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Abstract Photodegradation of 1,2-dichlorobenzene over illuminated trimetallic oxide consisting of

rutile TiO2 in major portion together with WO3 and SnO2 was studied with respect to the effect of

physicochemical properties of the catalyst. The photocatalytic activity enhancement by the presence

of surface defects due to calcination temperature was investigated with the information obtained

from XRD, DRUV, PL, FESEM and XPS. Calcination of TiO2 at 950 �C resulted in highest activ-

ity. Decrease in percentage of degradation of 1,2-dichlorobenzene was noted when it was immobi-

lized on PVC film and chitosan beads. The effect of calcination temperature, catalyst loading and

pH was investigated for slurry and after immobilization. Further optimization study was carried out

with the aid of response surface methodology utilizing Box–Behnken design. High correlation was

obtained for the experimental and the predicted value (R2 = 0.9992, Adj. R2 = 0.9982 and Pred.

R2 = 0.9971). Optimization result showed that the maximum percentage of degradation was

achieved at calcination temperature of 961.2 �C, with catalyst loading of 0.22 g and pH 7.2. The

presence of two intermediates was identified during the reaction using GC–MS. On top of that

the photocatalyst could also be reused for several times.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chlorinated organic compounds have attracted wide attention due to

their toxicity and bioaccumulation. It has been a challenging task to

decompose the chlorinated volatile organic compounds such as

1,2-dichlorobenzene (DCB). Most of the research works conducted

on DCB was in gas phase using catalytic oxidation method and only

few photocatalytic studies were employed in aqueous medium. In

aqueous systems, chlorinated hydrocarbons exhibit low chemical
st under
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reactivity and non-biodegradability due to its toxicity (Mahmoud

et al., 2012). In earlier study by Lin et al. (2002), TiO2 with fluorinated

surface has been used for the photodegradation of 1,2-dichlorobenzene

in aqueous under UV light. Comparison of 1,4-dichlorobenzene pho-

todegradation under UV and visible light was conducted by

Mahmoud et al. (2012) which showed a slower degradation rate under

visible light.

Alternatively, binary metal oxides have been explored and displayed

better catalytic activity compared to pure TiO2. Study by Tae Kwon

et al. (2000) showed that WO3 doped TiO2 demonstrated higher photo-

catalytic activity under UV light compared to TiO2 doped with SiO2,

SnO2, Al2O3 and ZrO2. Song et al. (1999) claimed that Ag/TiO2 P25

presented higher catalytic activity compared to Cu/TiO2 catalyst.

TiO2 P25 doped with SB, Nb and Bi metal ion by sol–gel method

had been studied by Whang et al. (2005), with TiO2/Nb found to show

good catalytic activity. On another study by the same group, Nd3+

doped TiO2 P25 was reported to exhibit higher catalytic activity com-

pared to silica doped TiO2 (Kim et al., 2006a, 2006b). Chetty et al.

(2012) reported remarkable photocatalytic activity and stability was

achieved by using Ni/TiO2 for DCB degradation in the presence of

ozone. Photodegradation of 1,4-dichlorobenzene under visible light

was conducted by Chakraborty and Kebede (2011) using In2O3/TiO2

composite with In2O3 acting as sensitizer for TiO2 by absorbing visible

light. All of these studies had reported the same fundamental process

that took place in the enhancement of the photocatalytic activity which

is the photogenerated charge transfer between the conduction band and

valence band of the metal oxides. However, these oxides might be sus-

ceptible to catalytic deactivation due to adsorption of dissociative chlo-

ride ion that is generated from the decomposition processes. It has been

reported that the incorporation of SnO2 could avoid the poisoning of

the catalyst and enhance the catalytic activity (Li et al., 2014; Mao

et al., 2015).

In early years, enhanced photocatalytic degradation of organic

compounds has been associated with the use of anatase TiO2 or

TiO2 P25 mixture of anatase/rutile catalyst in nanoparticle size with

low surface area. On contrary, recent studies have demonstrated that

single catalyst as rutile TiO2 (X. Liu et al., 2014), ZnO (X. Zhang

et al., 2014), WO3 (Xie et al., 2012), SnO2 (Wang et al., 2015) and

CeO2 (Jiang et al., 2015) with high crystallinity, large particle size with

exposed facets and low surface area showed higher photocatalytic

activity under visible light. Another important characteristic that has

been described to influence the photocatalyst performance was the

presence of surface defects. Yan et al. (2013) have mentioned that

the existence of surface/bulk defects on anatase and rutile TiO2

improved the separation of photogenerated electron–hole pairs on

TiO2 upon irradiation and thus increased the photocatalytic reaction.

Recently, hydrogenated TiO2 (Amano and Nakata, 2014; Jiang et al.,

2012; Zheng et al., 2012; Zhou et al., 2014) and reduced TiO2 (W. Fang

et al., 2014; W.Q.I. Fang et al., 2014; Mao et al., 2014; Ren et al., 2015)

have triggered extensive research interest because of the band gap nar-

rowing and reduction of electron–hole recombination due to the syn-

ergistic presence of oxygen vacancies and surface disorder on TiO2.

Besides the surface modification of the catalyst, as mentioned above

charge transfer and charge separation are the most essential aspects in

photocatalytic reaction. Developing TiO2 based multi-heterogeneous

photocatalyst by surface modification has been an effective strategy

for charge carrier transfer in enhancing the separation of photogener-

ated electron and holes. The efficiency of charge transfer and separation

depends on the position of conduction band and valence band of the

metal oxides. A wide range of bimetallic oxides such as TiO2/WO3

(Luevano-Hipolito et al., 2014), TiO2/SnO2 (Sasikala et al., 2009),

TiO2/ZnO (Hernandez et al., 2014), TiO2/CeO2 (Deng et al., 2015)

and trimetallic oxide heterostructures ZnO/TiO2/SnO2 (Yang et al.,

2012), SnO2/rutile TiO2/anatase TiO2/Pt (Zhao et al., 2014),

SnO2/TiO2/CdS (Gao et al., 2015), TiO2/WO3/Pt (Wang et al., 2014)

have been explored to demonstrate high photocatalytic activity under

visible light due to the efficient charge separation and transfer.
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Meanwhile, the formation of heterojunction on binary metal oxides

with exposed facets has also been reported to enhance the activity

due to the improved charge carrier separation (Liu et al., 2015).

