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Abstract 

Let X be a linear process having a finite fourth moment. Assume .7 is a class of square- 
integrable functions. We consider the empirical spectral distribution function J, .x based on 
X and indexed by ,7. If ,Y is totally bounded then J,,,x satisfies a uniform strong law of large 
numbers. If, in addition, a metric entropy condition holds, then J,,.x obeys the uniform central 
limit theorem. ~ 1997 Elsevier Science B.V. 

Kevwords. Linear process; Stationary sequence; Spectral distribution function: Empirical spec- 
tral distribution function; Periodogram; Uniform central limit theorem; Uniform law of large 
numbers 

A M S  clas'sifications: Primary:  62M15; secondary:  60F17; 60F15: 60G10:60BI1  

1. Introduction 

Let  X = (X,), ~ :, be  a l inear  p rocess  def ined  by 

i 

X t =  ~. cjZt-.i, t ~ ,  (1.1) 
j = 0 

where Z=(Zt) t~ is a sequence of lid random variables with EZ1-0, 
a 2 = var(Zt) < :~ and (c3) is a square-summable sequence of real numbers. Let .2 be 
a class of square integrable functions f c S 2 ( H ) ,  H = [ - ~ ,  x]. For the stationary 
process X we study some limit theory for the empirical spectral distribution function 

J,,x = (J,,.x(f))f ~ ~,  n ~> 1, whe re  

J,,.x(f) = f ( x ) I . . x ( x ) d x  = dJn.x(X), . ( e .Y .  
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Here 

Jn,x()O = f~'~ I,,x(x)dx and l,,x().)= -1 = ~ l e n  i) ' txt 2 ,).@H, 

denote the ordinary empirical spectral distribution function and the raw periodogram 
of the first n observations of the time series X, respectively. 

The periodogram In,x, as an estimator of the spectral density of X, has been studied 
for a long time. The same concerns its integrated version J,,x and various weighted 
modifications of the latter as estimators of the corresponding spectral distribution 
function. Accounts of the general theory are given e.g. in Brillinger (1981), Brockwell 
and Davis (1991), Grenander and Rosenblatt {1957) and Priestley (1981). For fixed 
funct ionsf  the asymptotic behaviour of J,,x(f) has been considered in detail, e.g., in 
connection with the Whittle estimator, one of the most popular parameter estimates 
for ARMA and fractional ARIMA processes (see e.g. Brockwell and Davis, 1991, 
Section 10.8). 

The need to study J,,x indexed by a class of functions arises e.g. when we consider 
a goodness-of-fit test statistic based on the process (J,,x(I[0,al))a~, or on 
Jn,X(l[o,).l/J C( /~ ) [2 ) )2  E H where 

C().) = ~ cje -i':j, :tEM, 
j - O  

denotes the transfer function of the linear filter (Ca). Then ]C(2)f2 is the so-called power 
transfer function which, up to a constant multiple, is nothing but the spectral density 
of X. Classical goodness-of-fit tests such as Bartlett's and the Grenander-Rosenblatt 
type tests in the frequency domain are based on these processes (see e.g. Anderson, 
1993; Bartlett, 1954, 1978; Dzhaparidze, 1986; Grenander and Rosenblatt, 1957; 
Priestley, 1981). The consideration of function indexed J,,x is also motivated by 
goodness-of-fit tests based on J,,x(Iro,aj/I C(2)]2))a~, with estimated coefficients (ca). 

First work on uniform convergence theory for the empirical spectral distribution 
function is due to Dahlhaus (1988) who closely followed the theory of function 
indexed empirical processes developed in Pollard (1984). Moreover, Dahlhaus as- 
sumed that an exponential moment of the stationary (vector-valued) sequence (X,) 
exists which allowed him to derive uniform exponential estimates for the spectral 
distribution function using suitable cumulant techniques. Inspired by results from the 
theory of empirical processes Hosoya (1989) applies a uniform limit theorem with 
bracketing condition to the problems of quasi-likelihood estimation. 

