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Abstract

An experimental work is conducted on counter flow plate fin compact heat exchanger using offset strip fin under different mass flow rates. The
training, testing, and validation set of data has been collected by conducting experiments. Next, artificial neural network merged with Genetic
Algorithm (GA) utilized to measure the performance of plate-fin compact heat exchanger. The main aim of present research is to measure the
performance of plate-fin compact heat exchanger and to provide full explanations. An artificial neural network predicted simulated data, which
verified with experimental data under 10–20% error. Then, the authors examined two well-known global search techniques, simulated annealing
and the genetic algorithm. The proposed genetic algorithm and Simulated Annealing (SA) results have been summarized. The parameters are
impartially important for good results. With the emergence of a new data-driven modeling technique, Neuro-fuzzy based systems are established
in academic and practical applications. The neuro-fuzzy interference system (ANFIS) has also been examined to undertake the problem related to
plate-fin heat exchanger performance measurement under various parameters. Moreover, Parallel with ANFIS model and Artificial Neural
Network (ANN) model has been created with emphasizing the accuracy of the different techniques. A wide range of statistical indicators used to
assess the performance of the models. Based on the comparison, it was revealed that technical ANFIS improve the accuracy of estimates in the
small pool and tropical ANN.
& 2016 Society for Computational Design and Engineering. Publishing Servies by Elsevier. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The compactness of heat exchanger is the index of progress in
the present day scenario of industrial growth [1]. Especially with
increasing the need for developing the cryogenics field. Usually,
plate fin heat exchanger is suitable for numerous type of heat
exchanger application for a wide range of industry [2–5]. Plate fin
units are normally arranged for counter flow heat exchanger. Plate
fin heat exchanger has thin corrugated fins or corrugated heat
/10.1016/j.jcde.2016.07.002
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transfer surface of the plates. Compact heat exchanger surface
density is very high that means large surface area per unit volume
it could be as high as 1800 m2/m3, the plate fin heat exchanger is
suitable for a close approach temperature as low as 2 1C, Two or
more streams can be used by changing the section. Plate fin heat
exchanger is significant nowadays and most widely used due to
high heat transfer rate. It is investigated that compact heat
exchangers such as plain fin strip, offset fin, wavy fin, perforated
fin,etc the pressure drop decrease with respect to increasing the
turbulence in working fluid. Onwards 1942 by Norris and Spofford
[6] provide the first experimental report they draw out the effect of
heat transfer coefficient on the basis of length, thickness and pitch
of fins and also reduced the friction factor and Colburn modules.
As the practical demand of plate fin heat exchanger has increased
experimental studies, have been made by London and Shah [7] in
1967 they been brought to a conclusion that small offset spacing
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www.sciencedirect.com/science/journal/22884300
http://dx.doi.org/10.1016/j.jcde.2016.07.002
www.elsevier.com/locate/jcde
http://dx.doi.org/10.1016/j.jcde.2016.07.002
http://dx.doi.org/10.1016/j.jcde.2016.07.002
http://dx.doi.org/10.1016/j.jcde.2016.07.002
mailto:ajaythermal@gmail.com
mailto:pankajsingh14319@gmail.com
mailto:rksahoo@nitrkl.ac.in
mailto:anoop17212@gmail.com
mailto:sarangiskr@nitrkl.ac.in