Based on the above discussion, developing highly active catalysts

that are environmentally friendly, cheap and stable is of importance.

Therefore, we planned to synthesize multiheterostructure by coupling

TiO2 with WO3 and SnO2. All the three metal oxides have different

potential energies with conduction band of SnO2 and WO3 positioned

to be lower than TiO2 (Yu et al., 2013; Zhang et al., 2013). This would

form a staggered band structure that could promote the charge trans-

fer and separation for photocatalytic reaction improvement. Besides, it

is known that addition of WO3 increases the surface acidity of the cat-

alyst, thereby promoting the adsorption of water molecule and enhanc-

ing the formation of hydroxyl ion which is important in

photodegradation reaction (Grabowska et al., 2012). Moreover WO3

acts as an electron acceptor whereby W6+ can easily be reduced to

W5+ which further improves the photogenerated charge carriers

separation (Riboni et al., 2013) while incorporation of SnO2 could

avoid the deactivation of the catalyst. In addition, the mixed oxide

TiO2/WO3 and TiO2/SnO2 with surface defects has been reported to

enhance the photocatalytic activity under visible light irradiation

(S. Liu et al., 2014; Yu et al., 2013). Thus in the preparation of multi-

heterostructure TiO2/SnO2/WO3, surface defects on the metal oxides

have been adjusted by calcination at optimum temperature

(result not shown) while mechanical mixing was employed to minimize

the structural deterioration. The effect of surface defects and the

efficiency of charge transfer in the trimetallic oxides towards the pho-

todegradation of DCB has been explored in this study. In addition to

this, the effect of solution pH and photocatalyst loading was consid-

ered as well. As most studies on photodegradation were done in slurry

mode which is not applicable for industrial use, in this research the per-

formance of photocatalyst immobilized on support materials has been

explored. The optimum condition using photocatalyst immobilized on

support material was determined using response surface methodology

(Box–Behnken design). Response surface methodology (RSM) has

been proven to be a useful technique to evaluate the optimum

condition and the relative significance of several affecting factors

(Jiang et al., 2013). To our knowledge, the use of TiO2/SnO2/WO3

photocatalyst immobilized on support material for the photodegrada-

tion of 1,2-dichlorobenzene under visible light and the optimization

study has not been reported yet.

2. Material and methods

2.1. Materials

Titanium tetraisopropoxide (TTIP), tungstic acid (H2WO4) and
chitosan with lowmolecular weight were purchased from Sigma

Aldrich, tin (IV) chloride (SnCl4�5H2O) from QreC while
diethanolamine (DEA), polyethylene glycol (PEG 2000), poly-
vinyl chloride (PVC), tetrahydrofuran (THF) and acetonitrile

were from Merck. Ethanol (EtOH) and hydrogen peroxide
30% solution were obtained from Qrec. 1,2-Dichlorobenzene
(DCB) was purchased from BDH (purity > 99%). The stock

solution of these compounds was prepared separately at a con-
centration of 1000 ppm in acetonitrile/water (35:65). The stan-
dard solution containing 100 ppm of DCB was prepared by
diluting the stock solution with distilled water.

2.2. Preparation of sol–gel/Hydrothermal photocatalyst

The powder photocatalyst of TiO2, WO3 and SnO2 was pre-

pared according to the following modified procedure. TiO2

was prepared by the hydrolysis and condensation reaction of
f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
mistry (2016), http://dx.doi.org/10.1016/j.arabjc.2016.03.006
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TTIP with EtOH. The TiO2 sol solution was prepared by mix-
ing PEG 2000:EtOH:DEA:TTIP:H2O in the ratio of
1.1:43.7:3.8:7.5:1 one after another (Ali and Hassan, 2008).

WO3 sol solution was prepared by dissolving 5.4 g of tungstic
acid in 100 mL of hydrogen peroxide solution and stirred to
colourless, followed by the addition of PEG (1.35 g) after it

was aged for one day (Tada et al., 2004). To prepare SnO2

sol solution, 8.76 g of SnCl4�5H2O was dissolved in 100 mL
of ethanol/water mixture in 1:1 ratio (Liu et al., 2006). The

sol solutions were then transferred to Teflon vessels and heat
treated at 170 �C for 5 h. The obtained product of WO3 and
SnO2 was filtered and dried in oven at 95 �C. The filtered
TiO2 was left at room temperature to form xerogel and then

it was dried in oven. In order to determine the effect of surface
defects at different calcination temperatures, TiO2 as the major
component was chosen. The dried TiO2 was calcined at 850 �C,
950 �C and 1050 �C for 5 h to study the thermal effect while
WO3 and SnO2 were calcined at 850 �C for 5 h. All the calcined
products were ground to fine powders.

Trimetallic oxide TiO2/SnO2/WO3 in the optimum atomic
ratio of 80:10:10 (from unpublished report), was mixed for
15 min using shaker at a speed of 150 rpm and followed by

mechanical grinding. Three sets of trimetallic oxide were pre-
pared and labelled as T(x)/SnO2/WO3 with x referred to
TiO2 calcination temperature (x = 850 �C, 950 �C and
1050 �C).

2.3. Preparation of immobilized photocatalyst

The prepared photocatalyst powder was immobilized on two

different polymers: (i) PVC as synthetic polymer and (ii) chi-
tosan as the natural polymer. The PVC was prepared in thin
film form while chitosan was prepared in beads form.