In the present paper we derive some asymptotic theory for J,,x indexed by a class of 
f u n c t i o n s f e :  such that f[Cf2ey2(ll). We endow Y with a pseudometric space 
structure inherited from £5 '2. The set Cgu(:) of real-valued, uniformly continuous and 
bounded functions ~ defined on Y and equipped with norm 

II~b[[, = supl~b(f)[ 
/~  .5,v 

is a Banach space. If, in addition, g is totally bounded then ~u(~) is separable. Then 
the process Jn,x has almost all sample paths in c6,(.~) (see decomposition (2.1)). We 
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prove a central limit theorem (CLT) in ~ , ( ~ )  only under a fourth moment  condition 

and under an entropy assumption weaker than in Dahlhaus (1988). This means we 

show the convergence 

/-- d 
x/  n(J,,.x( f ) - Jc(.f))t~ "* -+ (Gc(  fl))l~ ~ in ~, ,(~),  

where 

,It{ J ' )  = J ( f l  C] 2) = cr2 ~ ./'(x)l C(xiI 2 dx, r e , Y ,  
dl I 

denotes the spectral distribution function indexed by .¢  and 

Go(f) = 6f.flCl2), . fe ,y,  

is a Gaussian process with almost all sample paths in ~,(,N). 
Under a fourth moment  condition and under the total boundedness of.~', we prove 

a strong law of large numbers (SLLN) for J , .x  in cg,,(,W), i.e. 

HJ,,.x Jcll~ ~'%0. 

Our p roog  strongly depend on methods developed in probability theory in 
Banach spaces (see e.g. Ledoux and Talagrand, 1991) and for random quadratic forms 
(see e.g. Kwapiefl and Woyczyflski, 1992). We also make use of a decomposition of the 
form 

J , , . x ( f )  ~- J..z(,ftcI ~) 

uniformly f o r f ~ , ~  which allows to reduce the limit theory for the empirical spectral 
distribution function of the stationary sequence X to the limit theory for the empirical 
spectral distribution function of the lid sequence Z. 

The paper is organized as follows. In Section 2 we introduce some notation and 
assumptions used throughout. Our main results (CLT and SLLN for J , . x )  arc 
presented in Section 3. Some auxiliary results are collected in Section 4. In 
Sections 5 7 we prove the CLT, the weak law of large numbers (WLLN) and the 
SLLN for the empirical spectral distribution function. 

2. Notation and assumptions 

Throughout  ,~- is a subset of the weighted S 2 spaces 

,~"2(H, C ) =  J ' z H - - + ~ ;  II.fll2.c = f 2 { . \ - ) l c ( x ) l  4 d X  < - ~  . 

We also write $ 2 ( / / ) =  ~ 2 ( H ,  l) and 11"112 = 11"112.1. We note that elements of 
2~2(H,C) are functions rather than equivalence classes. So 11112.c induces 

a pseudometric d 2 . c ( f ,  ,q) = I l l -  0112.c on 3 .  We also write d2 = de.l. 
Given a pseudometric space (,Y,d) and ~: > 0, the c-covering number NO:, .~,v el) of 

(.N, d) is defined as the minimal integer m such that there exist functions fl  . . . . . .  1;,, e_ .< 
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with sup:  ~.~- mini_ ~ ...... d( f ,  f/) < e. Recall that (J~, d) is totally bounded if and only 
if N(e, J ,  d) < ao for each e > 0. 

Define functions a,,c = (a,,c(f)):~: by 

= fnf(x) lC(x)[2cos(xt) dx, t e ~e, f e  Y ,  at ,c( f )  

and set at = a,,l. We note that at and at,c belong to <g,(o~) when S is equipped with dz 

and d2,e, respectively. Let 

7,,x(t) = n s~x XsX~+ltl' t c ~ ,  

denote the sample covariances of the vector (X1 . . . . .  X, )  with the convention that 

V,,x(t) = 0 for [ t l > n. 
We frequently make use of the following decomposition of the empirical spectral 

distribution function J,,x: 

J,,x = 7,,x(O)ao + Q,,x, (2.1) 

where 

1 n - I  

= -  Z a,-~XtX~ = 2 Z atT,,x(t). Q 
n,X nl<~s#t<~n t = l  

We also write 

Q,(A, B) = 1 Z at-,A,B~ 
n l 4 s ~ t < ~ n  

for any sequences of random variables A = (At), B = (B,). Since a , ~ ( ~ ,  ~ )  for 
each t, the decomposition (2.1) shows that J,,x has almost all sample paths in 
% ( : ) .  

By c we denote a generic constant whose value may change from line to line or even 
from formula to formula. 

3. Main results 

In this section we present our main results, a CLT and an SLLN for the em- 
pirical spectral distribution function J,,x indexed by a class of functions 
Y c 5°2(/7, C). 