A.K. Gupta et al. / Journal of Computational Design and Engineering 4 (2017) 60–68 61
(length/dh), fin thickness and a large number of fins per inch gives
better heat transfer. In 1975 Wieting [8] set up a statically
relationship between the variables from earlier experimental heat
transfer and fluid flow friction. Data for a plate-fin heat exchanger
of offset fin and by using this statically relationship (untested offset
fin geometries can be predicted realistically and accurately within
the parameter range of the correlation). So that one can predict
virtually and correctly within the parametric range of newest offset
plate-fin heat exchanger having no previous tested data. Experi-
mental validation of numerical simulation and also provides a
comparison of experimental result in computationally obtained
results from the effects of fin thickness and free stream turbulence.
In 1977, a set of experiments was performed by Sparrow [9] to
observe the heat transfer for a mass flow rate with varying the
Reynolds number. The thickness ratio and the spacing ratio are the
other factors establish that the Nusselt number varies while
changing the plate thickness and also come upon after searching
that it is not necessarily equal spacing, and length gives optimal
results. Cru and Sparrow [10] again in 1979 analysis the heat
transfer effectiveness ‘ε’ of staggered plate arrange is higher than in
plate line channel. In 1985 Joshi and Webb [11] expressed an
analytical framework to predict the j and f factor for laminar and
turbulent flow from experimental and analytical work. In 1994 Hu
and Herold [12] suggested a liquid coolant instead of using
previous air cooled models in an experimental set up to evaluate
heat transfer and pressure drop of offset fin heat exchanger. It
shows that the liquid cooled apparatus Prandtl number has a large
effect on Nusselt number, and numerical analysis examines the
surface temperature distribution. Related to CFD work in 2007
Peng and Ling [13] calculates the Colburn factor j and friction
factor f for an Aluminum- oil-air Plate Fin Heat Exchanger (PFHE)
with serrated fins at low Reynolds No. (Between10-200) Both
experimentally, with constant air flow rate and six different oil flow
rates and numerically, with 3D geometric analysis. One of the
objectives of this paper is also to propose a procedure for the
ANFIS model and an Artificial Neural Network (ANN) model
alongside a few experiments so as to predict the performance of
fins with the new configuration in PFHE. Again in 2007 Peng and
Ling [14] developed the successful utilization of Genetic Algorithm
(GA) combined with the Back Propagation (BP) algorithm of
Artificial Neural Network.That is more efficient and advanced than
the traditional GA method for the optimal design of PFHE and
showed that this method is also applicable to various PFHEs. In the
same year, Xie and Wang [15] applied genetic algorithm to
optimize the design of plain plate triangular fin compact heat
exchanger, where fins standards and offset strip design adapted as
referred Kays and London [1].

Almost through with their studies the various other fin
geometries louvered fin, perforated fin,etc. In 2009, Peng and
Ling [16] set up an artificial neural network for prediction of j
and f factors from experimental data for five different types of
plate fin heat exchangers. In 2009, Mishra et al. [17] developed
optimization of cross flow PFHE using GA method and
showed the importance of design approach based on the
second law of thermodynamics. The conclusion drawn shows
the effect of an additional constraint on the optimum solution
and power requirement regarding pressure drops.
Zhu and Li [18] 2009 carried out and investigated the three-
dimensional numerical simulations on the flow and heat
transfer in the four types of fins after that Wang and Liu
2008 carried out a numerical study of plate-fin heat exchangers
with plain fins and serrated fins.Regarding work is done in the
field of Artificial Neural Network (ANN), in 2009, Tan et al.
[19] developed an Artificial Neural Network (ANN).To
represent the overall behavior of the heat exchanger over the
whole range of flow rates, inlet temperatures, liquid composi-
tions and blockage ratios in experiments. Thus demonstrating
that an ANN was able to predict the overall heat transfer rate
between the liquid and air streams in a compact fin-tube heat
exchanger with a high degree of accuracy.In 2010, Sanaye
purposed multi-objective optimization with the objective
function effectiveness and total cost using a genetic algorithm
and on suggesting a close form expression between the
variables and the objective functions estimate the total annual
cost and effectiveness.
In recent years, work related to serrated plate fin heat