For the preparation of PVC thin film, 1 g of polyvinyl chlo-
ride powder was slowly dissolved in 25 mL of THF solution
under vigorous stirring. The obtained clear solution was then

poured onto a Petri dish and left for 10 min till the solution
starts to solidify. The prepared photocatalyst was spread on
top of the semi-solid PVC layer and left overnight to dry. It
has to be noted that the formation of semi-solid PVC layer

is very important as overdrying would lead to leaching of the
catalyst as the catalyst would not be completely held on the
film. The dried thin film was then dried at 95 �C for 1 h to

remove any moisture.
To prepare the photocatalyst immobilized in chitosan, 1 g

of low molecular weight commercial chitosan powder was first

dissolved in 2% acetic acid solution and then followed by the
addition of 1 g photocatalyst sample. The mixture solution was
kept stirring overnight. Then this mixture was added dropwise
into 0.5 M NaOH solution to form the beads. The chitosan

beads embedded with photocatalyst were filtered and washed
several times with distilled water to remove any excess NaOH.
The beads were dried in oven at 60 �C.

2.4. Photocatalytic activity measurement

Photocatalytic degradation of DCB was carried out in a pyrex

reactor placed in a dark box with the inner part covered with
aluminium foil. A compact fluorescence visible lamp
(k> 400 nm, Philips, 36 W) was placed next to the reactor.

The experiments were performed with 250 mL solution
Please cite this article in press as: Nadarajan, R. et al., Photocatalytic degradation o
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containing 100 ppm DCB added with 0.1 g of photocatalyst
either in powder form or with immobilized photocatalyst.
Before illumination, the dispersion was magnetically stirred

for 30 min in the dark to allow for adsorption of DCB onto
the surface of the photocatalyst. Aliquots of the solution were
collected at different time intervals for a total of 240 min. The

aliquots were filtered using 0.45 lm membrane filter and direc-
ted to UV–Vis spectrophotometer to check the degradation of
DCB via its absorption peak at 269 nm. This absorption data

was used in the determination of degradation of DCB through
comparison with the absorbance at a certain time as a percent-
age of the initial absorbance.

In order to study the effect of pH, the pH of the solution

was adjusted from 4 to 10 by using 0.1 M NaOH or HCl.
Meanwhile to study the the effect of catalyst loading, the
amount of the catalyst was varied from 0.05 g to 0.40 g. Both

the studies were conducted using catalyst in powder form and
after immobilization.

2.5. Material characterization

The powder diffraction patterns were recorded by X-ray
diffractometer Bruker AXS D5000 utilizing Cu Ka radiation

with wavelength 0.15406 nm at 40 kV and 30 mA. Data were
collected over the range of 20–80� at 0.050� intervals with 1 s
count accumulation per step. The BET specific surface areas
of the samples were measured by N2 adsorption/desorption

isotherms on a Micrometrics ASAP 2020 analyser. Surface
morphologies were investigated using field emission scanning
electron microscopy (FESEM, SU8020, Hitachi). Transmis-

sion electron microscopy (TEM) and high-resolution transmis-
sion electron microscopy (HRTEM) were performed on a
JEOL JEM-2010 electron microscope. The diffuse reflectance

UV–Vis (DRUV) spectra were taken using a Perkin Elmer
Lambda 35 spectrophotometer. The surface electronic states
of the samples were determined by X-ray photoelectron spec-

troscopy (XPS) on Axis Ultra DLD, Shimadzu/Kratos. All
the binding energies were calibrated using the contaminant
carbon (C 1s = 284.5 eV) as the reference. Atomic Force
Microscopy (AFM) and Seiko model SP13800N with contact

tip cantilever were used to record the surface roughness. The
sample size of 1 lm � 1 lm was placed on Dynamic Force
Mode (DFM) sample holder for measurement and software

NanoNavi Analysis was used to analyse the data.
For the determination of the by-products, gas chro-

matograph Perkin Elmer (Clarus 680) with a 30 m, 0.25 mm

HP-5MS capillary column coupled with Perkin–Elmer SQ8
mass detector operating at EI mode at 70 eV was utilized. Dur-
ing the reaction 5 mL sample was collected before and after
every hour of photodegradation. The solution was extracted

using 3 � 3 mL of isooctane and then added with anhydrous
sodium sulphate. The collected organic solution was evapo-
rated and then analysed using gas chromatography–mass

spectrometry (GC–MS).

2.6. Experimental design

In this study, the optimization of experimental condition for
the degradation of 1,2-dichlorobenzene was conducted with
the aid of response surface methodology using Box–Behnken

design. The study was conducted using Design expert software
f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
istry (2016), http://dx.doi.org/10.1016/j.arabjc.2016.03.006
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Figure 1 The X-ray diffraction (XRD) patterns for (i) T850/

SnO2/WO3, (ii) T950/SnO2/WO3 and (iii) T1050/SnO2/WO3

phtocatalyst.
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version 7. Three independent parameters, (i) calcination tem-
perature, (ii) pH and (iii) catalyst loading were varied for the
optimization of photodegradation of 1,2-dichlorobenzene.

The experimental design was constructed using two coded
value for each variable, maximum (+1) and minimum (�1)
which are equally spaced as shown in Table 1. The model is

expressed by a second order polynomial function defined by
Eq. (1):

Yð%Þ ¼ b0 þ
X

biXi þ
X

biiX
2
i þ

X
bijXiXj ð1Þ

where Y is the optimum predicted response, hereby is the per-
centage of DCB degradation. b0 is the regression intercept, bi is
the regression for linear while bii and bij are the regression
coefficients of square and interaction between the effects

respectively. A total of 17 experiments were performed in ran-
domized order as required by the design. The adequacy of the
proposed model is then revealed using the diagnostic test pro-

vided by analysis of variance (ANOVA). Regression analysis is
used to get the fitted quadratic polynomial equation, and then
use the equation to develop the response surfaces and contour

plots.

