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Abstract

We construct fiber-preserving anti-symplectic involutions for a large class of symplectic manifolds with
Lagrangian torus fibrations. In particular, we treat the K3 surface and the six-dimensional examples con-
structed by Castaño-Bernard and Matessi (2009) [8], which include a six-dimensional symplectic manifold
homeomorphic to the quintic threefold. We interpret our results as corroboration of the view that in ho-
mological mirror symmetry, an anti-symplectic involution is the mirror of duality. In the same setting, we
construct fiber-preserving symplectomorphisms that can be interpreted as the mirror to twisting by a holo-
morphic line bundle.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Statement of result

Let X be a symplectic manifold and let B be smooth manifold of half the dimension of X.
We call a continuous map f : X → B a Lagrangian fibration if each fiber of f contains a rela-
tively open dense set that is a smooth Lagrangian submanifold of X. Lagrangian fibrations arose
classically in the context of integrable systems and toric geometry. More recently, Lagrangian
fibrations have played a role in the conjectural interpretation of mirror symmetry introduced by
Strominger, Yau and Zaslow [33]. We discuss this in greater detail in Section 1.2.

In [8], the first two authors introduced a general construction that produced a class C of La-
grangian fibrations. See Section 2 for the precise definition of C. In short, C consists of fibrations
on symplectic manifolds of dimensions 4 and 6. In those dimensions, C includes fibrations such
that the total space is homeomorphic to any of the Calabi–Yau complete intersections in toric
manifolds considered by Batyrev and Borisov [3] as candidates for mirror symmetry. Each fibra-
tion in C has a Lagrangian section.

An anti-symplectomorphism of a symplectic manifold X with symplectic form ω is a self-
diffeomorphism φ of X such that

φ∗ω = −ω.

An anti-symplectomorphism φ of X such that φ2 = IdX is called an anti-symplectic involution.
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In the present paper, we define a class of Lagrangian sections C for fibrations f : X → B of
class C. For each fibration f ∈ C, there exists at least one section σ ∈ C. Our main results are the
following.

Theorem 1.1. Let f : X → B be a Lagrangian fibration of class C. Let σ be a Lagrangian
section of f of class C. There exists a unique anti-symplectic involution φf,σ of X such that

f ◦ φf,σ = f, φf,σ ◦ σ = σ. (1)

That is, there exists a unique anti-symplectic involution φf,σ of X preserving the fibers of f

and fixing the section σ . Assuming existence, uniqueness continues to hold for an arbitrary La-
grangian section σ .

Theorem 1.2. Let f : X → B be a Lagrangian fibration of class C and let σ0, σ1, be two La-
grangian sections of class C. There exists a unique symplectomorphism t : X → X satisfying

f ◦ t = f, t ◦ σ0 = σ1. (2)

Assuming existence, uniqueness continues to hold for arbitrary Lagrangian sections of f .

There are several motivations for proving Theorem 1.1. Recently, there has been considerable
research devoted to defining Gromov–Witten type invariants for symplectic manifolds equipped
with an anti-symplectic involution [35,36,31]. Moreover, in the presence of an anti-symplectic
involution, an open-string mirror correspondence was found [27]. Most known examples of anti-
symplectic involutions come from real algebraic geometry. Theorem 1.1 constructs a vast number
of examples of symplectic manifolds with anti-symplectic involutions in a purely symplectic
way. In Section 1.2, we give a conjectural mirror symmetry interpretation of Theorem 1.1 that
explains conditions (1). In [32, Theorem 1.1] is applied to show unobstructedness and calculate
Lagrangian Floer cohomology for smooth fibers of f .

Theorem 1.2 is important in the proof that Theorem 1.1 holds for any section σ ∈ C. Moreover,
as we explain in Section 1.2, Theorem 1.2 has a mirror symmetry interpretation of independent
interest. In Section 1.4, Theorem 1.2 allows us to construct anti-symplectic involutions that do
not fix a section of a fibration.

1.2. Mirror symmetry of symmetries

We briefly review some aspects of mirror symmetry necessary to put Theorems 1.1 and 1.2 in
context. We discuss two conjectures and the evidence in their favor.

1.2.1. The Hodge diamond
A Calabi–Yau manifold is a Kähler manifold with trivial canonical bundle. Mirror symmetry

predicts that there exist pairs of Calabi–Yau manifolds (X,Y ) such that symplectic geometry on
Y mirrors complex geometry on Y . Set n = dimC X = dimC Y . A concrete prediction of mirror
symmetry is that

Hq
(
X,Ω

p)� Hq
(
Y,Ω

n−p)
. (3)
X Y



1344 R. Castaño-Bernard et al. / Advances in Mathematics 225 (2010) 1341–1386
Fig. 1. The Hodge diamond.

Namely, the Hodge diamond of Y is the reflection of the Hodge diamond of X about a diagonal.
See Fig. 1, which illustrates the case when n = 3 and π1(X) = {1}. We use the notation hp,q =
dimHq(X,Ω

p
X).

It follows from the isomorphism (3) that the first order deformations of the Kähler class of X,
which are classified by H 1(X,Ω1

X), are isomorphic to the first order deformations of the com-
plex structure on Y , which are classified by H 1(Y,Ωn−1

Y ). The middle-dimensional cohomology
of X, which contains the Poincaré duals of Lagrangian submanifolds, is isomorphic to the (p,p)

classes of Y , which contain the Poincaré duals of complex submanifolds.
Recall that the Hodge diamond of any Kähler manifold has two symmetries: Serre duality and

complex conjugation. Naturally, the mirror isomorphism (3) preserves these symmetries of the
Hodge diamond. It is interesting to note, however, that mirror symmetry exchanges complex con-
jugation and Serre duality. In the remainder of this section, we trace the exchange of symmetries
through successively more refined descriptions of mirror symmetry.

1.2.2. Homological mirror symmetry
Homological mirror symmetry [23] can be seen as a categorification of mirror symmetry

on the level of Hodge diamonds. Mirror symmetry on the level of Hodge diamonds implies an
isomorphism of vector spaces between the middle-dimensional cohomology of X and the (p,p)-
classes of Y :

⊕
Hq
(
X,Ω

p
X

) ∼−→
⊕

Hp
(
Y,Ω

p
Y

)
.

p+q=n p
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Homological mirror symmetry replaces each vector space with a category, and asserts an equiv-
alence of categories.

Let X be a symplectic manifold with dimR(X) = 2n. We would like to replace Hn(X) with
a category. Since Lagrangian submanifolds of X have half the dimension of X, it is natural to
look for a category with objects Lagrangian submanifolds. In fact, from X we can construct
the A∞ category Fuk(X) [16,17,13,29]. An object of Fuk(X), is a Lagrangian submanifold
L ⊂ X equipped with a unitary local system E → L, a grading θ (see Section 7) and a Pin
structure p. Depending on context, we may omit several of the data comprising an object of
Fuk(X) from our notation when it does not cause confusion. Morphisms between two ob-
jects (L1,E1) and (L2,E2) are given by the Floer cohomology groups with local coefficients
HF ∗((L1,E1), (L2,E2)). From Fuk(X), one can construct a triangulated category Db Fuk(X),
as explained in [23]. In general, it seems necessary to enlarge Db Fuk(X) further [23]. We denote
the enlargement as well by Db Fuk(X).

On the other hand, let Y be a Kähler manifold. To Y , we can associate the triangulated cate-
gory Db Coh(Y ), the derived category of coherent sheaves on Y . Perhaps the simplest objects of
Db Coh(Y ), are the structure sheaves of complex submanifolds. The Poincaré duals of complex
submanifolds all belong to

⊕
p Hp(Y,Ωp). According to the Hodge conjecture, the Poincaré

duals of complex submanifolds should generate all rational (p,p)-classes. Thus, it makes sense
to replace the vector space

⊕
p Hp(Y,Ω

p
Y ) with the category Db Coh(Y ).

Suppose X and Y are Calabi–Yau manifolds, i.e. Kahler manifolds with trivial canonical
bundle. Homological mirror symmetry [23] predicts that for certain pairs (X,Y ) there exists an
equivalence of triangulated categories

m : Db Fuk(X)
∼−→ Db Coh(Y ).

Such pairs are called mirror pairs and Y is called a mirror of X.
In homological mirror symmetry, symmetries of a vector space should be replaced with auto-

equivalences of a category. As for any smooth algebraic variety, the functor

D := RHom(−,OY ) : Db Coh(Y )
∼−→ Db Coh(Y )op (4)

induces an equivalence of categories, and

Dop ◦ D � Id . (5)

The auto-equivalence D is closely related to the Serre duality symmetry of the Hodge diamond.
It is natural to ask whether the functor mirror to D,

D∨ := (mop)−1 ◦ D ◦ m : Db Fuk(X)
∼−→ Db Fuk(X)op,

is quasi-isomorphic to a geometrically defined functor. One goal of this paper is to construct a
geometric functor

I : Db Fuk(X)
∼−→ DbFuk(X)op
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for which it is reasonable to conjecture that

I � D.

However, before proceeding further, we pause to summarize what is conjectured about the ge-
ometry of m.

1.2.3. The SYZ conjecture
The Strominger–Yau–Zaslow (SYZ) conjecture [33] takes a first step toward giving a geo-

metric interpretation of the homological mirror symmetry functor m. For each point y ∈ Y , let
Oy denote the skyscraper sheaf at y. According to [33], the functor m−1 should carry Oy to a
Lagrangian torus Ly ⊂ X equipped with a flat unitary line bundle Ey → Ly . One motivation for
this conjecture was that RHom(Oy,Oy) � Λ∗(TyY ), while it is reasonable to conjecture that

HF ∗((Ly,Ey), (Ly,Ey)
)� H ∗(Ly) � Λ∗(H 1(Ly)

)
.

Indeed, the first isomorphism would follow if the spectral sequence computing Floer cohomology
[16] degenerates at the E2 term.

Furthermore [33], the family of tori Ly should completely fill X and lead to a Lagrangian
fibration f : X → B , where B is a three-dimensional manifold. This fibration may have singular
fibers. Conversely, given a Lagrangian fibration f : X → B , it should be possible to construct
a mirror Yf , as the moduli space of pairs (L,E), where L is a fiber of f and E → L is a flat
unitary line bundle. The Lagrangian fibrations constructed in [8] provide concrete examples in
which the SYZ conjecture can be tested.

The SYZ conjecture is sharpened by Fukaya in [14]. From now on let f : X → B denote a
Lagrangian fibration and let Yf be the corresponding mirror. Let σ : B → X be a Lagrangian
section of f . It is suggested in [14] that the choice of f should play an important role in an
intrinsic construction of the equivalence of categories Db Fuk(X)

∼−→ Db Coh(Yf ). Indeed, given
a coherent sheaf F on Yf and y ∈ Yf , let Fy denote the fiber of F at y and let Oy denote the
skyscraper sheaf at y. We have canonically,

F∨
y � Hom(F,Oy). (6)

Assume the object (L,E) of Fuk(X) is mirror to F, and let (Ly,Ey) be the fiber of f mirror
to Oy . It follows from homological mirror symmetry and isomorphism (6) that we must have an
isomorphism

F∨
y � HF 0((L,E), (Ly,Ey)

)
.

That is, we may calculate the fibers of the sheaf F on Yf only knowing its mirror L. A family
version of Floer homology should piece the fibers of F together to give F itself. In [15], the
choice of a Lagrangian section σ plays an important role in piecing together the fibers. The
mirror functor sends the Lagrangian σ to the structure sheaf of Yf .

In summary, the mirror functor depends on the choices of a Lagrangian fibration f and a
Lagrangian section σ . From now on, we include f and σ in our notation for the mirror functor

mf,σ : Db Fuk(X)
∼−→ Db Coh(Yf ).
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Similarly, we write

D∨
f,σ = (mop

f,σ

)−1 ◦ D ◦ mf,σ .

1.2.4. Duality conjecture
Suppose f : X → B is a Lagrangian fibration of class C. Let φf,σ be the involution of X given

by Theorem 1.1. Let (L,E, θ,p) be an object of Db Fuk(X). We define

If,σ ((L,E, θ,p)) = (φf,σ (L),φf,σ∗E∨,−θ ◦ φ−1
f,σ ,φf,σ∗p

)
. (7)

A short calculation shows that formula (7) defines a functor

If,σ : Db Fuk(X) → Db Fuk(X)op.

See [25]. The reversal of morphisms results from the fact that φf,σ changes the sign of the
symplectic form. For signs, see [32]. The following conjecture has appeared in various forms
throughout the mirror-symmetry literature. See for example Arinkin and Polishchuk [1] in the
case of the elliptic curve and Nadler [25] in the case of the cotangent bundle. In both cases, the
conjecture is a theorem.

Conjecture 1.3. The geometrically defined functor If,σ is quasi-isomorphic to D∨
f,σ .

We briefly present some evidence for Conjecture 1.3. First of all, it is clear from the definition
that I

op
f,σ ◦ If,σ � Id by analogy with Eq. (5). Furthermore, just as D preserves the structure sheaf

of Yf , so too If,σ preserves the Lagrangian section σ equipped with the trivial local system. In
Section 7, we explain the appropriate choice of grading for σ .

A distinctive property of D is that it preserves Oy up to a shift in grading by dimC Y . It
follows that a geometric functor If,σ isomorphic to D∨

f,σ should preserve (Ly,Ey) up to a shift
in grading by dimC X = dimC Y . Indeed, Theorem 1.1 guarantees that for a fiber Ly of f , we
have φf,σ (Ly) = Ly . Suppose Ly is smooth and hence a torus. By Corollary 1.8, φf,σ acts on Ly

by the inverse map of the torus group. So, if Ey is a flat unitary line bundle then φf,σ∗Ey = E∨
y .