exchanger was in 2011 by Yusef and Darus [20] employed
genetic algorithm with particle swarm optimization technique
to optimize the plate-fin heat exchanger design. Another paper
in 2011 [21] applied Neural Network Model (NNM) upon data
collected by CFD simulation to measure the accuracy of j and f
factors of NNM. The result displayed that NNM embrace the
accuracy in between 1.3% and 1% which is higher than
applications of other models (embace the accuracy in between
3.8% and 8.2%) for analysing the same data of CFD simula-
tion. However, for a precise response neural network has to be
supplied with well- defined factors. Also in 2011, Kim et al.
[21] proposed new correlations for j & f factor for offset strip
fins with blockage ratios of greater than 20%, with the j
correlations suggested as functions of the Prandtl number.
Resulted in the enhancement of j and f factor (by 24%) for the
optimized offset strip fin compared to the referenced non-
optimized offset strip fin. To understand the uniform
distribution in PFHE, Saad et al. [2] in 2011 investigated the
hydrodynamics of a single phase flow in offset strip fins
deducing new correlations for the friction factor (f) from
laminar to turbulent ranges. Their deductions of the new
correlations were in agreement with the numerical results of
that from CFD simulations, thus enabling the experimental
observation of uniform distribution that is crucial to
obtain high performance in compact heat exchangers. In an
another paper from Saad et al. in 2011, they performed
single-phase CFD simulations for the determination
of pressure drop characteristics in an offset strip fin H.E that
achieved good agreement between experimental data
and numerical prediction of friction factor. They also showed
that distribution of two-phase flow in CHEs’ depends
on gas and liquid superficial velocities concerning the design
of the distributor. The multi-objectives formulated problems
always aid the industrial sectors to solve their several
problems and in case of multi-objectives problems, the
criterion are considered as objectives [22–26]. The authors
too suggested the role of fuzzy logic applications in industrial
realms [3].
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In 2012 Yosefi and Mohammadi applied a different techni-
que to optimize plate-fin heat exchanger by using a competi-
tive algorithm (ICA). Seven optimized variable exploit to
minimize the total weight and total annual cost. In 2013,
Buyruk et al. investigated ways to increase the efficiency of
PFHE by optimization of fin angles, fin intervals, and heights,
offsetting fins along a horizontal direction that has a potential
for direct application to heat exchanger design data.

In an another paper from Peng et al. in 2014, they
investigated the flow and heat transfer characteristics of an
innovative offset strip fin both experimentally and numerically
in the Reynolds Number range of 500–5000.Results showed
the dependence of fin length, fin pitch and fin is the bent
distance on the performance of the compact heat exchanger
(CHE) and how these results could directly be used to design
CHEs’. Also in the same year, Aliabadi et al. performed
experiments to compare between the seven common types of
channels of PFHE. The conclusions showed that better heat
transfer obtained from the vortex generator, wavy, offset strip,
and pin, perforated, louvered, and plain channels, respectively.
The same order followed for the maximum ability to reduce
the surface area of the PFHE in comparison to the plain one.

Along with the gathered information above we emphasis on
other literature regarding ANFIS.Model for PFHX about the
prediction of heat transfer and pressure drop using adaptive
neuro-fuzzy inference system and results forecast. Average
Nusselt number and dimensionless pressure showed good
agreement with the work available by Tahseen Ahmadin
2013 another in ANFIS related to thermal work. Moon [22]
implemented two logic such as ANFIS-based (Adaptive
Neuro-Fuzzy Inference System-based control) ANN-based
(Artificial Neural Network-based control) except artificial
intelligence to determine that how much do the buildings have
temperature control systems.

Due to increasing demand of plate fin heat exchanger in
industry and research work every user is interested in high
efficient plate fin heat exchanger and this objective can be
achieved with different approaches. Heat exchange efficiency,
increase or decrease depending on outlet cold and hot fluid
temperature and which is reliant on other factors, i.e. by
controlling mass flow rate on a specified heat exchanger.
However, as mass flow rate increase the pressure drops also
increases, so a sensible compromise is needed.

In this paper, the first purpose is to present a structured
Neural Network Model, produced based on experimentally
observed data and a simulated annealing (SA) algorithm to
search the high-quality optimal process parameter conditions.
Simulated annealing optimization scheme is schematic to solve
the multi-objective formulation. The objectives to achieve
maximum efficiency are (i) cold fluid outlet temperature and
(ii) hot fluid outlet temperature. The variable parameters during
experiments are

Flow rate ‘Q’ (lit/min),
Pressure at cold inlet ‘P1.'
Pressure at hot inlet ‘P2’,
Pressure drop cold fluid mm of Hg,
Pressure drop hot fluid mm of Hg
the inlet temperature of cold and hot fluid
These are usually the actual performance parameter to
evaluate the outlet performance.
2. Experimental investigation, modeling and learning
procedure

A serialized set of experiments is conducted by Alur [4].
The experimental setup adopted for the study of plate fin heat
exchanger is the steady state experiment. Measurement of
temperature and mass flow rate in the two sides provides the
required information to compute the heat exchanger effective-
ness for the flow rate of liter/min operating between 315k to
365k, the calculations of the performance parameter has
carried out by the effectiveness from Shah [7] are given below.