3. Results and discussion

3.1. Characterization of the catalyst

The X-ray diffraction (XRD) patterns for TiO2/SnO2/WO3

with TiO2 calcined at different temperatures are depicted in
Fig. 1. The TiO2 calcined at 850–1050 �C exists in pure rutile

phase with peaks at 2h= 27.4�, 36.0� and 41.2� denoted to
hk l of (110), (101) and (111) which is consistent with
reference data JCPDS no. 089-4202. SnO2 nanoparticles with
cassiterite type tetragonal form, presented peaks at

2h= 26.5� (110), 33.8� (101) and 39.0� (111) that matched
well with JCPDS no. 072-1147. Meanwhile WO3 exists in mon-
oclinic form (JCPDS no. 072-0677) with the main peaks at

2h= 23.1�, 23.5�, 24.3� that indicates the presence of hk l
plane (002), (020) and (200) respectively. The increase in cal-
cination temperature of TiO2 causes peak narrowing and

increased in intensity which signifies grain growth and
improved in crystallinity. It has been reported that rutile
TiO2 (X. Liu et al., 2014) and rutile SnO2 (Wang et al.,
2015) have active facet at crystal plane (110) and (111) while

for monoclinic WO3 it follows the order of (002) > (020) >
(200) (Xie et al., 2012). From the XRD pattern, it could be
noted that T1050/SnO2/WO3 has the highest (110) and

(111) TiO2 peak with low intensity of WO3 (020) peak while
T850/SnO2/WO3 has lower TiO2 peak intensity with increased
intensity of WO3 (200) peak. Among all the three samples,

T950/SnO2/WO3 showed balanced peak intensity which
Table 1 Experimental range and level of independent vari-

ables for photodegradation of DCB.

Independent variable Range and levels

�1 0 +1

Calcination temperature of TiO2, X1 (�C) 850 950 1050

pH, X2 5 7 9

Catalyst loading, X3 (g) 0.10 0.25 0.40
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indicate the presence of active facets in proper ratio. No other
significant changes were observed indicating no substitution of

Sn or W into the lattice of TiO2 in this physical mixing.
Similar observation was reported by Wu et al. (2013) in the
MnO–CeO2 catalyst prepared by grinding using a mortar.

The high calcination temperature may have an impact on

the lattice strain and thus Williamson–Hall equation (Eq. 2)
was used to obtain the particle size of TiO2 (Mote et al., 2012).

ðb cos hÞ=k ¼ 1=Dþ ðe sin hÞ=k ð2Þ
where 2h is Bragg angle, k is wavelength of X-ray used (Cu Ka
in this case), b is full width at half maxima (FWHM), D is crys-
tallite size, and b is effective strain in the lattice. Fig. 2 illus-
trates the Williamson–Hall plot the samples. The slope of

straight line of (b cos h/k) vs. (sin h/k) represents the effective
strain which originate from structural imperfections such as
defects while the reciprocal of the intercept gives the crystallite

size. The calculated particle sizes for T850/SnO2/WO3,
T950/SnO2/WO3 and T1050/SnO2/WO3 are 73 nm, 99 nm
and 462 nm respectively.

The effect of TiO2 calcined at different temperatures on the

optical and electronic properties of the trimetallic oxides was
evaluated. The absorption of light obtained from diffuse reflec-
tance UV is displayed in Fig. 3a. The absorption edge for all

the samples falls in the visible region (k > 400 nm) which indi-
cates that the entire sample is active at visible light, with
Figure 2 Particle size determination from Williamson–Hall plot

derived from X-ray diffraction (XRD) data of (i) T850/SnO2/

WO3, (ii) T950/SnO2/WO3 and (iii) T1050/SnO2/WO3.

f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
mistry (2016), http://dx.doi.org/10.1016/j.arabjc.2016.03.006
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enhanced absorption property observed for T950/SnO2/WO3

photocatalyst. The enhancement of the light absorption inten-
sity may be attributed to the presence of oxygen vacancies and

Ti3+ (Sekiya et al., 2000) which could be further verified from
XPS data. The band gaps of the samples were determined from
the [F(R)hm]1/2 versus photon energy (hm) plot as shown in

Fig. 3b (Zhang et al., 2015). It could be noted that each spec-
trum has two slopes. Therefore extrapolating the linear region
of the curve gives the band gap values for T850/SnO2/WO3,

T950/SnO2/WO3 and T1050/SnO2/WO3 as 2.59/2.77 eV,
2.46/2.55 eV and 2.57/2.74 eV respectively. As there is no dop-
ing between the metal oxides, the existence of two band gaps in
these samples could be related to the vast difference in the con-

duction band energy of the metal oxides (Zhang et al., 2015).
Further verification on the nature of surface defects and

chemical state of the metal oxides was carried out using XPS

that is known for its surface sensitive analysis. The deconvolu-
tion of Ti, Sn, W and O is displayed in Fig. 4. The curve fitting
done for Ti leads to three different environments. The binding

energy of Ti 2p3/2 and 2p1/2 centred at 458.35–458.60 eV repre-
sents Ti4+ in bulk while peak at higher binding energy
(459.46–459.80 eV) is suggested to be due to structural defects

(Baia et al., 2014). The third peak at lower binding energy
which is referred to the presence of Ti3+ was detected in sam-
ple T950/SnO2/WO3 and T1050/SnO2/WO3 only which is due
to the effect of calcination temperature on TiO2. The larger

amount of Ti3+ was observed in T950/SnO2/WO3 (9.96%)
but reduced to 4.41% in T1050/SnO2/WO3 due to increased
crystallinity. For Sn (Fig. 4b), two doublets were observed

with their spin orbit of 3d5/3 and 3d3/2. Several research works
have referred the presence of two doublets with the existence of
Sn2+ and Sn4+. However the binding energy for Sn2+ accord-

ing to the NIST database is 485.6 eV. Thus in this study, the
first peak centred at 486.20–486.37 eV (3d5/2) with the major
portion, was attributed to Sn4+ in bulk while a smaller ratio

at higher binding energy (486.99–487.05 eV) is suggested to
be due to the structural defect as observed in the Ti. Mean-
while, the curve of W 4f spectra was fitted with three pairs
of spin orbit (4f7/2 and 4f5/2). The reduced W5+ was observed

at low binding energy (34.03–34.13 eV) in all the samples
with different ratios. The second 4f7/2 peak at binding energy
35.03–35.29 eV was denoted as W6+ while the third peak at

higher binding energy (35.81–36.60 eV) was referred to struc-
tural defect. The presence of surface structural defects at the
higher binding energy in each metal (as shown in Fig.4a–c)