Theorem 3.1 (Central limit theorem). Let  X be a linear process (1.1) with i.i.d, innova- 

tions Z such that E ZI  = 0, vat(Z1) = o "2, E Z  4 < oo and with coefficients (cfl satisfyin9 
~jo~= 1 cZjj 3/2 + ~ < co for  some ~ > O. Consider the empirical spectral distribution function 

J,,x indexed by a subset ~ o f  de (F l ,  C). Assume that sup/,~ :llf][ 2 < ac and 

f~ lnN(e ,  ~-, d2,c)dg < ~ .  (3.1) 
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Then J,,x satisfies the CLT  in c6u(ff), i.e. 

.,/~(J..x- Jc) L Gc, 
with Gaussian limit process Gc = (Gc(f))r~_ ¢ given by 

Gc = Go(var(Z~))l/2ao,c + 2a 2 L G~at,c, 13.2) 
t = l  

where (Gt) are i.i.d, standard normal random variables. 

Remarks .  (1) If EZ~ = ~ the C L T  of Theo rem 3.1 does not remain valid for X = Z 
even for f i xed f ( s ee  Klf ippelberg and Mikosch,  1996). 

~ 2 - 3 , 2 + s  (2) The condi t ion ~j= l c j j  < ~ rules out long-range dependence as e.g. for 
fractional A R I M A ( p , d ,  q) processes where cj =jd ~(1 + o(1)) as , j ~  ~c for some 
d~(0,  l,/2). For  f =  1/ICI 2, Kokoszka  and Mikosch  (1997) derived the limit theory of 
J, ,x(f)  both in the finite and  infinite var iance cases. 

(3) The c a s e f  = 1 was treated in Anderson  (1993) who also derived the asympto t ic  
distr ibution of var ious goodness-of-fi t  test statistics. Dahlhaus  (1988) obta ined 
Theo rem 3.1 for a vector-valued s ta t ionary  process assuming an exponent ia l  m o m e n t  
condi t ion and an en t ropy  condi t ion which cor responds  to square integrabili ty of 
In N(s, ,Y, d2,c). He also ment ioned  (his Remark  2.6) that, for Gauss ian  processes, his 
condi t ion can be replaced by integrabili ty of ln(s: 1N(c,, ~T, de.c)). The cases f =  1 and 
f =  I/[CI 2 were treated in relation to goodness-of-fi t  tests by Bartlett  (1954), see also 
Bartlett  (1978), and by G r e n a n d e r  and Rosenbla t t  (1957). We refer to Priestley ( 198 l t 
for a survey on these results. 

(4) We reformulate Theorem 3.1 for the particular case that J,.x is indexed b)' 
f - /  ~ - -  functions of the formf/ IC[ 2. Let ~T c L~2(/7) and ,Y,c = t . l / lCl ' : fe .~ '}  where we 

assume that I C I Z > 0  on H. Then .¢~.c  Y2(II, C). We also assume thal 

sup~,~ < II,qll2 < '~ and that j'~ln N0:, So ,  dz)de, < ~ .  Then \/n(J,,,x - J) L G in ~,,1.~\.) 
(5) We write 

Go(f) = G(.f[CI 2) = 2a 2 L G,a,.c(f), .f~.~f. ~3.31 
t = l  

Then (~c is a Gauss ian  process with covar iance  s tructure 

EGc( f)Gc(g) = 4a 4 L a,.c(f  la,,c(g), .tl .q e .~. 
t = l  

Applying Parseval ' s  formula  (see Zygmund ,  1988, formula  (1.13) on p. 37) and writing 

.~(x) = ½(f(x) + f ( - x ) ) ,  we obtain  

~dc(.f)dc(,q) 

4 2 / ' 1  i Ijt t t tl ,x,i 
21rcffff(x)lC(x)12dx2~fng(x)lC(":)12dx)" 
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If 9 is a class of even functions this is the covariance structure (up to a constant 

multiple) of a generalised Brownian bridge. Moreover, 

= (var(Zf) - 20~) 
s 

f(x)1 C(x)l’dx 
s 

g(x)lC(x)12 dx 
n II 

+ 47ra4 fl(x)g(x) 1 C(x)14 dx. 

If F is a class of even functions and Zi is Gaussian the first summand in the latter 

relation vanishes and Gc has then the covariance structure of a generalized Wiener 

process. 