ε¼ Cc T2�T1ð Þ
Cmin T3�T1ð Þ ¼

Ch T3�T4ð Þ
Cmin T3�T1ð Þ ð1Þ

where,

T1¼ Temperature at inlet of cold fluid
T2¼ Temperature at outlet of cold fluid
T3¼ Temperature at inlet of hot fluid
T4¼ Temperature at outlet of hot fluid.

Based on the previous Experiment, we gleaned objective
data; depicted in Table 1; it is decided to assess the behavior of
plate fin heat exchanger regarding flow properties before
recommending for Industrial applications. Experimental data
were used to determine contact between the parameters. The
experiment conducted at different mass flow rates (5.7 g/s to
14.2 g/s) and different hot fluid inlet temperature between
315k to 365k. To study the variation of the performance
parameters and finally the data tabulated into two categories
for training and testing which are applied for modeling and
learning procedure:
where,

Q (liters /min)is the flow rate
P1(kg/cm2) Pressure at cold inlet
P2(kg/cm2) Pressure at hot inlet
Pcd (mm of Hg) cold fluid Pressure drop
Phd(mm of Hg) hot fluid Pressure drop
T1(k) Cold fluid inlet temperature
T2(k) Cold fluid outlet temperature
T3(k) Hold fluid inlet temperature
T4(k) Hold fluid outlet temperature
3. Implementation of Neural Network Model

The purpose of the developed is working purpose neural
network. The network is a feed structure after the first
Levenberg–Marquardt propagation training algorithm applied
presented by (Eq. (2)). Network with neural network technol-
ogy, part of the software MATLAB models. Unsubscribe



Table 1
Heat exchanger dataset for the neural network model.

S.no. Q P1 P2 Pcd Phd T1 T2 T3 T4 Eff

1. 300 0.08 0.06 9 6 315.24 360.22 368.96 321.1 0.890916
2. 400 0.14 0.12 15 12 311.35 359.94 367.91 316.95 0.90099
3. 500 0.2 0.17 25 22 311.93 361.38 368.88 317 0.910975
4. 550 0.24 0.2 30 26 312.82 361.71 369.45 317.35 0.920007
5. 588 0.28 0.24 31 27 313.41 361.33 368.96 317.86 0.919892
6. 650 0.32 0.26 40 35 314.16 360.74 368.72 318.08 0.928152
7. 300 0.09 0.06 12 10 313.94 352.08 358.83 319.3 0.880597
8. 400 0.14 0.1 15 13 313.6 352.88 358.86 318.43 0.893283
9. 500 0.2 0.16 24 20 312.7 353.05 358.69 317.35 0.898891
10. 550 0.24 0.19 30 26 315.08 353.06 358.86 318.99 0.91069
11. 588 0.28 0.23 34 31 316.55 353.16 358.83 320.3 0.911306
12. 650 0.34 0.28 38 35 315.75 352.39 358.32 319.06 0.922246
13. 300 0.08 0.06 8 7 313.32 343.27 348.86 317.78 0.874508
14. 400 0.13 0.11 15 13 314.13 344.11 348.98 317.85 0.893257
15. 500 0.2 0.16 23 21 316.18 344.66 348.88 319.5 0.898471
16. 550 0.24 0.19 30 26 316.1 344.52 348.71 319.44 0.897577
17. 588 0.28 0.24 33 31 316.62 344.63 348.88 319.59 0.907936
18. 650 0.34 0.28 39 34 316.6 344.16 348.8 319.18 0.919876
19. 300 0.08 0.06 8 6 313.92 335.01 339.31 316.94 0.881056
20. 400 0.14 0.11 16 14 315.77 335.86 339.26 318.45 0.885909
21. 500 0.2 0.16 24 22 312.51 335.42 338.9 315.55 0.884805
22. 550 0.24 0.19 30 26 316.46 336.01 338.83 318.86 0.892713
23. 588 0.28 0.23 33 31 312.99 335.34 338.8 315.57 0.900039
24. 650 0.34 0.28 37 34 315.72 335.67 339.16 317.93 0.905717