It follows that φf,σ∗E∨
y = Ey . In Section 7 we verify under some reasonable assumptions that

for the natural choice of grading θy on a torus fiber Ly , If,σ shifts θy by dimC X. Thus If,σ

preserves the mirror of Oy up to a shift by dimC X = dimC Y .
Finally, we state a theorem concerning the derived category of coherent sheaves that mirrors

the uniqueness claim of Theorem 1.1. The proof appears in Section 8. In the following, D is the
functor defined in (4).

Theorem 1.4. Let Y be a smooth projective variety of dimension n. Let D′ : Db Coh(Y ) →
Db Coh(Y )op denote an equivalence of categories such that

D′(Oy) � Oy[n], ∀y ∈ Y, D′(OY ) = OY .

Then D′ � D.
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1.2.5. Twist conjecture
Let L → Yf denote a holomorphic line bundle over Yf . Tensoring with L defines an auto-

equivalence

T : Db Coh(Y )
∼−→ Db Coh(Y ).

As before, we define the mirror auto-equivalence T∨ by

T∨ = (mf,σ )−1 ◦ T ◦ mf,σ : Db Fuk(X)
∼−→ Db Fuk(X).

Let (σL,EL) denote the Lagrangian submanifold with unitary local system mirror to L by the
mirror isomorphism mf,σ .

We assume that σL is a Lagrangian section of f : X → B and EL has rank one. Furthermore,
we assume that σL ∈ C. By Theorem 1.2, there exists a unique symplectomorphism t : X → X

such that f ◦ t = f and t ◦ σ = σL. Let ÊL = f ∗f∗EL, which is a flat unitary line bundle on X

since σL is a section. Define an auto-equivalence t of Db Fuk(X) by

t((L,E, θ,p)) = (t (L), (t∗E) ⊗ ÊL, θ ◦ t−1, t∗p
)
.

We make the following conjecture.

Conjecture 1.5. The geometrically defined functor t is quasi-isomorphic to T∨.

Previously, Kontsevich described the functor t in terms of monodromy transformations arising
from complex structure moduli of X. See [22,30]. Given the right Lagrangian section σL, the
functor t can be used to construct the homogeneous coordinate ring of Y as described in [37].

We briefly present some evidence in favor of Conjecture 1.5. Let E0 → σ denote the trivial
rank-1 unitary local system. Just as

T(OY ) = L,

so too, since t (σ ) = σL and ÊL|σL = EL, we have

t((σ,E0)) = (σL,EL).

Also, just as

T(Oy) � Oy, ∀y ∈ Y,

so too, since t (Ly) = Ly and ÊL|Ly is trivial, we have

t((Ly,Ey)) � (Ly,Ey).

Finally, we state a theorem for the derived category of coherent sheaves that mirrors the unique-
ness claim of Theorem 1.2. The proof appears in Section 8.
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Theorem 1.6. Let Y be a smooth projective variety. Let T′ be an auto-equivalence of Db Coh(Y )

such that

T′(Oy) � Oy, ∀y ∈ Y, T′(OY ) � L.

Then T′ � T.

Finally, here is a justification of our assumption that σL is a section and EL has rank 1. By
homological mirror symmetry, we have

HF ∗((σL,EL), (Ly,Ey)
)� RHom(L,Oy) � L∨

y .

Since the fiber Ly is one-dimensional, we conclude that HF ∗((σL,EL), (Ly,Ey)) is one-
dimensional. The Floer complex is a direct sum of tensor products of the fibers of the local
coefficient systems at intersection points of the Lagrangian submanifolds. So, it is natural to
assume that σ intersects each fiber Ly at one point and rkEL = 1.

1.3. Idea of proof

We briefly explain the idea of our proofs of Theorems 1.1 and 1.2. First suppose f0 : X0 → B0
is a Lagrangian fibration that is a smooth submersion. Let σ0 be a smooth Lagrangian section.

Recall that the cotangent bundle T ∗B0 has a canonical symplectic form. Let Z denote the zero
section of T ∗B0. Let π : T ∗B0 → B0 denote the canonical projection. We also use π to denote
the induced projection of quotients of T ∗B0.

Proposition 1.7. (See [12].) There exists a unique lattice bundle Λ0 ⊂ T ∗B0 and a unique sym-
plectomorphism

Θ : T ∗B0/Λ0 → X0

such that

Θ ◦ Z = σ0, f0 ◦ Θ = π. (8)

Sketch of proof. Let b ∈ B0 and let ξ be a cotangent vector to B0 at b. Choose a function h on
B0 such that dh|b = ξ . Define H = h ◦ f0. Let ΦH be the time-one map of the Hamiltonian flow
of H . Define Θ̃ : T ∗B0 → X0 by

Θ̃(b, ξ) = ΦH ◦ σ0(b).

Define Λ0 = Θ̃−1(σ0). It is not hard to check that Θ̃ descends to define a map Θ on the quotient
T ∗B0/Λ0 with the required properties.

To check uniqueness, assume Λ′
0 ⊂ T ∗B0 is a lattice bundle and

Θ ′ : T ∗B0/Λ
′ → X0
0
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is a symplectomorphism such that Θ ′ ◦ Z = σ0 and f0 ◦ Θ ′ = π . Let Θ̃ ′ denote the composition
of Θ ′ with the quotient map T ∗B0 → T ∗B0/Λ

′
0. Let b, ξ and h, be as above. Define a function

K on T ∗B0 by K = h ◦ π . Let ΦK be the time-one map of the Hamiltonian flow of K . Since

H ◦ Θ̃ ′ = h ◦ f0 ◦ Θ̃ ′ = h ◦ π = K,

and Θ̃ ′ is a symplectomorphism, we conclude that

Θ̃ ′ ◦ ΦK = ΦH ◦ Θ̃ ′. (9)

An explicit calculation shows that

ΦK(b,0) = (b, ξ). (10)

Using Eqs. (9) and (10), we conclude

Θ̃ ′(b, ξ) = Θ̃ ′ ◦ ΦK ◦ Z(b) = ΦH ◦ Θ̃ ′ ◦ Z(b) = ΦH ◦ σ0(b) = Θ̃(b, ξ).

Thus Θ̃ ′ = Θ̃ . It follows immediately that Λ′
0 = Λ0. �

Corollary 1.8. There exists a unique anti-symplectic involution φ0 of X0 such that

f0 ◦ φ0 = f0, φ0 ◦ σ0 = σ0. (11)

Proof. Let − Id denote the anti-symplectic involution of T ∗B0 given by negative the identity
transformation on fibers. We also use − Id to denote the induced involution of quotients of T ∗B0.
Let Θ denote the symplectomorphism constructed in Proposition 1.7. The diffeomorphism φ0 of
X0 defined by

φ0 = Θ ◦ (−Id) ◦ Θ−1 (12)

is an anti-symplectic involution satisfying conditions (11). We have proved existence.
To prove uniqueness, let φ′

0 denote any anti-symplectic involution satisfying conditions (11).
It follows that

φ′
0 ◦ Θ ◦ (−Id) : T ∗B0/Λ0 → X0

is a symplectomorphism satisfying conditions (8). By the uniqueness claim of Proposition 1.7,
we conclude φ′

0 ◦ Θ ◦ (−Id) = Θ , and consequently φ′
0 = φ0. �

Corollary 1.9. Let σ0 and σ ′
0 be two Lagrangian sections of f0. There exists a unique symplec-

tomorphism t0 : X0 → X0 such that

f0 ◦ t0 = f0, t0 ◦ σ0 = σ ′
0. (13)
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Proof. Let Θ (resp. Θ ′) denote the symplectomorphism given by applying Proposition 1.7 to σ0
(resp. σ ′

0). Clearly,

t0 = Θ ′ ◦ Θ−1 : X0 → X0

is a symplectomorphism satisfying conditions (13).
To prove uniqueness, let t ′0 : X0 → X0 be any symplectomorphism satisfying conditions (13).

Then

t ′0 ◦ Θ : T ∗B0/Λ0 → X0

satisfies conditions (8) for section σ ′. It follows that t ′0 ◦ Θ = Θ ′, and consequently t ′0 = t0. �
With this background, we outline the proofs of Theorems 1.1 and 1.2. Suppose f : X → B is

a Lagrangian fibration of class C. The construction of f given in [8] realizes X as the compact-
ification of an open dense submanifold X0 ⊂ X such that f0 := f |X0 is a Lagrangian fibration
that is a smooth submersion with a Lagrangian section σ0. To obtain X from X0, local models of
singular fibrations are glued onto X0 matching up σ0 to sections of the local models. The main
technical part of this paper is devoted to constructing a fiber preserving anti-symplectic involu-
tion fixing a section on each local model. By the denseness of X0 in X, Corollary 1.8 guarantees
that all local involutions piece together to form the global involution φ of Theorem 1.1. Unique-
ness of φ follows similarly. The same approach together with Corollary 1.9 is used to construct
and prove the uniqueness of t as in Theorem 1.2.

1.4. Involutions that do not fix a section

A simple example of Calabi–Yau manifold with an anti-symplectic involution is the Fermat
quintic,

Q =
{

(z0, . . . , z4) ∈ CP 4
∣∣∣ 4∑

i=0

z5
i = 0

}
,

with the anti-symplectic involution φQ induced by complex conjugation. It is easy to see that the
fixed locus of φQ is connected. In fact, it is homeomorphic to RP 3.

On the other hand, the fixed locus of any involution constructed by Theorem 1.1 cannot be
connected. In particular, any anti-symplectic involution fixing a section cannot have connected
fixed locus for the following reason. By the proof of Corollary 1.8, if dimR X = 2n, the inter-
section of the fixed locus with any smooth fiber is 2n points. The section is clearly a component
of the fixed locus, but it intersects each fiber in only one point, thus it cannot be the whole fixed
locus.

In Remark 1.12 below, we show how to construct anti-symplectic involutions that do not fix a
Lagrangian section.

The proof of the following proposition appears in Section 6.

Proposition 1.10. Let f : X → B be of class C. If φf : X → X is an anti-symplectomorphism
satisfying f ◦ φf = f then
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φ2
f = IdX. (14)

In other words, all fiber-preserving anti-symplectomorphisms are involutions. Furthermore, if
t : X → X is a symplectomorphism such that f ◦ t = f then the following equation holds

φf ◦ t−1 = t ◦ φf . (15)

Remark 1.11. Let f : X → B be of class C and σ0 ∈ C. Let σ1 be an arbitrary Lagrangian section
such that there exists a symplectomorphism t : X → X satisfying conditions (2). Then

φf,σ1 := t ◦ φf,σ0 ◦ t−1

is an anti-symplectic involution satisfying conditions (1). Moreover, by Proposition 1.10, we
have

φf,σ1 = t2 ◦ φf,σ0 .

Remark 1.12. Let f : X → B be of class C and σ0, σ1 ∈ C. Let t be as in Theorem 1.2. It follows
from Proposition 1.10 that φ′ := t ◦ φf,σ0 is an anti-symplectic involution. It follows from our
definition of C that if φ′ fixes a Lagrangian section σ2 then σ2 ∈ C. In this case, Remark 1.11
applied to σ0 and σ2 implies that t has a square root. Conversely, if for some reason t does not
have a square root, we conclude that φ′ does not fix a Lagrangian section.

The following corollary is an immediate consequence of Proposition 1.10 and Theorems 1.1
and 1.2.

Corollary 1.13. Let f : X → B be a Lagrangian fibration of class C and let σ0, σ1, be two
Lagrangian sections of class C. There exists a unique anti-symplectic involution φ : X → X

satisfying

f ◦ φ = f, φ ◦ σ0 = σ1.

Assuming existence, uniqueness continues to hold for arbitrary Lagrangian sections of f .

Remark 1.14. The proof in Section 6 implies that Proposition 1.10 continues to hold for any La-
grangian fibration that is a smooth submersion with a smooth Lagrangian section. Corollary 1.13
holds for any Lagrangian fibration that is a smooth submersion and any smooth Lagrangian sec-
tions.

2. Lagrangian fibrations

In [8], the first two authors provide a method to construct Lagrangian torus fibrations of 6-
dimensional symplectic manifolds homeomorphic to known Calabi–Yau manifolds. Recall that
an integral affine structure A on a topological manifold is an atlas of charts whose change of
coordinate maps are affine maps with integral linear part, i.e. elements of R

n
� SL(Z, n). The

basic idea is to start with an integral affine manifold with singularities, (B,�,A ), where the
B is a topological n-manifold such that B0 = B − � has an integral affine structure A . Here
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the discriminant � has codimension 2 and the affine structure is assumed to be simple. Roughly
speaking, simplicity means that around points of �, B0 is locally affine isomorphic to given
models of integral affine manifolds, satisfying certain natural properties, such as having unipotent
monodromy, cf. [8, Definition 3.14] for details.

The affine structure on B0 = B − � induces a family of maximal lattices Λ ⊆ T ∗B0, together
with a symplectic manifold X0 and an exact sequence

0 → Λ → T ∗B0 → X0 → 0.