(6) The entropy condition (3.1) is satisfied for many classes of functions. For 

example, if 9 is a Vapnik-Cervonenkis class (see Dudley, 1984; Pollard, 1984, 

p. 27) then it follows that N(E, 9, d,,,) < ceYw for some positive w > 0 and hence 

(3.1) holds. For a fixed order (p, q), the spectral densities of causal, invertible 

ARMA(p, q), processes form a VC-class since their graphs actually constitute a 

finite-dimensional vector space. A collection of applications of Theorem 3.1 is pro- 

vided by Dahlhaus (1988). These include the CLT for Whittle’s estimate and 

the limit distribution for goodness-of-fit test statistics of Grenander-Rosenblatt 

type based on the spectral density with estimated parameters. We mention that 

the results below also prove the weak and strong consistency of these 

statistics. 

(7) It is common use to give sufficient conditions for the uniform CLT over a class 

9 in terms of the intrinsic metric p(f; g) = (E(Gc(f- g))1’2 for A g~9. For the 

pseudometric d2,C, using Parseval’s formula (see Remark 5 above) and the representa- 

tion (3.2) we have 

min((var(Z:)“‘, 0’) &d&f, 9) d ~(f, g) 

d max((var(Z?)‘12, cJ’)fi&c(f, g), 

where the first inequality holds for even functions f, g E Y2(n, C) and the second 

one is satisfied for any functions f, g E z2(17, C). Therefore, by Dudley’s theorem 

(cf. Theorem 11.17 in Ledoux and Talagrand (1991)), if the class F c p2(Z7, C) 

satisfies 

I 
1 

(In N(e. F-, d2,C))“2 < m 
0 

then the Gaussian process Gc has a version with almost all sample paths in 

C,(F). 

In applications, a2 is in general not known and has to be replaced by an 

estimator. In this case the CLT of Theorem 3.1 has to be modified. For the con- 

struction of the centring process in the CLT we closely follow Kltippelberg and 
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Mikosch  (1996). There  it is shown that  this cons t ruc t ion  also works  for infinite 

var iance processes. 

Theorem 3.2. In addition to the conditions of  Theorem 3.1 assume that 1/[CI e ~ ~'-(I1}. 

Then the empirical spectral distribution,function J,,.x sati,@es the CL T in ~(,,,(,~}. i.e. 

where 

T , ,  = (2rt) 1Jn,x(1/IC]2 ) 

and ffac is the Gaussian limit process defined in (3.3). 

The limit (~c still depends on the variance 0 -2, It follows as in the proof  of 
Theo rem 3.2 that  T.  ~ a 2. Thus  we may  conclude that  the relation 

W./~-I(T,, 1J,,.x o" 2Jc) a O" 2(~ C in %,(~W} 

holds. The  quant i ty  T ,  1J,,x can be interpreted as self-normalised empirical  spectral 
distr ibution function. Not ice  that  the quant i ty  T~ ~J,,.x - a 2Jc and the limit cr ~Gc 
do not explicitly depend on the variance o z . 

Next  we give the laws of large numbers  for the empirical  spectral  distr ibution 
function. 

Proposit ion 3.3 (Weak law of large numbers).  Let X be a linear process (1.1) with iid 

innovations Z such that EZ1 - O, var(Z1) = a 2 < ~, and with coefficients (c i} sati@,inq 
y~f= l c~j < < .  Consider the empirical spectral distribution function J,,x indexed by 

a subset ,~- ~( S 2 ( H ,  C). Assume supt~ , [[f l l2 < ' m  and ,~  is totally bounded. Then 

J,,.x sati.shes the W L L N  in ~ ( , ~ ) ,  i.e. 

HJ,,,x J e l l <  P 0. 

Theorem 3.4 (Strong law of large numbers).  Let  X be a linear process (1.1) with iid 

innovations Z such that EZ1 = 0, var(Z1) = a 2 and EZ{  < )c. and with coeJficients (c i) 
~ cgj 3/2 < oc. Consider the empirical spectral distribution function .l,,.x in- satisfying 3~ ~: 1 J 

dexed by a subset ,~  of  SFZ(H, C). Assume sup1 ~ , IIfll2 < ~ '  and .Y is totalh' bounded. 
Then J,.x sati,slies the S L L N  in c6',(,7), i.e. 

I I , J . , x -  J~.ll~ .... , o. 

Remarks  (8). The  S L L N  of Theo rem 3.4 seems to be new. The fourth m o m e n t  
condi t ion on Z is certainly not  opt imal .  We guess that  the existence of the second 
m o m e n t  is sufficient. 

(9) A W L L N  for J,.x under  an en t ropy  condi t ion is a consequence of Dahlhaus" 
(1988) results. However ,  it follows f rom Propos i t ion  3.3 that  total  boundedness  of Y is 
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sufficient. This agrees with the uniform law of large numbers for sums of independent 
random variables (see Dudley, 1984). 