Fig. 1. Simplified network structure designed for the purpose of optimization
objective function.
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sigmoid transfer function is activated, all neurons:

log sin ðxÞ ¼ x

1�e� x
ð2Þ

Where x is the input signal. The learning set consisted of 24
cases of the plate-fin heat exchanger.

Results for outlet temperature of cold and hot fluid come
from experiments. Many input parameters can be considered to
measure the effectiveness of heat exchanger. But, the problem
will be so complicated to be solved in case of many input
parameters and experimental expenses will also be more, in
order to tide over this concerns, the authors conducted relevant
literature survey in the context of computations problems
pertain to exchangers effectivness and elected few effectual
inputs parameters i.e Flow rates are ‘Q’(l/min), the pressure of
the cold water inlet ‘P1’ pressure at hot inlet ‘P2’, Pressure drop
cold fluid and hot fluid mm of Hg and the inlet temperature of
cold and hot fluid.

The Network has an input layer, a hidden layer with 12
neurons and output layer produces results. The structure of the
simplified network given in Fig. 1.

The data set was divided up between learning set for
determination of network weights and validation and testing
data sets which give the independent measure for ability to
generalize and the network performance. The regression
analysis is giving the information on network performance
presented in Fig. 1.Network performance seems good accu-
racy. It is a matter to optimize the parameters of the systematic
changes with learning and processing of the data is ready to
shape. An algorithm based on empirical data, primarily
designed. The network develops its simplest form. The (Fig.
2a and b) depicted that ANN's accuracy is valid.
This Plate Fin Heat Exchanger (PFHX) ANN network perfor-

mance can be obtained directly from the input information that can
be seen. In other words, given the mass flow rate in the
construction of a plate heat exchanger that is, on the inlet and
outlet temperature and the temperature difference and both cold and
hot sides of the ribs geometries. Engineers or designers have
limited experimental data so to predict the performance Plate-fin
heat exchanger ANN approach is useful and convenient. This heat
transfer and flow characteristics can express by the mathematical
formulas that are a very complex phenomenon, which does not
require an understanding of ANN approach.



Fig. 2. (a) Network error-1 during learning process. (b) Network error-2 during learning process.
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4. Implementation of ANFIS model

Adaptive neuro-fuzzy inference system (ANFIS) is a type
Artificial Neural Network (ANN), which based on fuzzy interference
system. The name of the fuzzy production system (FIS) is used to
provide ANFIS with the start of a member of the training activities.

Are shown in Table 3. As the raw data collected by the
MATLAB software with a specific structure and format
converted into a data file. Model to produce accurate informa-
tion about the system (neural model input and output para-
meters mentioned) is important to the quality of the training
database. This data is not so easy for the manual pre-treatment,
therefore, a fuzzy clustering method without human interven-
tion used for this task.
For Plate Fin Heat Exchanger (PFHX) two separate fuzzy

system have been generated for T2 and T4 i.e. outlet
temperature of cold and hot fluid separately with the same
inputs, and as shown in Fig. 3(a–d).
Fig. 3(a and d), both controllers (ANN and ANFIS) is used

to evaluate the performance of the plate fin heat exchanger.
ANFIS and ANN both depicted the corresponding results. In
Fig. 3(a), ANN showed that output changes as changes in
input variable, while in Fig. 3(c), ANFIS showed the relation-
ship between input and output variable.