This gives us a Lagrangian T n bundle f0 : X0 → B0. The manifold X0 can be compactified to
a topological n-manifold X by gluing on Gross’ local models of topological T n fibrations [18].
To define a symplectic structure on X, in other words, to achieve a symplectic compactification
of X0, one needs local models of Lagrangian fibrations with singular fibers. These models were
studied in [5,7,9]. In dimension n = 2, � consists of a finite collection of points and the symplec-
tic compactification of X0 is achieved by gluing a standard model of a Lagrangian fibration over
a disc with a nodal central fiber; this model is known in symplectic geometry as a simple focus–
focus fibration. This construction gives compact symplectic 4-manifolds with Lagrangian 2-torus
fibrations. For a specific choice of integral affine S2 with 24 singularities, one obtains a symplec-
tic 4-manifold diffeomorphic to a K3 surface (cf. [24] or [8, Theorem 3.22]). In dimension n = 3,
� is typically a graph with trivalent vertices, labeled either positive or negative. In this case the
affine structure around edges or positive and negative vertices is isomorphic to the one induced
on the base of models of three different kinds of local Lagrangian fibrations: respectively the
so-called generic, positive and negative fibrations (see Section 3). The models for generic and
positive fibrations can be regarded as 3-dimensional analogues of focus–focus fibrations; in par-
ticular, the fibrations are T 2-invariant, have codimension 2 discriminant and are given by smooth
fibration maps. On the other hand, the model for a negative fibration is S1-invariant, the fibra-
tion map is piecewise smooth and its discriminant locus has mixed codimension 1 and 2. This
model can be regarded as a perturbation Gross’ topological version of the negative fibration used
in [18]. This perturbation forces the discriminant locus to drop codimension in a small neigh-
borhood of a negative vertex. As a consequence, the compactification of f : X0 → B0 achieved
in [8], required a modification of �, more precisely, a fattening near the negative vertices.

2.1. The class C

Given a simple integral affine 3-manifold with singularities (B,�,A ) a localized thickening
of � is given by the data (��, {Dp−}p−∈N) where:

(i) �� is the closed subset obtained from � after replacing a neighborhood of each negative
vertex with a localized amoeba, i.e. an amoeba, as in Fig. 2 below, after the end of each leg
is pinched down to dimension one.

(ii) N is the set of negative vertices and for each p− ∈ N, Dp− is a 2-disk containing the codi-
mension 1 component of �� around p−.

Given a localized thickening, define

B� = B −
(

� ∪
⋃
−

Dp−
)

,

p ∈N



1354 R. Castaño-Bernard et al. / Advances in Mathematics 225 (2010) 1341–1386
and denote by A� the restriction of the affine structure on B�. Let X� = T ∗B�/Λ with standard
symplectic form and f� : X� → B� be the projection.

The main result of [8] is the following:

Theorem 2.1. Given a compact simple integral affine 3-manifold with singularities (B,�,A ),
satisfying some additional mild hypothesis, there is a localized thickening (��, {Dp−}p−∈N)

and a smooth, compact symplectic 6-manifold X together with a piecewise smooth Lagrangian
fibration f : X → B such that

(i) f is smooth except along
⋃

p−∈N f −1(Dp−);
(ii) the discriminant locus of f is ��;
(iii) there is a commuting diagram

X�

f�

Ψ
X

f

B�
ι

B

where ψ is a symplectomorphism and ι the inclusion;
(iv) over a neighborhood of a positive vertex of �� the fibration is positive, over a neighborhood

of a point on an edge the fibration is generic-singular, over a neighborhood of Dp− the
fibration is Lagrangian negative;

(v) f has a section, σ , such that σ(B) ⊂ X is a smooth Lagrangian submanifold such that
σ(B) ∩ Critf = ∅.

Compact symplectic manifolds X and Lagrangian fibrations f : X → B as in Theorem 2.1
define a class, C. The class C includes a large number of symplectic models of mirror pairs
of Calabi–Yau manifolds with SYZ dual Lagrangian fibrations. Examples of these include the
quintic 3-fold and its mirror and Batyrev–Borisov pairs of Calabi–Yau manifolds (cf. [8] for
details).

In the next section, we review the local models used for the compactification in Theorem 2.1,
and provide a case-by-case proof of existence of anti-symplectic involutions for each model.

3. Local existence of involutions

3.1. Focus–focus fibrations

We show how to construct fiber-preserving anti-symplectic involutions in dimension n = 2.
Consider the case of proper fibrations with focus–focus type singularities. Here is a simple ex-
ample:

Example 3.1. Let X = C
2 − {z1z2 + 1 = 0} and let ω be the restriction to X of the standard

symplectic form on C2. The following map f : X → R2 is a Lagrangian fibration:

f (z1, z2) =
( |z1|2 − |z2|2

, log|z1z2 + 1|
)

. (16)

2
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The only singular fiber is f −1(0), which is nodal with one node at the point (0,0). Clearly
conjugation φ : (z1, z2) �→ (z̄1, z̄2) on C2 is a fiber-preserving anti-symplectic involution. The
fixed locus of φ is R

2 − {x1x2 + 1 = 0} which has 3 connected components. Two of them (i.e.
the connected components of {x1x2 + 1 < 0}) are sections of f not containing the singular point.
The other one (i.e. the set {x1x2 + 1 > 0}) is mapped 2 to 1 by f except at (0,0) which is a
branched point.

We now describe the construction of a general nodal fibration. Details can be found in [4].
First, let us discuss a local model for the singularity. The standard focus–focus singularity is the
(non-proper) map q : C

2 → C given by

q(z1, z2) = z1z̄2. (17)

Here z1 = y1 + iy2, z2 = x1 + ix2 and the symplectic form is ω =∑dxj ∧ dyj . The real and
imaginary parts of the map q are q1 = x1y1 + x2y2 and q2 = x1y2 − x2y1 respectively. If vqj

denotes the Hamiltonian vector field corresponding to qj and gt
j its flow, we have that

gt
1(z1, z2) = (e−t z1, e

t z2
)
,

gt
2(z1, z2) = (eit z1, e

it z2
)
.

Notice that vq2 induces an S1 action. In fact, if τ = e−t1+it2 the we have

(
g

t1
1 ◦ g

t2
2

)
(z1, z2) = (τz1, τ̄

−1z2
)

(18)

which gives a C
∗ action.

If B = {b = b1 + ib2, |b| < 1}, we restrict the above map q to Y = q−1(B). We have two
Lagrangian sections of q , Σj : B → Y , j = 1,2, given by Σ1(b) = (1, b̄) and Σ2(b) = (b,1).
Define the maps

φj : C
∗ × B → Y,

(τ, b) �→ τ · Σj(b).

Clearly φj describes the orbit of the section Σj via the Hamiltonian flow. Now let

V1 = {(τ, b) ∈ C
∗ × B

∣∣ |b| < |τ | < 1
}
, (19)

V2 = {(τ, b) ∈ C
∗ × B

∣∣ 1 < |τ | < |b|−1}, (20)

and let Uj = φj (Vj ). Denote U = (U1 ∪ U2). Clearly U ∪ {(0,0)} is an open neighborhood of
the singular point (0,0).

Now, suppose we are given a proper nodal fibration f : X → B with singular point p ∈ X,
and a Lagrangian section σ of f with σ(B) ⊂ X# = X − p. We can describe X# in terms of
action angle-coordinates using a non-proper version of Proposition 1.7. Consider B ⊂ C the unit
disk and T ∗B with its standard symplectic form. For any smooth function H : B → R define the
following closed 1-forms on B:
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λ1 = − log |b|db1 + Argb db2 + dH,

λ2 = 2π db2,

and consider the integral lattice Λ ⊂ T ∗B spanned by λ1 and λ2 and let JH = T ∗B/Λ. Then
one can prove (cf. [5, Theorems 2.5 and 3.1]) that with a suitable choice of H , there is a unique
fiber-preserving symplectomorphism

Θ : JH → X# (21)

which maps the zero section to σ . Uniqueness of Θ follows from Proposition 1.7 and by conti-
nuity.

Conversely, we now show how to use the above descriptions to construct a proper nodal
fibration. Any such fibration can be obtained by gluing the neighborhood U ∪ {(0,0)} of the
focus–focus singularity to the space JH defined above. First of all, notice that JH also has a C

∗
action, namely for every α ∈ T ∗

b B ,

τ · (b,α) = (b,− log |τ |db1 + Arg τ db2 + α
)

(22)

which are just translations along the fibers. Now let L1 be the Lagrangian section in JH given by
the graph of dH and let L2 be the one given by the zero section. We can define maps

ψj : C
∗ × B → JH ,

(τ, b) �→ τ · Lj (b).

Notice that ψ1(1, b) = L1(b) and ψ1(b, b) = L2(b). Take Vj ⊆ C
∗×B , j = 1,2 as in (19) and

(20) and denote U ′
j = ψj (Vj ) and U ′ = U ′

1 ∪ U ′
2. Now define g : U ′ → U by g|U ′

j
= φj ◦ ψ−1

j .
We can use g to glue the focus–focus singularity to JH , to form a symplectic manifold with a
nodal fibration.

All nodal fibrations can be realized this way for any given function H on B . Furthermore,
given two nodal fibrations of X and X′ determined by functions H and H ′ there is a fiber
preserving symplectomorphism in a neighborhood of the singular fibers if an only if, up to a
constant term, H and H ′ have the same germ at the origin. In other words, the invariant of a
germ of nodal fibration is a germ of a function on B at the origin, a formal power series in two
variables, uniquely defined up to a constant term. Moreover, this power series is independent of
the choice of Lagrangian section of f (cf. [5]).

We have the following useful result:

Lemma 3.2. Let σ1 and σ2 be two Lagrangian sections of a nodal fibration f : X → B not
intersecting the singular point p ∈ X. There exists a unique symplectomorphism t : X → X such
that

f ◦ t = f, t ◦ σ1 = σ2. (23)

Proof. For the section σ1 there is a function H on B and a map Θ : JH → X# which maps the
zero section to σ1 (see above). The section σ2 corresponds to a section σ ′ in JH . Now we can
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define a symplectomorphism t ′ on JH which is given by translation by σ ′ on the fibers (clearly
t ′ maps the zero section to σ ′). With this, one can show that t# = Θ ◦ t ′ ◦ Θ−1 extends to a
symplectomorphism t of X satisfying the required conditions. In fact, if σ ′(b) = s1(b) db1 +
s2(b) db2, then one can describe t ′ in terms of the C∗ action by

t ′(b,α) = τ(b) · (b,α),

where τ(b) = e−s1(b)+is2(b) (cf. (22)). Since the map g, which glues the singularity to JH , also
matches the C

∗ actions, we have that t ′ corresponds to the following map on the local model for
the focus–focus singularity (see (18)):

t ′(z1, z2) = (τ(b)z1, τ̄ (b)−1z2
)

where b = q(z1, z2) = z1z̄2. Clearly this map extends smoothly to the singularity. To prove
uniqueness of t , one restricts t to X0 and applies Corollary 1.9. �

Finally we have:

Proposition 3.3. Let f : X → B be a nodal fibration with a Lagrangian section σ not intersect-
ing the singular point p ∈ X. There exists a unique anti-symplectic involution ιf,σ of X such
that

f ◦ ιf,σ = f, ιf,σ ◦ σ = σ. (24)

Proof. Consider first the local model q : C
2 → C given by (17). Clearly the map ι : (z1, z2) �→

(z̄2, z̄1) is a fiber-preserving anti-symplectic involution, which exchanges the Lagrangian sec-
tions Σ1 and Σ2. Similarly, JH has the anti-symplectic involution

ι : (b,α) �→ (
b, dH(b) − α

)
,

which exchanges L1 and L2 and fixes 1
2L1. Since the gluing map g satisfies g ◦ ι = ι◦g, ι extends

to a fiber-preserving anti-symplectic involution on (X,ω,f ) fixing the section σ ′ := 1
2L1.

Now suppose that σ is another section of f not intersecting the singular point. From
Lemma 3.2 we know that there is a fiber-preserving symplectomorphism t sending σ to σ ′.
Then the map ιf,σ = t−1 ◦ ι ◦ t is a fiber preserving anti-symplectomorphism with the required
properties. To prove uniqueness one simply restricts f and σ to X0 and B0, respectively, and
applies Corollary 1.8. �
3.2. Generic-singular fibration

An almost identical construction can be carried out for generic-singular fibrations in dimen-
sion 6. The (non-proper) local model for the singularity is the map q : C

2 ×S1 × (0,1) → C×S1

given by

q : (z1, z2, e
iθ , r

) �→ (z1z̄2, r),
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which is singular along Critq = {0} × S1 × (0,1). The Hamiltonian flow induces a C
∗ × S1

action on C
2 × S1 given by

(
τ, eis

) · (z1, z2, e
iθ , r

)= (τz1, τ̄
−1z2, e

i(θ+s), r
)
.

The space X# is constructed as follows. Let D ⊂ C be the open unit disk and B = D × (0,1).
Given a smooth function H on B , we form the lattice Λ ⊆ T ∗B generated by the periods

λ1 = − log |b|db1 + argb db2 + dH,

λ2 = 2π db2,

λ2 = dr.

Then X# = T ∗B/Λ also has a C
∗ × S1 action

(
τ, eis

) · (b,α) = (b,− log |τ |db1 + Arg τ db2 + s dr + α
)
.

We can now glue a neighborhood of Crit(q) to X# using this action just like in the 4-dimensional
case. This gives a symplectic manifolds X and a proper Lagrangian fibration over a cylinder
B = D × (0,1) with discriminant � = {0} × (0,1) and singular fibers being a product of S1

and a nodal fiber. This construction provides all generic-singular fibrations. All generic-singular
fibrations can be realized using the above method and, as in the nodal case, germs of generic-
singular fibrations are classified [5]. The proof of the following two statements is the same as the
proof of Lemma 3.2 and Proposition 3.3:

Lemma 3.4. Let σ1 and σ2 be two Lagrangian sections of a generic-singular fibration f : X → B

not intersecting the singular set Critf ⊂ X. There exists a unique symplectomorphism t : X → X

such that

f ◦ t = f, t ◦ σ1 = σ2. (25)

Proposition 3.5. Let f : X → B be a generic-singular fibration with a Lagrangian section σ not
intersecting the critical locus Critf ⊂ X. There exists a unique anti-symplectic involution ιf,σ

of X such that

f ◦ ιf,σ = f, ιf,σ ◦ σ = σ. (26)

In this case the fixed point locus consists of seven components, six of which are sections. We
leave the details of the proof to the reader.