could be attributed to the surface atomic disorder caused by
changes in the bonding and lattice strain upon calcination at
Figure 3 (a) Kubelka–Munk absorption curve for trimetallic oxide: (i

with inset plot for single metal oxides calcined at different temperatur
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high temperature (Sun, 2003). The amounts of W5+ present
in T850/SnO2/WO3, T950/SnO2/WO3 and T1050/SnO2/WO3

are 4.2%, 14.4% and 9.4% respectively. Compared to the sin-

gle WO3 with only 3.6% W5+ (result not shown), the larger
amount of W5+ in all the trimetallic oxides signifies the occur-
rence of charge transfer towards WO3. This is in agreement

with observation by Wu et al. (2013). Furthermore, the
observed shift in the binding energies of Sn and W also indi-
cates the interaction between the metal oxides (G. Zhang

et al., 2014).
The formation of Ti3+ and W5+ also indicates the existence

of oxygen vacancies which could be determined from the
amount of adsorbed oxygen species. The asymmetric XPS

spectrum of O 1s peak (Fig. 4d) revealed the presence of differ-
ent oxygen species on the surface of the photocatalyst. The
peak at binding energy around 530.0 eV, 531.5 eV and

532.9 eV could be ascribed to the lattice oxygen, oxygen vacan-
cies or surface adsorbed oxygen and surface adsorbed H2O (Li
et al., 2014; X. Zhang et al., 2014). T950/SnO2/WO3 photocat-

alyst demonstrated the highest concentration of Ti3+, W5+

and oxygen vacancies which is advantageous for the enhance-
ment of photocatalytic activity.

Since the recombination of excited electrons and holes can
amplify the PL emission signal, photoluminescence emission is
a significant technique to investigate the separation efficiency
of the photogenerated charge carriers in a semiconductor

(Choudhury and Choudhury, 2014). Fig. 5 shows the photolu-
minescence spectra attained for all the photocatalysts which
were almost identical in shape and position. The emission

peaks that appeared between 420 nm and 465 nm may be
attributed to the emission of band gap transition with the
energy of emission corresponding to the band gap energy

between different valence bands and conduction bands that
exist in the trimetallic oxides. Meanwhile, the secondary PL
emission peaks at 500 nm and above may be attributed to

defects in the samples (Zhang et al., 2015). The emission inten-
sity of T950/SnO2/WO3 that is lower than T850/SnO2/WO3

and T1050/SnO2/WO3 (Fig. 5) signifies a lower recombination
rate of photogenerated electrons and holes. This could be cor-

related to the higher amount of oxygen vacancies that exist in
T950/SnO2/WO3 resulting in a decreased PL intensity (Ma
et al., 2014). Therefore, T950/SnO2/WO3 photocatalyst with

suppressed electron–hole recombination rate is expected to
increase the photocatalytic reaction.

Morphologies of the samples were characterized using

FESEM and TEM. Fig. 6 clearly points out that all the
samples are irregularly shaped. The surface morphology for
) T850/SnO2/WO3, (ii) T950/SnO2/WO3 and (iii) T1050/SnO2/WO3

es. (b) Band gap of trimetallic oxides.
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T850/SnO2/WO3 photocatalyst obtained from FESEM

(Fig. 6a), showed wide distribution of small agglomerated
SnO2 particles over TiO2 calcined at 850 �C. With the
increase in calcination temperature of TiO2 to 950 �C, the
existence of surface structural defects could be observed in

T950/SnO2/WO3 that has sharp edges/cutting (Fig. 6b), but
was not observed in T850/SnO2/WO3. These exposed surfaces
with sharp edges are the reactive facets that contribute to their

excellent activities in photocatalytic reaction. From Fig. 5b, it
also revealed that the larger TiO2 and WO3 particles are closely
boundwith smaller SnO2 particles partially adsorbed on the sur-

face.However, further increase in the calcination temperature of
TiO2 to 1050 �C caused increase in the particle size as also
Please cite this article in press as: Nadarajan, R. et al., Photocatalytic degradation o
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revealed by XRD data. As shown by Fig. 6c, large particles

could be seen in T1050/SnO2/WO3 catalyst. Even though the
existence of facet could still be observed, the particles are not
very closely bounded which might lead to inefficient charge

transfer.
Meanwhile, Fig. 6d and e presents the surface morphology

of the T950/SnO2/WO3 photocatalyst immobilized on PVC
and chitosan. From Fig. 6d, it could be noted that the surface

of the photocatalyst with sharp edges was slightly covered by
the PVC while almost diminished when immobilized using chi-
tosan (Fig. 6e). To further understand the contact between the

metal oxides, image from TEM was obtained as shown in
Fig. 6f. It could be seen from the TEM image that all the metal
oxides are interconnected which is beneficial for the interparti-

cle charge transfer and to improve the photocatalytic reaction.
The HRTEM image has been presented in Fig. S2 (supporting
document). Since the particle size calculated from XRD was
large, the BET surface area obtained was low as shown in

Table 2. The low surface area with small variation in BET
surface area would not result in any obvious differences in
the catalytic performance of the trimetallic oxide.

3.2. Effect of support on photocatalytic activity

The use of photocatalyst in powder form to study the reusabil-

ity of catalyst is time consuming and might cause weight loss
during the process of filtering and drying. This leads to the
use of support materials. Hence, in this study PVC and chi-

tosan were utilized as support materials. Based on the charac-
terization, the potential photocatalyst T950/SnO2/WO3 was
used to investigate the effect of support on photocatalytic
f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
mistry (2016), http://dx.doi.org/10.1016/j.arabjc.2016.03.006
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Figure 6 FESEM image of sample (a) T850/SnO2/WO3, (b) T950/SnO2/WO3, (c) T1050/SnO2/WO3, (d) T950/SnO2/WO3 immobilized

on PVC film, (e) T950/SnO2/WO3 immobilized on chitosan beads and (f) TEM for T950/SnO2/WO3.

Table 2 BET specific surface area, total pore volume and average pore diameter for all the trimetallic oxide photocatalysts.