Fig. 3. (a) ANN shows that output changes as changes in input variables. (b) Surface viewer-1 show that output changes as changes in input variables. (c) ANFIS
shows that relationship between input and output variable. (d) Surface viewer-2 show that relationship between input and output variable.
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On other hand, it is found by Fig. 3b and d showing surface
viewer, established the relationship between input and output
variable (output changes as changes in input variables). In Fig.
3(b), surface viewer-1 showed that output changes as changes
in input variable, while in Fig. 3(d), surface viewer-2 showed
that relationship between input and output variable



Fig. 3. (continued)
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5. Implementation of optimization algorithm

The simulated annealing has been applied to reduce labor
represented by neural network algorithm. Annealing is a way
to solve the problems presented limited and unconstrained and
bound. Process models the physical process of heating and
then slowly lowering the temperature to reduce defects,
whereby the energy system reduced. The way each simulated
annealing algorithm generates a new random point. The
distance from the new location at the moment or the scope
of the search based on the probability distribution of a weight
proportional to temperature. Usability has accepted all the



Table 3
Errors in prediction of responses.

% Error in prediction of T2 % Error in prediction of T4

ANN ANFIS ANN ANFIS

0.5 0.34 0.2 0.57
�0.6 0.16 0.2 0.18
0.55 �3.33 0.21 �0.07
�0.05 �0.26 0.16 0.08
�0.05 0.39 0.18 0.06

Table 4
Optimization results with best fitness values for simulated annealing.

Output
response

Best
fitness
function
value

Q P1 P2 Pcd Phd T1 T3

T2 312.34 418.19 0.096 0.273 36.779 6.026 315.37 335.85
T4 322.52 300.49 0.34 0.28 33.656 7.314 315.24 335.85

Table 5
Optimization results with best fitness values for genetic algorithm.

Output
response

Best
fitness
function
value

Q P1 P2 Pcd Phd T1 T3

T2 311.88 438.554 0.081 0.28 36.499 6.188 315.252 335.71
T4 321.86 300 0.34 0.28 37 6 315.24 335.67
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points in the new law for the purpose, but also the probability
of certain, pointing upwards determined. By the dots to the
purposes of the assumption that the supply to avoid trapped in
local minima, which is possible in the position to solve the
whole world to explore more. Annealing schedule was chosen
in order to reduce the logarithm temperature statement system-
atically. As the temperature decreases, the algorithm reduces
the scope of the search to be together at least. Overall, the
following elements of the Simulated Annealing algorithm may
be distinguished. The representation of possible solutions,

– The generator of random values in the solution,
– Solution assessment function-target function,
– Cooling or annealing method the starting temperature and

the rules of its lowering in the process of target function
minimum searching. When the annealing algorithm is work-
ing it is necessary to adopt a method reducing the probability
of transition to the state of worse parameters. Such a rule is
called the cooling schedule. For the definition of the cooling
schedule the following must be given:

– Starting temperature T0,
– Final temperature or the alloy criteria,
– The length of the Markov's chain (depending on the number

of variables),
– The rule for the temperature is decreasing.

(i) For cold fluid outlet temperature:

T2¼ 5:29036�0:00302818 Qþ13:9982 P1

�16:8278P2�0:0849 Pcdþ0:0800369 Phd
þ0:91353 T 1þ0:0777416 T 3

(ii) For hot fluid out let temperature:

T 4¼ �0:138507þ0:022083 Q�10:2438 P 1

�14:6291 P2�0:150565Pcdþ0:113141 Phd
þ0:120165 T 1þ0:863851 T3
6. Result and discussions

The result of conducted research has summarized below:
The Table 1 predicted data through modeling are intimating

near the experimental values. The error shows in Table 2 is
within the acceptable circumscribe. Table 3 represented the
Table 2
Comparison of the developed model with experimental data.