3.3. Positive fibration

The situation is completely analogous to the case of fibrations of nodal type discussed above.
First we give an explicit example.
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Example 3.6. Let X = C
3 −{1+z1z2z3 = 0} with standard symplectic structure. Let f : X → R

3

be given by

f (z1, z2, z3) = (log|1 + z1z2z3|, |z1|2 − |z2|2, |z1|2 − |z3|2
)
.

The map f defines a proper Lagrangian fibration having the topology of a positive fibration. The
singular fibers lie over a trivalent vertex:

� = {b1 = 0, b2 = b3 � 0} ∪ {b1 = b2 = 0, b3 � 0} ∪ {b1 = b3 = 0, b2 � 0}.

The fibers over the edges have generic-singular type discussed above while the central fiber is
homeomorphic to S1 × T 2 after a 2 cycle, {x} × T 2, is collapsed to x ∈ S1. It is easy to see that
f is invariant under the anti-symplectic involution of X given by conjugation ι : (z1, z2, z3) �→
(z̄1, z̄2, z̄3). The fixed set of ι is the set R

3 − {1 + x1x2x3}, which has 5 connected components.
The one containing (0,0,0) is mapped by f generically 4 to 1, while the other four components
are sections not intersecting the singular locus.

A neighborhood of the singular locus in the above example is modeled on the following ex-
ample due to Harvey and Lawson [20].

Example 3.7. On C3 define

F(z1, z2, z3) = (Im z1z2z3, |z1|2 − |z2|2, |z1|2 − |z3|2
)
. (27)

Here the last two components define the moment map μ of a Hamiltonian T 2-action. The critical
locus of F is Crit(F ) =⋃ij {zi = zj = 0} and its discriminant locus is � as in Example 3.6. The

regular fibers are homeomorphic to R × T 2. The singular fiber over 0 ∈ � is homeomorphic to
R × T 2 after {p} × T 2 is collapsed to p ∈ R. All the other singular fibers are homeomorphic to
R × T 2 after a two cycle {p} × T 2 ⊂ R × T 2 is collapsed to a circle. The map ι : (z1, z2, z3) �→
(−z̄1, z̄2, z̄3) defines a fiber preserving anti-symplectic involution. Notice that the smooth part of
every singular fiber has two connected components and ι sends one to the other.

In the above example, the Hamiltonian flow associated to the components of F induces an
R × T 2 action on C

3 which is free and transitive on the smooth fibers. Let us denote by t =
(t1, t2, t3) the coordinates on R × T 2, where t2 and t3 are periodic (of period 1) and by (t, z) �→
t · z the action on C

3. Consider a neighborhood B of (0,0,0) ∈ R
3 and let Y = F−1(B). We

can find sections of F , Σj : B → Y , j = 1,2, chosen so that ι ◦ Σ1 = Σ2. There is a function
τ : B → R × T 2 such that τ(b) · Σ1(b) = Σ2(b). Actually, τ is defined only on B − �, and it
is shown in [5] that the first component τ1 of τ tends to +∞ as b approaches the discriminant
locus �. Define the maps

φj : (R × T 2)× B → Y,

(t, b) �→ t · Σj(b).

Notice that φ1(0, b) = Σ1(b) and φ1(τ (b), b) = Σ2(b) if b /∈ �. Since τ1 is big near �, we may
assume τ1(b) > 0 for all b ∈ B . For j = 1,2 define subsets
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V1 = {(t, b) ∈ (R × T 2)× B
∣∣ t1 ∈ (0, τ1(b)

)}
, (28)

V2 = {(t, b) ∈ (R × T 2)× B
∣∣ t1 ∈ (−τ1(b),0

)}
(29)

and let Uj = φj (Vj ). We have that U1 ∪ U2 is a T 2 invariant open set, whose closure Ū is a
(closed) neighborhood of Crit(F ) having as boundary the T 2 orbit of Σ1(B) ∪ Σ2(B).

Now, for any smooth function H on B , define one forms on B as follows

λ1 =
3∑

j=1

τj dbj + dH, λ2 = db2, λ3 = db3. (30)

It can be shown that these are all closed one forms. Let X# = T ∗B/Λ, where Λ is the integral
lattice generated by the λj ’s. Also on X# there is an R × T 2 action given by

t · (b,α) =
(

b,

3∑
j=1

tj dbj + α

)
.

Now let L1 be the Lagrangian section in X# given by the graph of dH and let L2 be the zero
section. We can define maps

ψj : (R × T 2)× B → X#,

(t, b) �→ t · Lj(b).

Notice that ψ1(0, b) = L1(b) and ψ1(τ (b), b) = L2(b). Take Vj , j = 1,2, as in (28) and (29)
and denote U ′

j = ψj(Vj ) and U ′ = U ′
1 ∪ U ′

2. We can now define a map g : U ′ → U such that

g|U ′
j
= φj ◦ ψ−1

j and use it to glue the singularity to X#, to form X with the positive fibration
f : X → B . Also in this case we have:

Lemma 3.8. Let σ1 and σ2 be two Lagrangian sections of a positive fibration f : X → B not
intersecting the singular set Critf ⊂ X. There exists a unique symplectomorphism t : X → X

such that

f ◦ t = f, t ◦ σ1 = σ2. (31)

Proposition 3.9. Let f : X → B be a positive fibration with a Lagrangian section σ not inter-
secting the singular set Critf ⊂ X. There exists a unique anti-symplectic involution ιf,σ of X

such that

f ◦ ιf,σ = f, ιf,σ ◦ σ = σ. (32)

The proofs are almost word by word like in Lemma 3.2 and Proposition 3.3. As in Exam-
ple 3.7, the fixed point locus of the involution consists of 5 connected components, four of which
are sections.
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3.4. A piecewise smooth fibration

Here we prove the existence of a fiber-preserving anti-symplectic involution on interesting
examples of piecewise smooth fibrations used in [8]. We now recall the construction of this
fibration. Consider the following S1 action on C

3:

eiθ (z1, z2, z3) = (eiθ z1, e
−iθ z2, z3

)
. (33)

It is Hamiltonian with moment map:

μ(z1, z2, z3) = |z1|2 − |z2|2
2

. (34)

The only critical value of μ is t = 0. Now let γ : C
2 → C be the following S1-invariant, piecewise

smooth map

γ (z1, z2) =
{ z1z2|z1| , when μ(z1, z2) � 0,

z1z2|z2| , when μ(z1, z2) < 0.
(35)

Define π : C
3 → C

2 to be

π(z1, z2, z3) = (γ (z1, z2), z3
)

and Log : (C∗)2 → R
2 to be

Log(u1, u2) = (log |u1|, log |u2|
)
.

It was shown in [7] that given a symplectomorphism Φ : C
2 → C

2 the map

f = (μ,Log ◦ Φ ◦ π) (36)

defines a piecewise smooth Lagrangian fibration on the open subset of C
3 given by

X = (Φ ◦ π)−1((
C

∗)2).
Now consider the anti-symplectic involution ι : C

3 → C
3 given by conjugation. It is easy to

see that if Φ commutes with conjugation on C
2, then ι(X) = X and f ◦ ι = f , and therefore ι is

fiber-preserving.

Example 3.10. If in the above construction we take

Φ(u1, u2) = 1√
2
(u1 − u2, u1 + u2 − √

2 ) (37)
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Fig. 2. Amoeba of v1 + v2 + 1 = 0.

then the map f becomes

f (z1, z2, z3) =
(

1

2

(|z1|2 − |z2|2
)
, log

1√
2
|γ − z3|, log

1√
2
|γ + z3 − √

2|
)

. (38)

The discriminant locus � is described as follows. Consider, inside (C∗)2, the surface

Σ = {v1 + v2 + 1 = 0},

which is, topologically, a pair of pants. Then

� = {0} × Log(Σ).

Clearly � has the shape of an amoeba as shown in Fig 2.
For a discussion of the topology of the fibers in this example we refer to [7]. Observe that

Φ commutes with conjugation, and therefore ι is fiber-preserving. The fixed locus S of ι is the
complement in R

3 of the set

K = {γ (x1, x2) − x3 = 0
}∪ {γ (x1, x2) + x3 − √

2 = 0
}
.

The reader may verify that S = R
3 −K has five connected components, S1, S2, . . . , S5 containing

respectively (0,0,2), (0,0,−1), (−1,−1,1/2), (1,1,1/2), (0,0,1/2). Then S1, S2 and S5 are
mapped generically 2 to 1 while S3 and S4 are sections.

Now we verify that the same involution ι as above is fiber-preserving also with respect to the
version of the above example where the legs are pinched down to codimension 2 toward the ends.
Here is how we construct it.

Example 3.11. Consider the smooth function:

H0 = π

4
Im(u1ū2)

and let ΦH be the Hamiltonian symplectomorphism associated to H0, i.e.
0
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ΦH0 : (u1, u2) �→ 1√
2
(u1 − u2, u1 + u2).

We now want a symplectomorphism which acts like ΦH0 in a small ball centered at the origin
and like the identity outside a slightly bigger ball. So choose a cut-off function k : R�0 → [0,1]
such that, for some ε > 0,

k(t) =
{

1, when 0 < t � ε;
0, when t � 2ε

(39)

and define the Hamiltonian

H = k
(|u1|2 + |u2|2

)
H0.

The Hamiltonian symplectomorphism ΦH associated to H satisfies

ΦH (u1, u2) =
{

IdC2, when |u1|2 + |u2|2 � 2ε;
1√
2
(u1 − u2, u1 + u2), when |u1|2 + |u2|2 � ε.

Now let Ψ be the affine symplectomorphism

Ψ : (v1, v2) �→ 1√
2
(v1 − v2, v1 + v2 − √

2 ),

and finally, define Φ = Ψ ◦ ΦH . It is clear that

Φ(u1, u2) =
{

Ψ, when |u1|2 + |u2|2 � 2ε;
(−u2, u1 − 1), when |u1|2 + |u2|2 � ε.

(40)

The fibration f defined by (36) with this choice of Φ has as discriminant locus a 3-legged
amoeba with the horizontal leg pinched down to a line towards its ends.

Observe that H satisfies H(ū1, ū2) = −H(u1, u2). The reader may check that this property
implies that ΦH commutes with conjugation. It follows that also Φ commutes with conjugation
(since also Ψ does). Similarly one shows that the symplectomorphism which pinches down all
three legs at once is:

Φ(u1, u2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−u2, u1 − 1), when |u1|2 + |u2|2 � ε;
(u1 − 1, u2 − √

2 ), when |u1|2 + |u2 − √
2|2 � ε;

1√
2
(u1 − u2, u1 + u2), when |u2|2 � M;

Ψ, everywhere else

(41)

which also commutes with conjugation. So ι is fiber-preserving also with respect to f constructed
with this Φ .
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The fibration above has the right topology to be a good candidate for a Lagrangian negative fi-
bration. However, it fails to be smooth over a large hyperplane containing the discriminant locus,
and therefore it is not a suitable model for the compactification as in Theorem 2.1. A suitable
model should be smooth away from a disc containing the codimension 1 part of the discriminant.
The smoothing process is a delicate issue, and involves studying a class of piecewise smooth
Lagrangian fibrations, called stitched fibrations [9].

Remark 3.12. One may use lifts of sections of the Log fibration to obtain many Lagrangian
sections of the fibration in Example 3.10 not intersecting its singular locus (details cf. [8, Propo-
sition 5.9]). From all these, only the sections S3 and S4 are fixed by the involution given by
complex conjugation. The same situation holds for the thin-legged Example 3.11. In what fol-
lows, we shall assume that our choice of a Lagrangian section σ of Example 3.11 is either given
by S3 or S4.

3.5. Involutions of stitched fibrations

This section is rather technical, closely related to [9], and may be skipped on a first reading.
The main (new) results are Theorems 3.24 and 3.26 where we provide conditions for the existence
of a smooth, fiber-preserving, anti-symplectic involution of stitched fibrations, which will be used
to prove the existence of involutions of the negative fibration.

Definition 3.13. Let X be a smooth 2n-dimensional symplectic manifold. Suppose there is a
free Hamiltonian S1 action on X with moment map μ : X → R. Let X+ = {μ � 0} and X− =
{μ � 0}. Given a smooth (n − 1)-dimensional manifold M , a map f : X → R × M is said to be
a stitched Lagrangian fibration if there is a continuous S1 invariant function G : X → M , such
that the following holds:

(i) Let G± = G|X± . Then G+ and G− are restrictions of C∞ maps on X;
(ii) f can be written as f = (μ,G) and f restricted to X± is a proper submersion with con-

nected Lagrangian fibers.

We call Z = μ−1(0) the seam and Γ = f (Z) ⊆ {0} × M the wall. We denote f ± = f |X± .

Denote B = f (X) and B± = f (X±). In general, a stitched fibration will only be piece-
wise C∞, however all its fibers are smooth Lagrangian tori. Throughout this section we will
always assume (unless otherwise stated) that the pair (B,Γ ) is diffeomorphic to the pair
(Dn,Dn−1), where Dk ⊂ R

k is an open unit ball centered at the origin and R
n−1 is embedded

in R
n.

Observe that the fibration in Example 3.10, when restricted to X −f −1(�), defines a stitched
Lagrangian fibration. In fact this is the main example. The seam is Z = μ−1(0)−f −1(�), notice
that in this case Z has three connected components.

