RBFFD and LSFD methods. From Table 1, it can be observed that the LSFD method is generally 
iess accurate than the RBFFD method, especially for the cases in which more supporting points 
are used to improve the condition number of the coefficient matrix. On the other hand, the 
RBFFD method achieves good accuracy at the price of efficiency. The iteration number of using 
the SOR approach to obtain the converged solution is listed in Table 2. It can be observed that 
the RBFFD method requires many more iterations to reach the final solution than the LSFD 
method. Since the operation counts are almost the same in one cycle of iteration using either the 
LSFD or RBFFD method, the iteration number also indicates the required CPU time. In this 
sense, LSFD method is more efficient than the RBFFD method. In Table 2, it is also clearly seen 

T a b l e  1. N u m e r i c a l  resul t :  fo r  t h e  P o i s s o n  e q u a t i o n .  

" M e s h e s "  41 x 41 57  x 57  81 x 81 

N u m b e r  o f  

S u p p o r t i n g  P o i n t s  12 14 12 14 12 14 

c = 0 .1  4 . 1 7  × 10 - 3  3 .04  x 10 - 4  2 .19  x 10 - a  8 .73  × 10 - 5  9 .55  × 10 . 4  2 .26  x 10 . 5  

R B F F D  c = 0 .2  2 .30  x 10 . 3  1 .47 × 10 - 4  1 .14 x 10 - a  4 .19  × 10 - 5  5 .06  × 10 - 4  1 .08 x 10 - 5  

c = 0 .3  1.61 x 10 - 3  1.32 × 10 - 4  7 .81 x 10 - 4  3 .73  x 10 - 5  3 .53  X 1 0  - 4  9 .70  x 10 - 6  

L S F D  2 .68  x 10 - a  3 .27  x 10 - 3  1 .37  x 10 - 3  1.63 x 10 - 3  6 . 5 5  x 10 - 4  7 .92  x 10 - 4  



N u m e r i c a l  C o m p a r i s o n  

T a b l e  2. I t e r a t i o n  n u m b e r  for  t h e  P o i s s o n  e q u a t i o n .  

" M e s h e s "  

N m n b e r  of 

S u p p o r t i n g  P o i n t s  

c - - 0 . 1  

R B F F D  c = 0.2 

c = 0 . 3  

L S F D  

41 x 41 

12 14 

4775 4977  

4745 4935  

4734  4921 

2550 2001 

57 x 57 

12 14 

9302 9680 

9272 9639 

9262  9625 

4998 3917  

81 x 81 

12 14 

18921 19676 

18892 19635 

18883 19622 

10202 8001  

1305 

that the use of larger local support can reduce the iteration number in the LSFD method while 
increasing the iteration number in the RBFFD method. 

3.2. L i d - D r i v e n  C a v i t y  F l o w  

The two-dimensional lid-driven cavity flow is a simple viscous incompressible flow. This flow 
problem is often employed as a test problem since it has many features suitable for examining 
the performance of a numerical scheme. In general, it is characterized by primary and secondary 
vortices, wall boundary layers, flow separation, and reattaehment. This problem has been studied 
by many researchers. Among them, Ghia et al. [25] reported a set of accurate reference solutions 
to the steady flow over a range of Reynolds numbers. In this work, they are considered as 
benchmark data. 

The flow in the cavity are governed by the following nondimensional equations in terms of 
stream function ~ and vortieity w: 

a2~ 0 ~  
Oz---- ff + ~ = w, (15) 

ow Oc~ c9~ 1 (02w  c92cz'~ (16) 
cO---~ + u ~ z  + Vcoy - Re \cOx 2 -F Oy2 ] , 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . . . . . . . . . . . . . . . .  

F i g u r e  3. R a n d o m l y - d i s t r i b u t e d  n o d e s  in a s q u a r e  d o m a i n .  
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Figure 4. Velocity profiles at Re = 400 on a grid of 41 x 41. 
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Figure 5. Velocity profiles at Re = 1000 on a grid of 81 × 81. 

w h e r e  u a n d  v d e n o t e  t h e  c o m p o n e n t s  of  ve loc i ty  in  t h e  x a n d  y d i r ec t ion ,  w h i c h  c a n  b e  c a l c u l a t e d  
or, ow a n d  v Re  = U L / v  is t h e  R e y n o l d s  n u m b e r .  f r om t h e  s t r e a m  f u n c t i o n  b y  u = ~ - as"  

M o r e  specif ical ly,  t h e  l i d -cav i ty  flows a t  R e y n o l d s  n u m b e r  Re  = 400 a n d  1000 are  c o n s i d e r e d  

as t h e  t e s t  cases  in  t h i s  s tudy .  T h e  n u m e r i c a l  s i m u l a t i o n s  a re  p e r f o r m e d  on  t h e  u n i f o r m  gr ids  of 