Sample BET specific surface area (m2/g) Total pore volume (cm3/g) Average pore diameter (nm)

T850/SnO2/WO3 4.075 0.0395 106.73

T950/SnO2/WO3 2.720 0.0460 282.46

T1050/SnO2/WO3 1.599 0.0371 92.80
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Figure 7 Photocatalytic degradation of 1,2-dichlorobenzene

using T950/SnO2/WO3 photocatalyst (i) in powder form, (ii)

immobilized on PVC film and (iii) immobilized on chitosan in

beads form.
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activity. To determine the efficiency of these support materials,
photocatalyst immobilized on PVC and chitosan was com-

pared with the powder photocatalyst. The experimental results
(Fig. 7) showed that the activity decreased when the photocat-
alyst was immobilized on PVC and chitosan. Lower photocat-

alytic activity was observed when the photocatalyst was
immobilized on chitosan. These results could be correlated
with the method of preparation followed by surface morpholo-

gies obtained from FESEM.
Notably, the high activity was achieved when using powder

photocatalyst which is due to the exposed surface that has
large contact with the pollutants (Fig. 6b). However when

the photocatalyst was spread on top of PVC film, the catalysts
are now partially embedded in the film and not 100% of the
surfaces are exposed (Fig. 6d). Thus, lesser amount of pollu-

tants is in-contact with the exposed surface causing slight
decline in the activity. On the other hand, during the immobi-
lization with chitosan, the photocatalyst was mixed together

with chitosan in acetic acid solution before forming chitosan
beads. The chitosan polymer is highly porous material which
is sufficiently packed to form beads (Guibal, 2005). In this
case, the photocatalyst particles have been encapsulated within

the chitosan polymer networks, therefore reducing large
amount of catalyst with exposed surface (Fig. 6e). Hence, this
observation could be directly related to the lower catalytic

activity attained when photocatalyst in chitosan beads was
Please cite this article in press as: Nadarajan, R. et al., Photocatalytic degradation o
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employed. Nevertheless, the higher dark adsorption observed
could be associated with the adsorption capability of the por-
ous structured chitosan (Sabar et al., 2015). Consequently, this

study highlights the importance of photocatalyst with exposed
surface for the photodegradation of DCB. Thus, the following
f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
istry (2016), http://dx.doi.org/10.1016/j.arabjc.2016.03.006
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study on optimization was conducted using T950/SnO2/WO3

photocatalyst immobilized on PVC film.

3.3. Effect of calcination temperature

Calcination temperature plays an important role in surface
morphology, structural defects and surface defects. Hence, in

this study the effect of calcination temperature on one of the
metal oxides was considered. As TiO2 exists in major portion
in this trimetallic oxide, the effect of calcination temperature

was evaluated using TiO2 calcined at different temperatures.
Comparison with powder form photocatalyst was also con-
ducted. The photocatalytic performances of the trimetallic

oxide with different calcination temperatures are shown in
Fig. 8. The photocatalyst in powder form demonstrated higher
catalytic activity compared to when it was immobilized on
PVC film. This could be correlated to the reduced number of

exposed surface photocatalyst as discussed in Section 3.2. Both
powder and immobilized photocatalyst exhibited the highest
photodegradation of DCB when TiO2 calcined at 950 �C was

used in the trimetallic oxide. The UV absorbance spectrum
for degradation of DCB using T950/SnO2/WO3 photocatalyst
immobilized on PVC is displayed in Fig. S3 (supporting

document).
The effect of calcination temperature on the photodegrada-

tion of DCB by using trimetallic oxide photocatalysts immobi-
lized on PVC film over the reaction time is presented in Fig. 9.

The photocatalytic activity of the single and binary metal oxi-
des was included as well in Fig. 9 for comparison. It could be
noted that all the metal oxides are active at visible light which

is in agreement with UV–Vis absorption spectra (inset of
Fig 3a). TiO2 calcined at 950 �C showed high catalytic activity
compared to WO3 and SnO2. In this study, SnO2 showed fairly

good catalytic activity under visible light which could be corre-
lated to the existence of structural defect as depicted by XPS
(Fig. 4b). The catalytic activity was improved when 10% of

WO3 was mixed with TiO2. The enhancement of the photocat-
alytic activity was observed with the addition of 10% SnO2

forming trimetallic oxide T950/SnO2/WO3 (80:10:10). On the
contrary, T850/SnO2/WO3 demonstrated lower catalytic activ-

ity then the binary metal oxide which could be associated with
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Figure 8 Photocatalytic degradation of 1,2-dichlorobenzene

using Tx/SnO2/WO3 photocatalyst in powder form and immobi-

lized on PVC film (with x referred to calcination temperature of

TiO2) conducted for 4 h under visible light.
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the effect of TiO2 calcined at 950 �C (T950). From Fig. 9, it
could be noted that almost high adsorption of DCB was

observed using the trimetallic oxides. The high adsorption of
organic pollutant is essential for enhancing photocatalytic
reaction. Nevertheless, even though TiO2 with different calci-

nation temperature was used in the trimetallic oxide photocat-
alyst, the variation in the per cent of adsorbed DCB was small.
This could be related to the identical ratio of WO3 in all the

trimetallic oxides. As reported by Albonetti et al. (2008), in
the presence of Lewis acid (TiO2 and SnO2) and Bronsted acid
site (WO3), DCB would initially be adsorbed on Bronsted acid
site. This phenomenon is also true for pure WO3 which has

higher adsorption compared to TiO2 and SnO2. A comparison
of the adsorption capability and photocatalytic reaction of
DCB using T950/SnO2/WO3 for 4 h is displayed in Fig. S4

(supporting document).
The influence of surface defects on the behaviour of the

trimetallic oxides is of particular interest that contributed to

the distinction in the photocatalytic activity. Based on XPS
data, the presence of Ti3+ in different concentrations was
observed in T950/SnO2/WO3 and T1050/SnO2/WO3; however,

Ti3+ was not observed in T850/SnO2/WO3. The deviation in
the concentration of Ti3+ in TiO2 was the effect of different
calcination temperature. However, XPS analysis also revealed
that all the trimetallic oxides have higher concentration of