The seam of a stitched fibration is an S1-bundle p : Z → Z̄ := Z/S1 such that f factors
through p, i.e. we have the diagram:

Z

f |Z

p

Z̄

f̄

Γ
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where Z̄ has the reduced symplectic form and f̄ is the reduced Lagrangian fibration over the
wall Γ . We also have the vertical (n − 1)-plane distribution:

L = ker f̄∗ ⊂ T Z̄

tangent to the fibers of f̄ . In what follows we will define certain invariants of the stitched fibration
consisting of sections of L∗ which are fiberwise closed, in the sense that they restrict to closed
1-forms on the fibers of f̄ .

On the base of a stitched fibration we allow a more general set of coordinates than just the
smooth ones, which we define bellow.

Definition 3.14. A set of coordinates on B ⊆ R × M , given by a map φ : B → Rn, is said to be
admissible if the components of φ = (φ1, . . . , φn) satisfy the following properties:

(i) φ1 is the restriction to B of the projection map R × M → R;
(ii) for j = 2, . . . , n the restrictions of φj to B+ and B− are locally restrictions of smooth

functions on B .

Essentially, admissible coordinates are those such that φ ◦ f is again stitched. Let f : X → B

be a stitched Lagrangian fibration and let φ be a set of admissible coordinates. For j = 2, . . . , n,
f ±

j = φj ◦ f |X± is the restriction of a C∞ function on X to X± and we can write f =
(μ,f ±

2 , . . . , f ±
n ).

Now we want to put stitched fibrations in a normal form. In the smooth case, a proper La-
grangian submersion locally always admits action-angle coordinates, defined up to the choice
of a basis of H1(Fb,Z), where Fb is the fiber over b ∈ B . In the case of stitched fibrations
we can generalize this idea as follows. Assuming B contractible, we choose a pair of bases
γ ± = (γ1, γ

±
2 , . . . , γ ±

n ) of H1(X,Z) such that

(a) γ1 is represented by an orbit of the S1 action;
(b) γ +

j = γ −
j + mjγ1, for some m2, . . . ,mn ∈ Z.

Condition (b) simply means that p∗γ + = p∗γ − under the map p∗ : H1(X,Z) →
H1(X/S1,Z). The following proposition generalizes the notion of action-angle coordinates on
the base.

Proposition 3.15. Let f : X → B be a stitched fibration and let γ ± be bases of H1(X,Z) satis-
fying the above conditions. Then the maps f + and f − induce lattices Λ+ and Λ− together with
embeddings,

Λ± ↪→ T ∗
B± .

Let α± : B± → R
n be the action coordinates associated with the choice of bases γ ± and satis-

fying α±(b) = 0 for some b ∈ Γ . Then the map

α =
{

α+ on B+,

− −
α on B
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is an admissible change of coordinates. If b1, . . . , bn denote the action coordinates on B given
by α, then {db1, . . . , dbn} is a basis of Λ+ and Λ−.

Recall that to establish the existence of action-angle coordinates, in the classical case, one
chooses a smooth Lagrangian section. In the stitched case we choose a continuous section σ :
B → X such that σ |B± are the restrictions of smooth maps and σ(B) is a smooth Lagrangian
submanifold. Such sections always exist locally, for instance in Example 3.10 a component of
the fixed locus of the anti-symplectic involution is a section of this type. We denote a stitched
fibration f : X → B together with a choice of basis γ of H1(X,Z) and a section σ as above
by F = (X,B,f, γ,σ ). When W ⊆ B is an open set we usually denote by F|W the fibration
(f −1(W),W,f, γ,σ |W).

Definition 3.16. Two stitched fibrations (X,B,f, γ,σ ) and (X′,B ′, f ′, γ ′, σ ′), with seams Z

and Z′ respectively are symplectically conjugate if there are neighborhoods W ⊆ B of Γ :=
f (Z) and W ′ ⊆ B ′ of Γ ′ := f ′(Z′), an S1 equivariant C∞ symplectomorphism ψ : f −1(W) →
f ′−1(W ′) sending Z to Z′ and a C∞ diffeomorphism φ : W → W ′ such that: f ′ ◦ ψ = φ ◦ f ,
ψ ◦ σ = σ ′ ◦ φ and ψ∗γ = γ ′. The set of equivalence classes under this relation will be called
germs of stitched fibrations.

Notice that in the above definition we are allowed to shrink to a smaller neighborhood of Γ

but not to a smaller Γ . So germs are meant to be defined around Γ and not around a point.
The following is a basic construction of stitched fibrations.

Example 3.17 (Normal forms). Let (b1, . . . , bn) be the standard coordinates on Rn. Let (U,Γ )

be a pair of subsets of R
n diffeomorphic to (Dn,Dn−1) and Γ = U ∩ {b1 = 0}. Define U+ =

U ∩{b1 � 0} and U− = U ∩{b1 � 0}. Consider the lattice Λ = span〈db1, . . . , dbn〉Z and form the
symplectic manifold T ∗U/Λ. Denote by π the standard projection onto U and let Z = π−1(Γ ).
We may consider the S1 action on T ∗U/Λ given by translations by multiples of db1 in the fibers
of π , whose moment map is μ = b1. Suppose there is an open neighborhood V ⊆ T ∗U/Λ of
Z and a map u : V → R

n which is a proper, smooth, S1-invariant Lagrangian submersion with
components (u1, . . . , un) such that u|Z = π and u1 = b1. Now define the following subsets of
T ∗U/Λ,

Y+ := π−1(U+), Y := Y+ ∪ V, Y− := Y ∩ π−1(U−)
and define the map fu : Y → R

n by

fu =
{

u on Y−,

π on Y+.
(42)

Clearly fu : Y → R
n is a stitched fibration. Denote Bu := fu(Y ). The zero section σ0 of π is,

perhaps after a change of coordinates in the base, a section of fu. Let γ0 be the basis of H1(Y,Z)

induced by Λ. We call the stitched fibration Fu = (Y,Bu,fu, σ0, γ0) a normal form.

Now consider a normal form Fu and let (b, y) = (b1, . . . , bn, y1, . . . , yn) be canonical coor-
dinates on T ∗Bu so that y gives coordinates on the fiber T ∗

b Bu. Let W be a neighborhood of
Γ inside u(V ). If r ∈ R is a parameter, for any b = (0, b2, . . . , bn) ∈ Γ , let (r, b) denote the
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point (r, b2, . . . , bn) ∈ R
n. Given (r, b) ∈ W , denote by Lr,b the fiber u−1((r, b)). For every fiber

Fb ⊂ Z of π , consider the symplectomorphism(
y1, . . . , yn,

n∑
k=1

xk dyk

)
�→ (x1, b2 + x2, . . . , bn + xn, y1, . . . , yn), (43)

between a neighborhood of the zero section of T ∗Fb and a neighborhood of Fb in V . If W is
sufficiently small, for every (r, b) ∈ W , the Lagrangian submanifold Lr,b will be the image of
the graph of a closed 1-form on Fb . Due to the S1 invariance of u and the fact that u1 = b1, this
1-form has to be of the type

r dy1 + �(r, b),

where �(r, b) is S1 invariant, i.e. it may be considered as a 1-form on F̄b := Fb/S
1. Denote by

�(r) the smooth one parameter family of sections of L∗ such that �(r)|F̄b
= �(r, b). The condition

u|Z = π implies that �(0, b) = 0. Furthermore, the N -th order Taylor series expansion of �(r) in
the parameter r can be written as

�(r) =
N∑

k=1

�kr
k + o

(
rN
)
, (44)

where the �k’s are fiberwise closed sections of L∗.

Definition 3.18. With the above notation, we define

(i) LZ the set of sequences � = {�k}k∈N such that �k is a fiberwise closed section of L∗;
(ii) UZ the set of pairs (V ,u) where V ⊆ T ∗U/Λ is a neighborhood of Z and u : V → R

n is
a proper, smooth, S1-invariant Lagrangian submersion with components (u1, . . . , un) such
that u|Z = π and u1 = b1.

As above, to a given (V ,u) ∈ UZ we can associate a unique sequence � ∈ LZ . Conversely,
in [9, Section 5] it is shown that for any given sequence � ∈ LZ there is some (V ,u) ∈ UZ ,
therefore a normal form, associated to it. Clearly, this (V ,u) is not unique.

In [9] the following result is proved:

Proposition 3.19. Every stitched fibration F = (X,B,f,σ, γ ), such that the pair (B,Γ ) is
diffeomorphic to the pair (Dn,Dn−1), is symplectically conjugate to a normal form Fu =
(Y,Bu,fu, σ0, γ0).

When F is smooth, its normal form is Fπ , this is Arnold–Liouville theorem. Given a stitched
Lagrangian fibration F = (X,B,f,σ, γ ) with normal form Fu = (Y,Bu,fu, σ0, γ0), we respec-
tively denote by Znor and Γnor the seam and the wall of Fu and by Z̄nor the S1 reduction of Znor.

Definition 3.20. Let F = (X,B,f,σ, γ ) be a stitched fibration with normal form Fu =
(Y,Bu,fu, σ0, γ0). Let � ∈ LZ̄nor

be the unique sequence determined by (V ,u) ∈ UZnor defin-

ing Fu. We call inv(F) := (Z̄nor, �) the invariants of F. We say that the invariants of F vanish if
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for all k ∈ N, �k ≡ 0 when restricted to the reduced fibers of Fu. We say that the invariants of F

are fiberwise constant if all the �k’s are fiberwise constant.

One can prove that inv(F) is independent on the choice of normal form. Moreover, we also
have the following classification results from [9]:

Theorem 3.21. Given any pair (U,Γnor) of subsets of R
n, diffeomorphic to (Dn,Dn−1) and with

Γnor = U ∩ {b1 = 0}, a sequence � = {�k}k∈N ∈ LZ̄nor
and integers m2, . . . ,mn such that∫

[dbj ]
�1 = mj , for all j = 2, . . . , n, (45)

there exists a smooth symplectic manifold (X,ω) and a stitched Lagrangian fibration f : X → U

satisfying the following properties:

(i) the coordinates (b1, . . . , bn) on U are action coordinates of f with μ = f ∗b1 the moment
map of the S1 action;

(ii) the periods {db1, . . . , dbn}, restricted to U± correspond to bases γ ± = {γ1, γ
±
2 , . . . , γ ±

n }
of H1(X,Z) satisfying conditions (a) and (b) prior to Proposition 3.15;

(iii) there is a Lagrangian section σ of f , such that (Z̄nor, �) are the invariants of (X,f,U,

σ, γ +).

Theorem 3.22. Let F = (X,B,f,σ, γ ) and F′ = (X′,B ′, f ′, σ ′, γ ′) be stitched fibrations, such
that the pairs (B,Γ ) and (B ′,Γ ′) are diffeomorphic to the pair (Dn,Dn−1). Then,

(i) F and F′ are symplectically conjugate if and only if inv(F) = inv(F′);
(ii) F is smooth if and only if inv(F) vanish;

(iii) F becomes smooth after an admissible change of coordinates on the base if and only if
inv(F) are fiberwise constant.

In the above, fiberwise constant means that in the normal form, the forms �k are independent
of the y coordinates. The set of germs of stitched fibrations is therefore classified by the pairs
(Z̄nor, �). We say that a fibration is fake stitched if it becomes smooth after an admissible change
of coordinates on the base. The important consequence of Theorem 3.21, which was exploited
in [8], is that from a given set of invariants we can form another one for example by summing to
the sequence � another sequence or by multiplying elements �k by pull backs of smooth functions
on the base. The new invariants give rise to new stitched fibrations.

Remark 3.23. Observe that Corollary 1.9 does not hold for stitched fibrations in general, it only
holds for stitched fibrations that are fake. Indeed, let f be a stitched fibration with a section
σ and invariants �k . Suppose σ ′ is another Lagrangian section of f and assume there exists a
symplectomorphism t of X such that f ◦ t = f and t ◦σ = σ ′. This implies that t̄∗�k = �k where
t̄ is the translation induced on the reduced fibration. Therefore each �k is fiberwise constant,
hence f is smooth after a suitable change of coordinates in the base.

On a smooth Lagrangian fibration f : X → B , with B diffeomorphic to Dn, with a Lagrangian
section σ : B → X, there always exists a unique fiber-preserving anti-symplectic involution
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ι : X → X fixing σ . In fact, if (b, y) are action-angle coordinates on X then we must have

ι(b, y) = (b,−y). (46)

How about stitched fibrations? Do they admit smooth fiber-preserving anti-symplectic in-
volutions? First observe that given (X,B,f,σ, γ ) with seam Z and wall Γ , then the smooth
Lagrangian fibration f̄ : Z̄ → Γ has a unique smooth fiber-preserving anti-symplectic involu-
tion ῑ : Z̄ → Z̄ fixing σ |Γ . Can ῑ be extended to X? We have the following result:

Theorem 3.24. A stitched fibration F = (X,B,f,σ, γ ) with invariants (Z̄, �) has a unique
smooth fiber-preserving anti-symplectic involution ι : X → X fixing σ if and only if

ῑ∗�k = −�k, (47)

for every �k ∈ �.

Proof. Observe that if f̃ + and f̃ − are smooth, proper, Lagrangian extensions of f + and f −
defined on open subsets X̃+ and X̃− of X such that X± ⊆ X̃±, then there are unique fiber-
preserving anti-symplectic involutions ι+ : X̃+ → X̃+ and ι− : X̃− → X̃− fixing σ . Therefore
we may define ι : X → X to be such that ι|X± = ι±. The question is if ι is smooth.

Let Fu = (Y,Bu,fu, σ0, γ0) be a normal form for F (as described in Example 3.17), and let
(b, y) be the canonical coordinates on T ∗Bu, then we have the smooth anti-symplectic involution
ι0 such that ι0(b, y) = (b,−y). We now show that if (47) holds, we can construct Fu so that ι0 is
fiber-preserving with respect to fu.