S.no. Q T1 T3 Experimental Predicted

ANN ANFIS

T2 T4 T2 T4 T2 T4

1 588 312.99 338.80 335.34 315.57 334.84 315.37 335 315
2 650 316.6 348.80 344.16 319.18 344.76 318.98 344 319
3 650 315.72 339.16 335.67 317.93 335.12 317.72 339 318
4 650 314.16 368.72 360.74 318.08 360.79 317.92 361 318
5 650 315.75 358.32 352.39 319.06 352.44 318.88 352 319
errors in prediction of responses. The Fig. 3 recapitulates the
summarized view of validation and experimental result briefly
after the construction the process model conveniently simu-
lated annealing is used for obtaining optimization result. The
two objectives of the present study are the maximization of
temperature at the cold outlet, and minimization of hot outlet
temperature. Table 4 represents the optimal fitness value for
the simulated annealing. Similarly, Table 5 represents the
optimal fitness value for the genetic algorithm.
7. Conclusion

The purpose of conducted research work is to expose the
modern models: ANN and ANFIS, which investigated as a
best modern model to prediction the results of compact heat
exchanger on input parameters. The ANN and ANFIS modern
models have been found valid corresponding to traditional
other models i.e Genetic Algorithm and Simulated Annealing.
The first part of paper precede a multi-input output ANN and

ANFIS based predictive model for the anticipation of performance
parameter such as (i) cold fluid outlet temperature and (ii) hot fluid
outlet temperature for experimental studies on plate fin heat
exchanger. The model served as a tool to calculate the performance
parameter based on the variation of process parameters.
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Another part gives an optimal result with best-fit values using
simple genetic algorithm and Simulated Annealing, which shown
in Tables 4 and 5. It is an experimental investigation into the
various parameters affecting these two algorithms and adapting
them to our problem.

References

[1] Kays WM, London AL. Compact Heat Exchangers, 2nd ed., New York:
McGraw-Hill; 1964.

[2] Saad Selma Ben, Clément Patrice, Gentric Caroline, Fourmigué Jean-
François, Leclerc Jean-Pierre. Single phase pressure drop and two-phase
distribution in an offset strip fincompact heat exchanger. Appl. Therm.
Eng. 2012;49:99–105.

[3] Sahu AK, Sahu NK, Sahu AK. Benchmarking CNC machine tool using
hybrid fuzzy methodology a multi indices decision making approach. Int.
J. Fuzzy Syst. Appl. 2015;4:32–50.

[4] Kays WM. The basic heat transfer and flow friction characteristics of six
compact high-performance heat transfer surfaces. J. Eng. Power 1960;82
(1)27–34.

[5] Tahseen Tahseen Ahmad, Ishak M, Rahman MM. Performance predic-
tions of laminar heat transfer and pressure drop in an in-line flat tube
bundle using an adaptive neuro-fuzzy inference system (ANFIS) model.
Heat Mass Transf. 2014;50:85–97.

[6] Norris RH, Spofford WA. High performance fins for heat transfer. Trans.
Am. Soc. Mech. Eng. 1942;64:489–96.

[7] Shah RK, London AL. Offset rectangular platefin surfaces-heat transfer
and flow friction characteristics. J Eng. Power 1968;90:218–28.

[8] Wieting R. Empirical correlation for heat transfer and flow friction
characteristics of rectangular offset-fin platefin heat exchangers. J. Heat
Transf. 1975;97:488–90.

[9] SPARROW EM, LIU CH. Heat-transfer, pressure-drop and performance
relationships for in-line, staggered, and continuous plate heat exchangers.
Int. J. Heat Mass Transf. 1979;22:1013–25.

[10] CUR N, SPARROW EM. Experiments on heat transfer and pressure drop
for a pair of collinear, interrupted plates aligned with the flow. Heat Mass
Transf. 1977;21:1069–80.

[11] Joshi HM, Webb RL. Heat transfer and friction in the offset strip fin heat
exchanger. Int. J. Heat Mass Transf. 1987;30(1)69–84.

[12] Hu Sen, Herold Keith E. Prandtl number effect on offset fin heat
exchanger performance: experimental results. Heat Mass Transf. 1995;
Vol. 38:1053–61.

[13] Hao Peng, Xiang Ling, Numerical modelling and experimental verifica-
tion of flow and heat transfer over serrated fins at low Reynolds number.
[14] Peng HAO, Ling XIANG. Optimal design approach for the plate-fin heat
exchangers using Neural Networks cooperated with genetic algorithms.
Appl. Therm. Eng. 2008;28:642–50.