W5+ when compared to the pure WO3 calcined at 850 �C. This
data showed the occurrence of charge transfer between the
metal oxides and formation of heterojunction by the interac-

tion of metal oxides which is proposed in Scheme 1. In this
reaction, the enhanced photocatalytic activity of the trimetallic
oxide compared to the pure metal oxides could be due to two

factors: (i) the improved charge transfer and charge separation
by multiple pathways as proposed in Scheme 1 and (ii) the
presence of high concentration of oxygen vacancies. As the
conduction band of SnO2 and WO3 is lower than TiO2, elec-

trons in the conduction band of TiO2 can be transferred to that
of SnO2 and WO3 under visible light irradiation. Meanwhile
holes from the lower valence band of SnO2 and WO3 could

be transferred to TiO2. This improves the separation and
migration of photogenerated carriers and reduced the elec-
tron–hole recombination rate. A large number of electrons
f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
mistry (2016), http://dx.doi.org/10.1016/j.arabjc.2016.03.006

http://dx.doi.org/10.1016/j.arabjc.2016.03.006


Photocatalytic degradation of 1,2-dichlorobenzene 9
on WO3 generate more W5+ and increase the formation of
O��

2 while holes on TiO2 surface increase the formation of

OH�. The formation of OH� and O��
2 is essential in the

photodegradation of DCB in aqueous. Based on XPS
analysis, the large concentration of W5+ was available on
T950/SnO2/WO3 catalyst. In addition, it also has large amount

of surface adsorbed oxygen. In the decomposition process, the
released chloride ion would be adsorbed on the catalyst sur-
face. The excess surface adsorbed oxygen improves the desorp-
tion of chloride ions and stabilizes the catalyst, thus enhanced

the photocatalytic activity (Mao et al., 2015). The decrease in
the photocatalytic activity therefore is related to the concentra-
tion of W5+ and oxygen vacancies.

3.4. Effect of pH

Photocatalytic reactions for DCB in solution with different pH

levels are presented in Fig. 10. As it could be perceived, the
photocatalytic activity increased with the increase in value of
pH. It has been suggested that the effect of solution pH on

the photocatalytic degradation is a complex subject associated
with the reaction mechanism and the adsorption characteris-
tics of substrate onto photocatalyst surface. According to the
principle of heterogeneous photocatalysis, the concentration

of OH� ions is critical for the generation of �OH radicals. Thus
at higher pH value, the formation of hydroxyl ion was
favoured (Huang et al., 2014). Nevertheless, it should be noted

that the lifetime of �OH radicals is very short and photocat-
alytic reactions can only take place at or near the surface of
photocatalyst. Due to the non-ionic property of DCB, the neu-

tral medium seems beneficial for the adsorption of DCB. As a
result, considering the combined effect of the generation of
OH� and the interaction between DCB and the surface of
the photocatalyst, the photocatalytic degradation of DCB

was most efficient in neutral medium (Wang and Ku, 2007).

3.5. Effect of catalyst loading

Typically it is known that photocatalytic activity increases
with catalyst loading up to a certain value beyond which the
activity decreases. Similar experimental result was attained in

this study which is presented in Fig. 11. The degradation effi-
ciency rapidly increased with loading of photocatalyst of up to
0.25 g for powder sample and after immobilized on PVC film.

Above this point, the photocatalytic activity started to decline.
The influence of catalyst loading on the photodegradation of
DCB can be explained in terms of the accessible exposed sur-
face site for the adsorption of DCB and illuminated area which

are essential to promote the photocatalytic reaction. The
higher loading of powder photocatalyst caused excess of parti-
cles and increased the thickness of the photocatalyst in slurry

mode. According to Choi et al. (2000), light penetration is
exponentially extinguished along the depth while reaction rate
is proportional to the absorbed light intensity. Therefore, the

increase in thickness of catalyst particles leads to shielding
effect or reduction of light penetration and decrease in activity.
On the other hand, the higher loading of photocatalyst immo-

bilized on PVC causes reduction of exposed surface photocat-
alyst. During the immobilization of photocatalyst on PVC,
higher loading caused some of the catalyst to sink into PVC
liquid due to the increase in density. The photocatalyst that
Please cite this article in press as: Nadarajan, R. et al., Photocatalytic degradation o
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sank in the PVC during preparation got embedded in the
PVC film upon drying and therefore reducing the exposed sur-
face of catalyst. To justify this statement, the surface rough-

ness of immobilized photocatalyst with different loading was
evaluated using AFM.

Fig. 12 portrays the three dimensional images of PVC film

surface with photocatalyst loading of 0.25 g and 0.30 g. The
differences in the surface roughness are shown by the images
(Fig. 12) and by the root-mean-square roughness value

(Rrms). The Rrms value for photocatalyst loading of 0.25 g is
7.293 nm and 4.630 nm for 0.30 g loading. The low Rrms

value proves the reduction in the amount of catalyst exposed
on surface (Stefanov et al., 2016). Consequently, the decrease

in number of catalyst particles on PVC surface leads to
reduction of adsorbed light intensity and the contact between
photocatalyst and pollutant which caused the decline in

activity.

3.6. Optimization of degradation conditions using RSM
approach

For the response surface methodology involving Box–Behnken
design, a total of 17 experiments were conducted for three fac-

tors at three levels (Table 1). The design used for the optimiza-
tion and the responses observed and predicted for the 17
experiments are depicted in Table 3 (supporting document).

From the experimental design, an empirical second order

polynomial equation was developed that correlates the
response and the three different process variables as shown
in Eq. (3):

Y ¼ 95:70� 1:19A� 0:93Bþ 0:34Cþ 0:20AB� 0:15AC

þ 0:11BC� 5:53A2 � 2:58B2 � 2:11C2 ð3Þ

where Y represents per cent degradation (%) while A, B and C
refer to the coded value of calcination temperature, catalyst
loading and initial pH respectively. The predicted per cent

degradation based on Eq. (3) has been tabulated in Table 3
for comparison with the experimental or observed value.