We use the same notation as in the construction after Example 3.17. Observe that given the
sequence � = {�k}k∈N satisfying (47), we can construct a one parameter family of fiberwise
closed sections �(r) of L∗ such that (44) holds and such that

ῑ∗�(r) = −�(r) (48)

for every small r . This can be done by refining the methods used in [9] to construct �(r) satisfy-
ing (44). From �(r) we construct (V ,u) ∈ UZ so that the fibers of u are the images Lr,b of the
graph of the one form r dy1 + �(r, b) via the symplectomorphism (43). It can be easily verified
that condition (48) implies that ι0(Lr,b) = Lr,b , i.e. that ι0 is fiber-preserving with respect to u.
By uniqueness, ι0 must coincide with the map ι constructed above under the identification of Fu

with F given by Theorem 3.22, part (i). Therefore ι is smooth.
Vice versa, suppose now that ι is smooth, we show that (47) must hold. Let Fu be a normal

form for F and let (V ,u) ∈ UZ be the pair defining Fu. Then we have that

ι|Y+ : (b, y) �→ (b,−y). (49)

Moreover u satisfies

(u ◦ ι)|Y− = u|Y− (50)

and so also the Taylor expansions with respect to b1 evaluated at b1 = 0 of the two sides of
the above identity must coincide. This provides a certain relation which must be satisfied by the
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coefficients of the Taylor expansion of u. Notice that the coefficients of the Taylor expansion
of u ◦ ι only depend on the coefficients of the Taylor expansions of u and ι, but the Taylor
coefficients of ι are the same as those of the map (b, y) �→ (b,−y) since (49) holds, therefore the
relation among the Taylor coefficients of u implied by Eq. (50) is the same as the one obtained
assuming (50) holds with ι satisfying ι(b, y) = (b,−y) for all (b, y) ∈ Y . We now compute
this relation in terms of the sequence � = {�k}k∈N. Given that ι : (b, y) �→ (b,−y), it is easy to
see ι(Lr,b) = Lr,b if and only if the one parameter family �(r) obtained from u satisfies (48).
Therefore the coefficients �k of the Taylor series (44) must satisfy (47). �
3.5.1. Non-proper stitched fibrations

Let X be a smooth symplectic 6-manifold together with a smooth Hamiltonian S1 action with
moment map μ : X → R. Assume μ has exactly one critical value 0 ∈ R and a codimension four
submanifold Σ = Critμ. Let M be a smooth 2-dimensional manifold and let B ⊆ R × M be a
contractible open neighborhood of a point (0,m) ∈ R × M . Let Γ = B ∩ ({0} × M). As usual
we define Z = μ−1(0) and Z̄ the S1 quotient of Z and X+ = {μ � 0}, X− = {μ � 0}.

We consider fibrations satisfying the following:

Assumption 3.25. The map f : X → B is a topological T 3 fibration with discriminant locus
� ⊂ Γ such that f (Σ) = � satisfying

(a) (X,ω,f,B) is topologically conjugate to a generic-singular fibration.
(b) There is a continuous S1 invariant map G : X → M such that

(i) if G± = G|X± then G+ and G− are restrictions of C∞ maps on X;
(ii) f can be written as f = (μ,G) and f restricted to X± is a proper map with connected

Lagrangian fibers.
(c) There is a connected, S1 invariant, open neighborhood U ⊆ X of Σ such that f (U) = B and

such that fU = f |U is a C∞ map with non-degenerate singular points.

This kind of fibrations are studied in [8]. Examples of fibrations satisfying the above proper-
ties can be obtained from the fibration as in Example 3.10, after a suitable perturbation of f near
the portion of Σ projecting onto the codimension two part of � (we will recall this smoothing in
the next section). Clearly, the piecewise smoothness occurs along cylindrical portions of fibers
contained in μ−1(0). Now we recall some of the basic facts of fibrations satisfying Assump-
tion 3.25.

One can construct fibrations of this type as follows. Over B = D × (0,1) consider periods
given by

λ1 = 2π db1,

λ2 = dH + λ0,

λ3 = db3,

where H is a smooth function and λ0 = arg(b1 + ib2) db1 + log |b1 + ib2|db2. If ΛH denotes
the lattice generated by these periods, let X# = T ∗B/ΛH and denote by π# the projection. Now,
in Section 3.2 we argued that the map π# can be extended to a proper map π to give a smooth
proper Lagrangian fibration of generic-singular type. This can be achieved by gluing U to X#.
The moment map of the S1 action is, as usual, b1. Let X±, B±, Z and Z̄ be defined as usual.
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Now let W and U be open S1 invariant neighborhoods of the critical set, such that W̄ ⊆ U. Then,
X◦ = X − W̄ can be viewed as an open neighborhood of the zero section of X# over which the
restriction π◦ of π# is a (topologically trivial) Lagrangian open cylinder fibration (the fibers are
homeomorphic to T 2 ×R). The set U−W̄ covers the two ends of each fiber. Suppose u : X◦ → B

is another Lagrangian open cylinder fibration, whose fibers coincide with the fibers of π◦ over
U − W̄, thus the fibers of u are compactly supported perturbations of the fibers of π◦. If we also
assume that u|Z = π◦ then we can define:

f ◦
u =

{
π◦ on X+,

u on X−.
(51)

The map f ◦
u defines a piecewise smooth Lagrangian open cylinder fibration whose fibers

coincide with those of π◦ on U − W̄. We can therefore glue back the critical set and define the
following proper piecewise smooth Lagrangian fibration:

fu,H =
{

π on U,

f ◦
u on X◦.

(52)

Clearly fu,H : X → B is well defined and satisfies Assumption 3.25. In [8] it is proved that
any fibration satisfying Assumption 3.25 is fiberwise symplectomorphic to fu,H for a certain
choice of u and H and therefore fu,H defines a normal form. Moreover the invariants that clas-
sify such fibrations are given by triples (Z#

H ,�,H�), where Z#
H is the zero level set of the S1

moment map (restricted to X#), H� is the germ of H along the discriminant �, and � a sequence
of fiberwise closed sections of L∗, where L = ker π̄#∗ . In this case, each �k is a form with com-
pact support inside cylindrical portions of the fibers. These invariants classify fibrations as in
Assumption 3.25. For the details we refer the reader to [8, Section 6].

Theorem 3.26. A piecewise smooth fibration f : X → B satisfying Assumption 3.25 with in-
variants (Z#

H , {�k},H�) and a section σ has a unique smooth fiber-preserving anti-symplectic
involution ι : X → X fixing σ if and only if the invariants satisfy ῑ∗�k = −�k .

Proof. Given a normal form (X,fu,H ) for a fibration satisfying Assumption 3.25, consider the
anti-symplectic involution ι : X → X constructed in Section 3.2 preserving the fibers of the
smooth fibration π . Using the same arguments as in the proof of Proposition 3.3, one can prove
that ι also preserves the fibers of fu,H if the invariants satisfy ῑ∗�k = −�k . Vice versa given
invariants satisfying this identity one can construct a fibration fu,H having these invariants and
whose fibers are preserved by ι. �
3.6. Negative fibration

Let f : X → B be the piecewise smooth fibration in Example 3.11. Recall that X ⊂ C
3 and

the construction of f makes use of a choice of symplectomorphism Φ as in (41) giving rise to
a fibration whose discriminant locus � is the amoeba of Fig. 2 after its legs are pinched down
to a line. We proved this fibration is invariant under the standard conjugation on C

3. The fixed
locus consists of 5 connected components, two of which are sections. The section σ fixed by the
involution is given by the choice of any of such sections (cf. Remark 3.12).

In [8, Theorem 7.3], the first two authors propose a method to make the aforementioned f

smoother, obtaining examples of fibrations of negative type.
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Definition 3.27. Let X be a 6-dimensional symplectic manifold and B ⊆ R
3 an open subset.

A piecewise smooth Lagrangian fibration f : X → B is called a Lagrangian negative fibration if
it satisfies the following properties:

(i) f : X → B is topologically conjugate to the fibration of Example 3.11, i.e. they define the
same germ;

(ii) there exists a submanifold with boundary D ⊂ B , homeomorphic to a closed disc in R
2,

such that � ∩ (B − D) consists of three one-dimensional disjoint segments (the legs of �)
and f is smooth when restricted to X − f −1(D);

(iii) on B − (D ∪ �), the affine structure induced by the fibration map is simple;
(iv) f has a section σ such that σ(B) is a smooth Lagrangian submanifold disjoint from the

singular locus Σ ⊂ X of f .

We now present an abbreviated description of the smoothing process that leads to the proof
of existence of negative fibrations (details cf. [8, Section 7]) and show that the existence of an
anti-symplectic involution survives this process.

Let f : X → B be the fibration in Example 3.11 and a section as in Remark 3.12. Recall
that the anti-symplectic involution preserving f is just conjugation. Let b1, b2, b3 standard co-
ordinates in the base B ⊆ R

3. Then � is contained in the plane b1 = 0. Let Σ ⊂ X be the
critical surface — i.e. the locus where vanishing cycles collapse, a pair of pants projecting onto
� under f . For positive M ∈ R, let �h,M = � ∩ {b2 � −M}. For M large enough, �h,M is
one-dimensional — i.e. the thin part of the horizontal leg — and let Σh,M be the portion of Σ

projecting onto �h,M . For the following analysis, it is convenient to use S1-invariant coordinates,
t = μ, u1 = z1z2 and u2 = z3. Then u1 and u2 can be thought of as coordinates on each reduced
space μ−1(t)/S1. On a suitable small neighborhood Nh,M of Σh,M the restriction of f to Nh,M

can be explicitly written as:

f = (μ,Gt )

where

Gt(u1, u2) =
(

log|u2|, log

∣∣∣∣ u1√
|t | +√t2 + |u1|2

− 1

∣∣∣∣). (53)

Clearly, f fails to be smooth at t = 0 since Gt does. In [8] it is shown that one can perturb f

on Nh,M by replacing Gt with a map of type:

G̃t =
(

log|u2|, log

∣∣∣∣ u1

ρ(|u1|, t, |u2|2) − 1

∣∣∣∣).

Here ρ is chosen so that G̃t coincides with Gt away from Nh,M and it is smooth on Nh,M (details
cf. [8, Lemma 7.4]). It is clear that G̃t is invariant under the involution on C

2, i.e. under con-
jugation. The perturbation f̃ = (μ, G̃t ) of f is therefore invariant under the standard involution
on C

3.
Similarly, one perturbs f along small neighborhoods of Nv,M , and Nd,M of Σv,M and Σd,M

projecting onto Bv,M and Bd,M open neighborhoods of the vertical and diagonal legs, respec-
tively. This produces an involution-invariant fibration f̃ .
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Now the smoothing needs to be extended to Xh,M := f̃ −1(Bh,M). First observe that the re-
striction of f̃ to Xh,M is a piecewise smooth fibration satisfying the hypothesis of Theorem 3.26.
Since Xh,M has a fiber-preserving involution ι fixing a section, if {�k} are the invariants of f̃ ,
then ῑ∗�k = −�k .

Now in [8, Lemma 7.6] it is shown that for some positive m > M there is a neighborhood
Bh,m ⊂ Bh,M ∩ {b2 � −m} and a perturbation of f̃ , making it smooth on Xh,m := f̃ −1(Bh,m).
This is achieved by perturbing the invariants �k of f̃ in such a way that �k vanish identically on
Bh,m ∩ {b1 = 0}. The perturbed invariants are (with a slight abuse of notation) of the form ν�k ,
where ν is a bump function on Bh,M ∩{b1 = 0} vanishing identically on Bh,m ∩{b1 = 0}. Since ν

is a function depending only on coordinates of the base, it is clear that ῑ∗(ν�k) = −ν�̄k . Therefore
the resulting fibration after this perturbation is invariant under ι and the section resulting from
this perturbation is fixed by ι.

One may proceed in an analogous way with the other two legs. This gives a piecewise smooth
fibration which is smooth over large open neighborhoods Bh,m, Bv,m, Bd,m, of �h,m, �v,m,
�d,m, respectively, and a smooth fiber-preserving anti-symplectic involution defined on the total
space of the fibration.

Finally, to produce a fibration satisfying the properties of Definition 3.27, one needs to perturb
the fibration away from a (planar) tubular neighborhood N of �. Observe that the complement of
� in the plane {b1 = 0} consists of three connected components, Γc , Γd , Γe which are the walls
of three stitched fibrations fc, fd , fe, each fibration being the restriction of the fibration obtained
in the previous paragraph. If �c , �d and �e are the corresponding invariants, then Theorem 3.24
implies that ῑ∗�c

k = −�c
k , ῑ∗�d

k = −�d
k and ῑ∗�e

k = −�e
k . Now, in [8, Lemma 7.12], it is shown

that fc, can be made smooth away from N ∩ Γc . As before, this is accomplished after deforming
�c
k to �̃c

k = ρ�c
k for a suitably chosen bump function ρ on Γc . Again, being ρ dependent on

coordinates on the base, implies that the resulting fibration is still ι-invariant and the resulting
section fixed by ι. One proceeds in a similar way with fd and fe. This completes the required
smoothing of f .

Observe that if D is the region over which f fails to be smooth, there are regions D′ ⊂ D

and B ′ ⊂ B such that B ′ ∩ {b1 = 0} ⊂ D′ where the section σ obtained after the smoothing of
f remains unchanged, i.e. σ(B ′) coincides with the section in Remark 3.12. It also follows that
σ(B) is smooth. This completes the proof the following:

Theorem 3.28. Let f : X → B be a Lagrangian negative fibration. Then there is a Lagrangian
section σ not intersecting the singular locus Σ ⊂ X of f and unique smooth fiber preserving
anti-symplectic involution ιf,σ of X preserving the fibers of f and fixing σ .