[15] Xie, Wang. Optimization of compact heat exchangers by a genetic
algorithm. Appl. Therm. Eng. 2008;28:895–906.

[16] Peng Hao, Ling Xiang. Neural networks analysis of thermal character-
istics on plate-fin heat exchangers with limited experimental data. Appl.
Therm. Eng. 2009;29:2251–6.

[17] Mishra Manish, Das PK, Sarangi Sunil. Second law based optimisation of
cross flow plate-fin heat exchanger destignusing genetic algorithm. Appl.
Therm. Eng. 2009;29:2983–9.

[18] Li Yinhai Zhu Yanzhong. Three-dimensional numerical simulation on the
laminar flow and heat transfer in four basic fins of plate-fin heat
exchangers. J. Heat Transf. 2008;130.

[19] Tan CK, Ward J, Wilcox SJ, Payne R. Artificial neural network
modelling of the thermal performance of a compact heat exchanger.
Appl. Therm. Eng. 2009;29:3609–17.

[20] Yusefi M, Darus AN. An imperialist competitive algorithm for optimal
design of plate-finheat exchangers. Heat and Mass Transf. 2012;55:
3178–85;
Min-Soo Kim, Jonghyeok Lee, Se-JinYook, Kwan-Soo Lee, Correlations and
optimization of a heat exchanger with offset-strip fins, School of Mechanical
Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul
133-791, Republic of Korea.

[21] Saad Selma Ben, Clément Patrice, Gentric Caroline, Fourmigué Jean-
François, Leclerc Jean-Pierre. Experimental distribution of phases and
pressure drop in a two-phase offset stripfin type compact heat exchanger.
Int. J. Multiph. Flow 2011;37:576–84.

[22] Sahu AK, Sahu NK, Sahu AK. Application of modified MULTI-
MOORA for CNC machine tool evaluation in IVGTFNS environment:
an empirical study. Int. J. Comput. Aided Eng. Technol. 2016;8(3)
234–59.

[23] Sahu AK, Sahu NK, Sahu A. Appraisal of CNC machine tool by
integrated MULTI MOORA-IGVN circumstances: an empirical study.
Int. J. Grey Syst.: Theory Appl. 2014;4(1)104–23.

[24] Sahu NK, Sahu AK, Sahu AK. Appraisement and benchmarking of third
party logistic service provider by exploration of risk based approach.
Cogent Bus. Manag. 2015;2:1–21.

[25] Sahu AK, Sahu NK, Sahu AK. application of integrated TOPSIS in ASC
index: partners benchmarking perspective. Benchmarking: Int. J. 2016;2:
540–63.

[26] Sahu AK, Sahu NK, Sahu AK. Appraisal of Partner Enterprises under
GTFNS environment in Agile SC. Int. J. Decis. Support Syst. Technol.
2016;8(3).

http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref1
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref1
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref2
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref2
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref2
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref2
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref3
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref3
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref3
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref4
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref4
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref4
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref5
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref5
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref5
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref5
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref6
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref6
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref7
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref7
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref8
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref8
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref8
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref9
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref9
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref9
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref10
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref10
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref10
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref11
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref11
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref12
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref12
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref12
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref14
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref14
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref14
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref15
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref15
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref16
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref16
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref16
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref17
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref17
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref17
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref18
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref18
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref18
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref19
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref19
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref19
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref20
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref20
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref20
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref20
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref20
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref20
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref20
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref21
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref21
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref21
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref21
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref22
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref22
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref22
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref22
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref23
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref23
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref23
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref24
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref24
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref24
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref25
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref25
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref25
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref26
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref26
http://refhub.elsevier.com/S2288-4300(15)30037-3/sbref26

	Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA
	Introduction
	Experimental investigation, modeling and learning procedure
	Implementation of Neural Network Model
	Implementation of ANFIS model
	Implementation of optimization algorithm
	Result and discussions
	Conclusion
	References