The experimental data for the degradation of DCB were
statistically analysed by analysis of variance (ANOVA) and

the result is displayed in Table 4 (supporting document). The
significance of the model was determined by the variation
attributed from the model and the experimental error; which

is performed by F-value. Meanwhile, adequacy of the model
is evaluated from the difference between the observed and
the predicted response value (residual error). Hence, the

ANOVA of the second order quadratic polynomial model
for the response with model F-value of 1000.50 and its corre-
sponding p-values of <0.0001 showed that the model was sig-
nificant. The property of the fit polynomial model was

determined by the coefficient of determination (R2) that quan-
titatively evaluates the correlation between the experimental
data and the predicted response (Khataee et al., 2010). The

R2 value of 0.9992 is in good agreement with the adjusted R2

(0.9982) and predicted R2 (0.9971) which is considerably high,
thus advocating a high correlation between the observed val-

ues and the predicted values. This indicates that the regression
model provides an excellent explanation of the relationship
between the independent variables and response. Furthermore

the ANOVA result also showed that the lack of fit F-values of
f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
istry (2016), http://dx.doi.org/10.1016/j.arabjc.2016.03.006
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Scheme 1 Proposed schematic diagram for charge transfer in T950/SnO2/WO3 upon irradiation under visible light.
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Figure 10 Photocatalytic degradation of 1,2-dichlorobenzene

with 0.1 g T950/SnO2/WO3 photocatalyst (i) in powder form and

(ii) immobilized on PVC film at different pH range, conducted for

4 h under visible light.
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Figure 11 Photocatalytic degradation of 1,2-dichlorobenzene

with T950/SnO2/WO3 photocatalyst in powder form and immo-

bilized on PVC film at different catalyst loading. The reaction was

conducted under visible light for 4 h.
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0.24 implies that the lack of fit is not significant as the p-values
were >0.05. The insignificant lack of fit confirmed the pre-

dictability of the model.
ANOVA results also indicate that all the independent vari-

ables of the quadratic polynomial model A, B and C, the inter-

action between calcination temperature with catalyst loading
(AB) and the quadratic terms A2, B2 and C2 are statistically
significant as their p-values are <0.05. The most significant

factor that influences the degradation of DCB as estimated
Please cite this article in press as: Nadarajan, R. et al., Photocatalytic degradation o
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by ANOVA is the effect of calcination temperature on the cat-
alyst, followed by catalyst loading. The pH has a minor effect

on the overall catalytic activity. The ANOVA result exempli-
fied that the two-variable interactions had no significant effect
on the pH (p > 0.05). The interaction between the variables

and the optimum condition was further evaluated from the
3D plot of response surface shown in Fig. 13. From the surface
response model, the optimized per cent degradation was esti-
mated as 95.86% with calcination temperature of TiO2

961.2 �C, catalyst loading of 0.22 g and pH 7.16. Verification
of the estimated result at the proposed condition was carried
out. The obtained experimental value of 95.84% is in good

agreement with the predicted result of 95.89%, therefore vali-
dated the findings of response surface optimization. On the
whole, ANOVA and the 3D plots illustrated that the calcina-

tion temperature plays the major role in structuring the
catalyst surface and enhancing the photocatalytic activity at
visible light.

3.7. Efficiency of the photocatalyst

For further affirmation of the efficiency of the photocatalyst,
the decomposed by-product after 4 h of reaction was analysed

by GC–MS (Fig. S5). After 4 h, the final by-product was
identified as 4-chloro-4-hydroxy-3-butenal based on the mass
spectra fragmentation ions (Scheme 2). Several other peaks

obtained could not be identified from the MS spectra library.
The removal of chloride ion was verified by the presence of
AgCl white precipitate upon the addition of AgNO3 and by

the reduction of pH from 7.0 to 6.7.
It is also important to determine the stability and the repro-

ducibility of the photocatalyst. Hence the photocatalyst was
examined by repeating the reaction procedure. At the end of

each reaction, the photocatalyst was cleansed using methanol
and washed thoroughly using distilled water in order to get
rid of any DCB compound or by-products adsorbed on the

photocatalyst. The photocatalyst was then dried in oven at
80 �C for 30 min prior to reuse for the next reaction. Fig. 14
illustrates the performance of the T950/SnO2/WO3 photocata-

lyst after six consecutive runs with an average of 97%
degradation which demonstrates the stability of the catalyst
and thus its efficiency.
f 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under
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Figure 12 AFM image of T950/SnO2/WO3 immobilized on PVC with catalyst loading of (a) 0.25 g and (b) 0.30 g.

Figure 13 DCB per cent degradation and the interaction between (a) calcination temperature vs loading, (b) calcination temperature vs

pH, and (c) catalyst loading vs pH presented in 3D surface response plot.

Scheme 2 By-product obtained from photodegradation of DCB

using T950/SnO2/WO3 photocatalyst under visible light for 4 h.
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Figure 14 Reproducibility efficiency of T950/SnO2/WO3 catalyst

immobilized on PVC film.
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4. Conclusions

The performance of trimetallic metal oxide TiO2/SnO2/WO3 in the

ratio of 80:10:10 prepared from rutile TiO2 calcined at 950 �C, WO3

and SnO2 calcined at 850 �C showed high degradation of DCB in aque-

ous under visible light. Comparison of the activity on different support

materials showed that powder form > immobilized with PVC

film > chitosan beads. An conventional way optimization study was

conducted on the effect of calcination temperature, pH and catalyst

loading which demonstrated that the optimum condition was obtained

when TiO2 calcined at 950 �C was used in the preparation of the

trimetallic oxide with catalyst loading of 0.25 g and solution pH of

7. This result is in good agreement with optimization study using

response surface methodology technique. ANOVA revealed that calci-

nation temperature was the predominant factor influencing the photo-

catalytic activity which is related to the presence of surface defects.

Therefore, in this study the enhanced photocatalytic activity was

achieved due to the efficient charge transfer and the effect of large

amount of oxygen vacancies. Meanwhile the detection of by-product

during the reaction and the reproducibility of the photocatalyst

T950/SnO2/WO3 verified the efficiency of the photocatalyst.
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