Remark 3.29. Let σ1 and σ2 Lagrangian sections of a negative fibration f : X → B and B ′ ⊂ B

and D′ ⊂ D as above. Since f is stitched along f −1(D) ⊂ X, it follows from Remark 3.23, that,
in general, there is no symplectomorphism t of X such that f ◦ t and t ◦ σ1 = σ2. This contrasts
with the nodal, generic-singular and positive models for which t always exists.

Lemma 3.30. Let σ1 and σ2 be sections of a negative fibration f : X → B and D ⊂ B ∩{b1 = 0}
the locus over which f fails to be smooth. If there exists an open neighborhood B ′ ⊂ B of D

such that σ1|B ′ = σ2|B ′ , then there is a unique symplectomorphism t of X such that f ◦ t = f

and t ◦ σ1 = σ2.
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Proof. On X◦ = f −1(B − B ′), the fibration is smooth. Corollary 1.9 and Lemma 3.4 give a
unique symplectomorphism t◦ of X◦ sending σ1|B−B ′ to σ2|B−B ′ . Extending t◦ to X as the
identity map on X − X◦ gives a smooth symplectomorphism t with the required properties. �
4. Global existence

Let (B,�,A ) be a compact simple integral affine manifold with singularities. Let N be the set
of negative vertices of � and let (��, {Dp}p∈N) be a localized thickening and let (B�,��,A�)

be the integral affine manifold as in Section 2.1. Then there is a smooth symplectic manifold

X� = T ∗B�/Λ�

where Λ� is the period lattice induced by A |B� , and a Lagrangian submersion:

f� : X� → B�.

Notice that if B0 = B − �, Λ0 is the lattice induced by A , X0 = T ∗B0/Λ0, and f0 : X0 → B0
the standard projection, then X� ⊂ X0 and f� = f0|X� .

Let σ0 be a section of f0 which can be taken to be induced by the zero section on T ∗B0.
Then, Corollary 1.8 implies there is a unique fiber preserving anti-symplectic involution φ0 of
X0 also preserving σ0. With abuse of notation, denote by σ0 and φ0 their restrictions to X� and
B� respectively. Theorem 2.1 gives a class C of fibrations f : X → B where X is the compact
symplectic manifold obtained from X� after gluing models of generic, positive and negative
fibrations as in Section 3 over � and matching local sections of each local model with σ0. The
latter provides the fibration with a section σ .

4.1. The class C

We now impose extra conditions on the sections of fibrations of class C.

Definition 4.1. Let f : X → B be a fibration of class C with a section σ such that σ(B)∩Critf =
∅ where Critf ⊂ X is the singular set of f . Assume that identifications of neighborhoods of
singular fibers with the local models of Section 3 are fixed. For each negative vertex p ∈ N, let
Bp ⊂ B be a small open neighborhood of p such that Dp ⊂ Bp , where Dp is the locus over
which f is piecewise smooth. Let f − : X− → B− be the model for the negative fibration and let
σ− be a choice of section of f − fixed by the local anti-symplectic involution as in Theorem 3.28.
We say that σ is of class C if for each p ∈ N, the restriction of σ to Bp coincides with σ−.

Notice that the definition of C clearly depends on the choice of σ− and {Bp}p∈N. Notice also
that another section σ ′ is of class C if and only if σ ′ coincides with σ when restricted to each Bp .

4.2. Proof of Theorem 1.2

Let f : X → B a fibration of class C with two sections σ1, σ2 ∈ C. Let X� ⊂ X and
f� : X� → B� be the Lagrangian submersion as above. By Corollary 1.9 there is a unique fiber-
preserving symplectomorphism t0 : X� → X� sending σ1 to σ2. We will show that t0 extends
to X.
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Since σ1, σ2 ∈ C, it follows from Definition 4.1 that for each negative vertex p ∈ N, σ1|Bp =
σ2|Bp . Trivially, there is a unique local fiber-preserving symplectomorphism sending the restric-
tion σ1|Bp to the restriction σ2|Bp . Similarly, Lemma 3.8 guarantees that for each positive vertex
v of �, there is an open neighborhood Bv ⊂ B of v and a unique local fiber-preserving symplec-
tomorphism sending the restriction σ1|Bv to the restriction σ2|Bv . For the edges of � one applies
Lemma 3.4 analogously. Each of these local symplectomorphisms provide a local extension of t0
to X. By uniqueness, these extensions glue together along common intersection, giving a unique
extension t of t0 to X. Details are left to the reader.

Remark 4.2. Notice that due to the piecewise smoothness of f : X → B of class C, if σ1 is
of class C but σ2 is not, it cannot follow that there is a symplectomorphism t of X such that
f ◦ t = f and t ◦ σ1 = σ2 (cf. Remark 3.29).

4.3. Proof of Theorem 1.1

It is enough to find a fiber-preserving anti-symplectic involution φ fixing one section σ ′ ∈ C.
In fact, if σ is any other section in C and t is the symplectomorphism taking σ to σ ′ constructed
in Theorem 1.2, then φf,σ = t−1 ◦ φ ◦ t is the anti-symplectic involution fixing σ .

Consider as above, the anti-symplectic involution φ0 of X� fixing the section σ0. We need
to show that the section σ0 extends to a section σ ′ ∈ C and the involution φ0 of X0 extends
to a smooth fiber-preserving anti-symplectic involution φ of X fixing σ ′. The proof follows
immediately from Theorem 2.1 and the results of Section 3. Let us denote by f ν : Xν → Bν a
fibration of either generic-singular, positive or negative type, used in the compactification as in
Theorem 2.1. This presumes that each affine base, Bν

0 = Bν − �ν , is locally affine isomorphic
to U0 = U − � ∩ U , where U is a suitable neighborhood of x ∈ �, and x is either an edge point,
a positive or a negative vertex. If ν is either generic or positive, we let σν be any choice of a
section of f ν fixed by the local anti-symplectic involution, not intersecting the critical locus of
f ν . If ν is a negative vertex, the choice of σν is σ− as in Definition 4.1.

Then, the affine isomorphism induces a symplectomorphism of bundles Φν and a commuting
diagram

Xν
0

f ν

Φν

f −1
� (U0)

f�

Bν
0

Aν

U0

(54)

where Φν(σ ν |Bν
0
) = σ0 ◦Aν and Aν extends continuously to Bν . Then Xν is glued to X� over U

using Φν . Moreover, this gluing extends σ0 to a smooth section on U . The gluing of two generic-
singular fibrations along common edges in � requires taking care of further technicalities, as it
involves gluing along singular fibers. A smooth symplectic deformation of the fibrations along
a common intersection may be required but, in any case, two generic-singular fibrations can be
glued matching its corresponding prescribed Lagrangian sections (cf. [8, Proposition 4.18]).

Now f� and each fν carry a unique fiber preserving smooth anti-symplectic involution φ0
and φν fixing σ0 and σν , respectively. Since σ0 and σν coincide over U0, it follows that φ0 and
φν coincide along f −1(U0). Then φ0 extends smoothly to f −1(U). Repeating this process for a
� �
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suitable open cover {U} of � produces the required section σ ′ of f , and the extension φ of φ0.
This completes the proof of Theorem 1.1. By construction σ ∈ C.

5. Examples

The same arguments discussed in Section 4 apply in dimension n = 2:

Theorem 5.1. Let (B,�,A ) be a 2-dimensional simple affine manifold with singularities and
let f : X0 → B0 = B − � be the Lagrangian submersion of X0 = T ∗B0/Λ onto B0. Then

(i) There is a symplectic manifold X and a Lagrangian fibration f : X → B such that
f |X0 = f0.

(ii) If a Lagrangian section σ is specified which avoids the critical points, then there is a unique
fiber preserving anti-symplectic involution φf,σ fixing σ .

(iii) If two Lagrangian sections σ1 and σ2 are specified (both avoiding the critical points), there
is a unique symplectomorphism t : X → X such that f ◦ t = f and t ◦ σ1 = σ2.

The first claim is the content of [8, Theorem 3.22], while the second and third claims are
new. The proof of (ii) is a verbatim of the one in dimension 3, where one can use the model for
a focus–focus fibration of Section 3.1 together with the given anti-symplectic involution. The
proof of (iii) is the same as the proof of Theorem 1.2.

5.1. The K3

Starting with explicit examples of integral affine base B ∼= S2 with 24 singularities Leung
and Symington [24] illustrate how part (i) of Theorem 5.1 can be used to build well known
Lagrangian fibrations on a symplectic 4-manifold X ∼= K3 with a section (see also [8, Exam-
ple 3.16]). The construction involves making several choices, which produce different germs
of Lagrangian fibrations. So even though the compactification X is the same (modulo sym-
plectomorphism) regardless of the choices made, there are actually infinitely many germs of
Lagrangian fibrations with the same topology (cf. [8, Corollary 3.24]). Given a choice of such
fibration germ f , part (ii) gives a unique fiber preserving anti-symplectic involution.

In this case, the fixed locus of φf is a Lagrangian submanifold with 2 connected components:
one of them is a sphere (i.e. the section) and the other is a genus g = 10 surface Σ which is a
3 : 1 branch cover of S2, with 24 branch points.

5.2. Almost toric 4-manifolds

Symington and Leung [24] propose a class of symplectic 4-manifolds with Lagrangian fi-
brations having focus–focus and toric singular fibers, called almost toric. Within this class, the
integral affine bases which are simple (simple in the sense of Theorem 5.1) are the disc D2,
the cylinder S1 × I , the Klein bottle, the sphere S2 and RP

2. Namely, these are the only cases
that have singularities of nodal type. Theorem 5.1 equips each of the corresponding fibrations
with fiber-preserving anti-symplectic involutions. For instance, the Enriques surface is equipped
with a Lagrangian fibration over RP

2 with 12 focus–focus singularities and a fiber preserving
anti-symplectic involution. The base S2 gives a K3 surface discussed above.
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5.3. The quintic

Starting with an explicit example of affine 3-manifold with singularities proposed by Gross
[19, Example 4.3], the first two authors use Theorem 2.1 to produce a symplectic 6-manifold X

homeomorphic to a smooth quintic 3-fold. Now Theorem 1.1 shows that such manifold has a
fiber preserving anti-symplectic involution.

5.4. Mirror pairs

The example above generalizes to a much wider class. When B is an integral affine 3-manifold
arising from toric degeneration in the sense of Gross and Siebert, Theorem 2.1 produces pairs of
SYZ dual Lagrangian fibrations, with total spaces homeomorphic to mirror pairs of Calabi–Yau
manifolds (cf. [8] for details). Now Theorem 1.1 equips these pairs of symplectic 6-manifolds
with fiber-preserving anti-symplectic involutions fixing a section.

In the examples discussed above, the fixed locus set Σ appears to have nice topological prop-
erties. For instance, for X Calabi–Yau, there is an intriguing relation between the mod 2 coho-
mology of Σ and the Hodge numbers of X. These properties are being further investigated in [6].

6. Fiber-preserving anti-symplectomorphisms

In this section, we prove Proposition 1.10.
In the following lemmas, f : X → B is a Lagrangian fibration that is a smooth submersion,

and σ is a smooth Lagrangian section of f . We denote by Λ the lattice bundle and by Θ :
T ∗B/Λ → X the symplectomorphism of Proposition 1.7 applied to σ . We denote by Z the zero
sections of T ∗B and T ∗B/Λ, and we denote by π the canonical projections to B . We denote by
− Id the anti-symplectomorphisms of T ∗B and T ∗B/Λ given by negative the identity map on
each fiber.

Let η be a 1-form on B . We define a symplectomorphism Tη : T ∗B → T ∗B by

Tη(p, ξ) = (p, ξ + η(p)
)
, ∀p ∈ B, ξ ∈ T ∗

p B.

We also denote by Tη the symplectomorphism that Tη induces on T ∗B/Λ.

Lemma 6.1. Assume that π1(B) = {1}. Let φ be an anti-symplectomorphism of X such that
f ◦ φ = φ. Then φ2 = IdX . In particular,

φ = Θ ◦ Tη ◦ (−Id) ◦ Θ−1. (55)

Proof. Define

Z′ = Θ−1 ◦ φ ◦ Θ ◦ Z.

It is easy to see that Z′ is a Lagrangian section of T ∗B/Λ. Since π1(B) = {1}, we may lift Z′ to
a Lagrangian section Z̃′ of T ∗B . Let η be the one form on B such that Z̃′ is its graph. Clearly,
π ◦ Tη = π and Tη ◦Z = Z′. By the uniqueness claim of Corollary 1.9 applied to the Lagrangian
fibration π : T ∗B/Λ → B , we conclude that

Tη = Θ−1 ◦ φ ◦ Θ ◦ (−Id).
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Formula (55) follows. Observe that

Tη ◦ (−Id) = (−Id) ◦ T−η, T−η = T −1
η .

Consequently, (Tη ◦ (−Id))2 = IdT ∗B/Λ. The lemma follows. �
We omit the proof of the following lemma since it is similar and we do not use it.

Lemma 6.2. Assume that π1(B) = {1}. Let t be a symplectomorphism of X such that f ◦ t = f .
There exists a 1-form on B such that

t = Θ ◦ Tη ◦ Θ−1.