41 x 41 a n d  81 x 81, as well  as o n  a r a n d o m  n o d e  d i s t r i b u t i o n  ( i n c l u d i n g  4786 nodes )  w h i c h  is 

s h o w n  in F i g u r e  3. For  t h e  s p a t i a l  d i s c r e t i z a t i on ,  t h e  n u m b e r  of  s u p p o r t i n g  p o i n t  is f ixed to  13. 
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In the RBFFD method, the value of the shape parameter is selected as 0.2 for the uniformly 
distributed nodes and 0.03 for the randomly distributed nodes. The reason for selection of a 
comparatively small value for the randomly distributed nodes lies on the fact that randomly 
distributed nodes abound with variant configurations of local nodal distribution, which narrows 
the range of applicable shape parameter. Thus, we prefer to choose a smaller but "safer" shape 
parameter to formulate the spatial discretization. Successive overrelaxation iterative method is 
employed to solve the resultant algebraic equations. The convergence criterion is set as 

max (Lw? +1 - c~:~l) < 0.001. 

The numerical results on the uniformly distributed nodes are shown in Figures 4 and 5 in terms 
of the velocity profiles of the u component along the vertical centerline and the v component 
along the horizontal centerline. It can be clearly seen that the solutions of both methods have 
achieved a good agreement with Ghia's results [25] at Re = 400 and 1000. However, the result 
produced by the RBFFD method is comparatively more accurate since it is closer to Ghia's 

data [25], especially in the regions where large velocity gradient is encountered. The zooming-in 
view of u-velocity along the vertical centerline at Re = 1000 (Figure 5c) gives a good indication 
for this finding. With regard to the efficiency, the iteration number for both methods is listed 
in Table 3. It can be observed that the LSFD method requires only half of the iterations used 
by the RBFFD method. In other words, the LSFD method can obtain the solution only with 
half of the CPU time required by the RBFFD method though the solution may be a little bit 
less accurate. The computations on the randomly distributed nodes are also consistent with this 
observation, even working with a small shape parameter. The iteration numbers required for the 
computations on the randomly distributed nodes are listed in Table 4. It can be seen that the 
LSFD method converges faster than the RBFFD method at Re = 400. However, by observing 
the solution comparison in terms of u-velocity along the vertical centerline and v-velocity along 
the horizontal centerline in Figure 6, we can clearly see that the RBFFD solution is closer to 
the benchmark data than LSFD solution though both solutions generalIy agree very well with 
Ghia's results [25]. Moreover, the LSFD method cannot obtain a converged solution for the case 
of Re = 1000 on the same randomly distributed nodes, while the RBFFD method is still able to 
achieve quite a good solution as shown in Figure 7. This fact indicates that the RBFFD method 
not only achieves better accuracy with regard to the spatial diseretization, but also has better 
capability in capturing the physicM phenomenon in the flow region than the LSFD method. 

Table 3. I tera t ion number for the lid-driven cavity flow on the uniformly d i s t r ibu ted  

nodes. 

"Meshes" 41 x 41 81 x 81 

Reynolds Number 400 1000 

RBFFD 4.3 x 10 5 2.7 x 10 6 
I tera t ion 

(c = 0.2) 
Number 

LSFD 2.1 x 105 1.2 x 106 

Table 4. I tera t ion number for the lid-driven cavity flow on the  randomly d is t r ibuted  

nodes. 

Number  of Nodes 4786 4786 

Reynolds Number 400 1000 

I terat ion RBFFD 1.6 x 106 8.7 x 106 
(c : 0.2) 

Number 
LSFD 5.7 x 105 No convergence 
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Figure 6. Velocity profiles at Re = 400 on the random nodes. 
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Figure 7. Velocity profiles at Re = 1000 on the random nodes. 

4.  C O N C L U S I O N S  

In this paper, two mesh-free methods based on the different kernel approximations, i.e., LSFD 
and RBFFD methods, have been numerically examined and compared in terms of their accuracy 
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and efficiency. The numerical experiments indicate tha t  under the same conditions like number 
of supporting points, node distribution, and iterative solver, the R B F F D  method can generally 
achieve a more accurate solution while the LSFD method is more efficient in terms of iteration 
number. From the viewpoint of practical applications, we suggest tha t  the additional supporting 
points used to improve the condition number of the matrix in the LSFD method should be as 
small as possible so as to exploit the best accuracy. From the viewpoint of safety and convenience, 
the range of "good" shape parameter in the R B F F D  method is more preferred than the best one. 
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