Proof of Proposition 1.10. Since smooth fibers are dense and the claim is a closed condition,
we may assume without loss of generality that f : X → B is a smooth submersion. Since φf

preserves fibers of f , the claim is local on the base B . So, without loss of generality we focus
on the special case when B is the n-disk. Eq. (14) follows from Lemma 6.1. Eq. (15) follows
formally from Eq. (14). Indeed, φf ◦ t is an anti-symplectomorphism such that f ◦ φf ◦ t = f .
So, we conclude φf ◦ t ◦ φf ◦ t = IdX , which implies Eq. (15). �
7. Gradings

In this section we will explain the definition of the grading of a Lagrangian submanifold
L ⊂ X in the special case where X is a symplectic Calabi–Yau manifold. Then we will assume
that f : X → B is a special Lagrangian fibration and φf,σ is anti-holomorphic as well as anti-
symplectic. In this case, we conclude that If,σ shifts the natural grading on the fibers of f by
dimC X.

The notion of a grading for a Lagrangian submanifold was introduced by Kontsevich [23].
Here we follow a slightly modified version of the exposition of [34]. We use the general-
ized definition of special Lagrangian submanifolds due to Salur [28] that applies to symplectic
Calabi–Yau manifolds that may not have an integrable complex structure.

Let X be a symplectic manifold with symplectic form ω. An almost complex structure on J

on X is said to be ω-tame if

ω(ξ, J ξ) > 0

for all ξ �= 0. We define the first Chern class c1(T X) by choosing an ω-tame almost complex
structure on X. The definition of c1 only depends on ω because the space of ω-tame almost
complex structures is contractible.

From now on we assume that (X,ω) is a symplectic 2n-real-dimensional Calabi–Yau man-
ifold, i.e. that c1(T X) = 0. We fix an ω-tame almost complex structure J on X. Use J to
decompose complex valued differential forms on X by type. Fix a nowhere vanishing (n,0)-
form Ω on X. The existence of Ω is guaranteed by the Calabi–Yau condition. We emphasize
that we do not require Ω to be closed. Finally, we define the metric g by

g(ξ, η) = ω(ξ, Jη) + ω(η,J ξ)
.

2
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Let L ⊂ X be a Lagrangian submanifold. A small generalization of arguments of [20] shows
that

Ω|L = ψeπiθvolg, (56)

where ψ is a strictly positive real-valued function, θ is an S1-valued function, and volg is the
volume form of L induced by g. If the Maslov class of L vanishes, then θ can be lifted to a real
valued function. The choice of a real-valued lift of θ , which we also denote by θ , is a grading
of L. A graded Lagrangian submanifold is called special Lagrangian if the grading θ is constant.

For the rest of this section, we assume that f : X → B is a special Lagrangian fibration.
That is, each fiber of f contains a relatively open dense subset that is a smooth special La-
grangian submanifold of X. We assume that f has a section σ , and we assume that X has an
anti-symplectic involution φ satisfying conditions (11). We assume also that φ is anti-J -holo-
morphic and

φ∗Ω = Ω̄. (57)

In Lemma 7.5 below, we show that assumption (57) is not hard to satisfy given the previous
assumptions. Moreover, we have the following lemma.

Lemma 7.1. (See [10].) Let the Lagrangian fibration f : X → B be a smooth submersion. For
each J , there exists a choice of Ω such that f is special Lagrangian.

Let θσ denote a grading on the Lagrangian submanifold given by the section σ and let θy

denote a grading on the fiber Ly of f .

Lemma 7.2. The gradings θσ and θy must satisfy

θσ ∈ Z, θy ∈ n/2 + Z.

Proof. According to Corollary 1.8, φ acts on each smooth fiber Ly of f by a diffeomorphism
of sign (−1)n. So, equating the phase on each side of (57) and using the fact that θy is constant
on Ly , we have

eπiθy = (−1)ne−πiθy .

We conclude that θy ∈ n/2 +Z. On the other hand, φ acts on σ by the identity map. So, the same
argument implies that θσ ∈ Z. �

As noted previously, the mirror correspondence maps σ along with the appropriate local sys-
tem, spin structure and grading to the structure sheaf OY . We would like to identify the choice of
grading θσ that corresponds to OY . Since OY is fixed under D, for consistency of Conjecture 1.3,
we must assume that If,σ (σ, θσ ) = (σ, θσ ). It follows that

θσ = −θσ = 0.
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To fully determine the choice of θy that makes Ly into the mirror of Oy , we employ the
mirror correspondence once again. Since σ is sent by the mirror correspondence to the structure
sheaf OY , we should have an isomorphism of graded vector spaces

mf,σ : HF ∗(σ,Ly)
∼−→ RHom(OY ,Oy) � C,

where the grading of C is 0. We will deduce θy from the definition of the grading on HF ∗(σ,Ly).
We recall the definition of the grading on HF ∗. Let L1,L2 ⊂ X, be two transversely inter-

secting graded Lagrangian submanifolds with gradings θ1, θ2. By definition, HF ∗(L1,L2) is the
cohomology of the complex CF ∗(L1,L2), which is generated by the intersection points of L1
and L2. The grading of a point p ∈ L1 ∩ L2 is defined as follows. Identify TpX with C

n by a
complex linear transformation t taking L1 to R

n ⊂ C
n and L2 to M · R

n. Take M to be unitary.
So, it is conjugate to a diagonal matrix of the form

M =

⎛⎜⎜⎜⎜⎝
eiπα1 0 0 · · · 0

0 eiπα2 0 · · · 0

0 0 eiπα3
...

...
...

...
. . . 0

0 0 0 0 eiπαn

⎞⎟⎟⎟⎟⎠
where αi ∈ (0,1). Set α =∑i αi . Define the grading of p to be

indp(L1,L2) = α − θ2(p) + θ1(p). (58)

Lemma 7.3. Let Ly be a smooth fiber. Assuming θσ ≡ 0, and HF ∗(σ,Ly) is a one-dimensional
vector space of grading 0, it follows that θy = n/2.

Proof. By definition of a section, there is a unique intersection point p ∈ σ ∩ Ly . Let
t : TpX → C

n such that t (Tpσ ) = R
n. It follows from Corollary 1.8 that we can choose t so

that t (Ly) = iRn. Then for i = 1, . . . , n, we have αi = 1/2. So, α = n/2. Rearranging Eq. (58)
we obtain

θy(p) = α − indp(σ,Ly) + θσ (p) = α = n/2. �
It follows that If,σ shifts θy by n = dimC X.

Remark 7.4. The fact that the natural grading for a torus fiber is n/2 has been observed previ-
ously by Douglas in the context of Π -stability [11]. See also [2].

We close this section with a lemma that shows that assumption (57) follows from the other
assumptions under mild conditions.

Lemma 7.5. Let (X,ω) be a symplectic Calabi–Yau manifold with ω-tame almost complex struc-
ture J and nowhere-vanishing (n,0)-form Ω . Let φ be an anti-symplectic involution of X that is
also anti-J -holomorphic. If X is simply connected or if Ω is closed, then there exists a smooth
complex valued function g on X such that Ω̂ = gΩ satisfies condition (57). If f : X → B is
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a special Lagrangian fibration with respect to Ω and f ◦ φ = f , then f is also a special La-
grangian fibration with respect to Ω̂ .

Proof. Since Λ0,3(T ∗X) is a line bundle, there exists a complex valued function h such that
φ∗Ω = hΩ̄ . It follows from the fact that φ is an involution that

h ◦ φ = h−1.

So, if h has a square root h1/2 we can take g = h1/2. Clearly, if X is simply connected, then g

has a square-root. Alternatively, if Ω is closed, then J is integrable and Ω is holomorphic [21].
So, both φ∗Ω and Ω̄ are anti-holomorphic and therefore so is h. It follows that h is constant and
hence has a square-root.

To prove the final claim, we show that the phase of h is constant on fibers of f . It follows
that if f is special Lagrangian with respect to Ω then it is also special Lagrangian with respect
to Ω̂ = h1/2Ω . Indeed, let Ly be a fiber of f . In the notation of Eq. (56), using the fact that θy is
constant, we have

(−1)n(ψy ◦ φ)eiπθy volg = φ∗Ω|Ly = hΩ̄|Ly = h|Ly ψye
−iπθy volg.

It follows that

h|Ly = (−1)n(ψy ◦ φ)ψ−1
y e2πiθy ,

which has constant phase. �
8. Coherent sheaves

In this section, we prove Theorems 1.4 and 1.6. The proof uses Theorem 8.1 below, which
was proven by D. Orlov [26].

Let M and X be smooth projective varieties over a field k. For any object E of Db Coh(M×X)

we can define a functor

ΦE : Db Coh(M) → Db Coh(X)

as follows. Let p : M × X → M and π : M × X → X denote the projections to M and X

respectively. Define

ΦE(•) = Rπ∗
(
E

L⊗p∗(•)
)
. (59)

Theorem 8.1. Let F be an exact functor from Db Coh(M) to Db Coh(X), where M and X are
smooth projective varieties. Suppose F is full and faithful and has a right (and, consequently,
a left) adjoint functor. Then there exists an object E of Db Coh(M ×X) such that F is isomorphic
to the functor ΦE defined by the rule (59), and this object is unique up to isomorphism.

The following corollary parallels Proposition 1.7. As above, Oy denotes the skyscraper sheaf
at a point y ∈ Y .
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Corollary 8.2. Let Y be a smooth projective variety. Let F : Db Coh(Y ) → Db Coh(Y ) be an
auto-equivalence such that

F(Oy) � Oy, ∀y ∈ Y, F (OY ) � OY .

Then, F is isomorphic to the identity functor.

Proof. We apply Theorem 8.1 in the case that M = X = Y . Let E be the object of
Db Coh(Y × Y) associated to F by Theorem 8.1. Let � : Y → Y × Y denote the diagonal
map. We also use � to denote the diagonal subvariety.

Given an object C of Db Coh(Y ) we define supp(C) to be the closed subset of the underlying
topological space of Y that is the union of the supports of all the cohomology sheaves of C.

First, we prove that supp(E) ⊂ �. Indeed, define

iy : Y → Y × Y

to be the inclusion of y × Y into Y × Y . Since

p∗Oy � Oy×Y

we have

E
L⊗p∗Oy � E|y×Y ,

where the restriction is in the derived sense. Since π |y×Y is the identity map,

F(Oy) = Rπ∗
(
E

L⊗p∗Oy

)� Li∗yE.

So, by assumption,

Li∗yE � Oy. (60)

So, the only fibers of E which are not zero are on �.
Next, we prove that E can be represented by a complex concentrated in degree zero. Since

supp(E) ⊂ �, we know that E is the push-forward of a complex of sheaves supported on the
diagonal with some possibly non-reduced scheme structure. So, it suffices to work in a neighbor-
hood of the diagonal. Locally, in a neighborhood of the diagonal, π is affine. Indeed, if U ⊂ Y is
an open affine, then

� ∩ π−1(U) ⊂ U × U ⊂ π−1(U).

We call this property (LA). Since

p∗OY = OY×Y ,

we have by assumption,
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Rπ∗(E) = F(OY ) � OY .

But, by property (LA), Rπ∗ coincides with π∗. Moreover, affine push-forward cannot send a
non-trivial sheaf to zero. Therefore, like its push-forward, E must be concentrated in degree 0.

Next, we construct an isomorphism

O�
∼−→ E|�. (61)

Indeed, by assumption, we have an isomorphism

OY → F(OY ) = π∗(E).

By adjunction, we have a morphism

OY×Y � π∗OY → E.

Let s denote the restriction of this morphism to the diagonal. We claim that s is the desired
isomorphism. First, we prove it is an isomorphism on fibers. Let

r : E → E|Y×y

denote restriction. By property (LA), we have

π∗(E|Y×y) � π∗(E)y.

By property (LA) and the exactness of affine push-forward,

π∗(r) : π∗(E) → π∗(E|Y×y)

is surjective. So, the composition

OY → π∗(E)
π∗(r)−−−→ π∗(E|Y×y) (62)

is surjective onto the non-zero sheaf π∗(E)y � Oy , and in particular is not zero. By naturality of
adjunction, the composition (62) is adjoint to the composition

OY×Y → E
r−→ E|Y×y.

In particular, the latter cannot be zero. By Eq. (60) and the fact that E is concentrated in one
degree, E|Y×y has only one non-vanishing fiber,

(E|Y×y)y � Ey×y � Oy×y.

We conclude that the composition

OY×Y → E → E|y×y
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must be surjective for all y ∈ Y . It follows that s is an isomorphism on fibers. By Nakayama’s
lemma, s is surjective. Since � is reduced, there are no nilpotents among the sections of O�. So,
we could detect any non-trivial section in the kernel of s at some fiber. We conclude that s is an
isomorphism.

Finally, we prove that the restriction map

q : E → E|�
is an isomorphism. We know that q is surjective. By property (LA) and exactness of affine push-
forward, we know that the map

OY � π∗(E)
π∗(q)−−−→ π∗(E|�)

is surjective. By isomorphism (61),

π∗(E|�) � π∗(O�) � OY .

So, π∗(q) is a surjective map from OY to itself. So, π∗(q) is multiplication by a non-vanishing
function, and hence is an isomorphism. Now, suppose q has a kernel K . Since π∗(q), is an
isomorphism, again using property (LA) and exactness of affine push-forward, we conclude that
π∗K vanishes. Using property (LA) and the fact that affine push-forward cannot send a non-
trivial sheaf to the zero sheaf, we conclude that K vanishes. So, q is an isomorphism.

Composing the isomorphism q with the inverse of isomorphism (61), we have

E � O�.

So, F � Id, as claimed. �
We now prove Theorems 1.4 and 1.6.

Proof of Theorem 1.4. The auto-equivalence D ◦D′op of Db Coh(Y ) satisfies the hypothesis of
Corollary 8.2. So, we have

D′ � (D−1)op � D. �
Proof of Theorem 1.6. The auto-equivalence T−1 ◦ T′ of Db Coh(Y ) satisfies the hypothesis of
Corollary 8.2. The theorem follows. �
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