(10) A careful study of the proofs in Sections 5-7 shows that, in the results 
formulated above, we may replace the periodogram l,,x by 

2 

~ , 1 e,(2)X, 
I.,x(Z) = n t= 

where (e,) is any orthonormal class of complex-valued functions o n / / .  Indeed, the 
proofs depend only on the use of Parseval's (or Bessel's) formula and on the ortho- 
gonality of the cosine functions. The coefficients in the limit processes have then to be 

replaced by ~nf(x)Re(e,(x))dx. 
(11) The proofs in Sections 5 7 are based on limit results for the cg,(~,~)-valued 

random quadratic forms Q,,z = n-  lZl  ,<,~ , ,  ~ ~ a,-~ZsZt. The CLT, the WLLN and 
the SLLN for this structure might be of independent interest. 

4. Tools 

We collect some auxiliary results which are needed for the proofs in the following 
sections. 

Lemma 4.1. Let (Ci) be a sequence of i.i.d, symmetric random variables and y > O. 
I f  EIC~l < ac then there exist constants cl = cl(y) and Xo such that 

P CiI{lc, l<.y,,l>x ~<e -<~, x ~ > x o > 0 .  (4.1) 
i 

I f  EC 2 < Go then there exist constants c2 = c2(y) and Xo such that 

e \x /n i=lCiI{Ic '  r.<3,v~ I > x ~ x/> Xo > 0. (4.2) 

Proof. An application of Prokhorov's  exponential inequality (cf. Petrov, 1995, p. 77) 
yields the estimate 

ni~_ 1CiIiic~l<.~ < > x <~ exp - ~Tyarsinh (yxnZ)~ P 
\2B(."JJ ' 

where B~ 1~ = nvar(Cll{ic, i .<yJ, but B(n 1) ~< yn2EIC1 ]. Similarly, 

P ( +  ~ CiI{,c,l<~y.~ } > x  ~<exp ~yyarsinh\eBe,]  j ,  
\ x / n i = l  

where B~ 2) = n var(ClI{rCll ~< Yx/n} ) ~< nEC2" This proves the lemma. []  
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The following chaining lemma is due to Pisier (1983): 

L e m m a  4.2. Let  t~ be a convex, increasing,function on [0, ,~) such that limt~ ~. Oft) = -s, 
and ip(O) = O. Let  S be a separable process on a pseudometric space (,~, d) with property 

E@ ( I S ( f ) - -  S_(g)l~ <~ 1, Vf,  g ~ Y  with d(f ,  g) ~ O. (4.31 
\ d(.l; g) ) 

Then 

E sup I S ( . / )  - S(g)l <~ 8f~-l(N(~:,,~,d))d~:, 
where D -- sup{d(f, g) : f  g6  ~ }  and O-1 denotes the inverse o f  ~/J. 

Now we give exponential tail inequalities for quadratic forms. 

Lemma 4.3. (A) Let (at) be a Rademacher sequence and (b,s)t.s-L2 .... be a double 

sequence from ~,,(.~-) such that btt= O for  each t and b,s = b~t. Let  

and let M, m be positive constants such that 

P > M < - -  P btse  s > m 2 < - - .  
\11~=1 1 64' 16 S ~ t S = 1 5 z 

Then, for  each y > O, 

P ~ btset~ > M + m y + ~ r y  2 ~20e-?:~44 
t = i s = l  . N  

(B) Let  (ct) be a Rademacher sequence and (b~),,s-1.2 .... be a double sequence ~f real 

numbers such that b .  = 0 for  each t and bts = b~,. Then there exist positive constants 

ql, q2 such that, for  each y > O, 

P ~ b2~ > y  <~qle "~" 
I<-;s,t~.-n t s 1 

Part A is given in Ledoux and Talagrand (1991, Theorem 4.11). The proof of part B 
can be found in Pisier and Zinn (1977, p. 292). 

Chow and Lai (1973) proved the following lemma for real-valued random variables. 
The proof remains the same for random elements with values in a Banach space (see 
e.g. Lemma 3.4 in Mikosch and Norvaiga, 1987). 

L e m m a  4.4 Let  (U,) and (W, )  be two sequences o f  random elements with ralues in 

a Banach space. Assume that U, + W,, a~ O. I f (Ul  . . . . .  U,) and W ,  are independentJor 
every n and W,  P 0 then W ,  a~. O. 
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5. Proofs of Theorem 3.1 and 3.2 

First we reformulate and prove Theorem 3.1 for the i.i.d, sequence Z: 

Proposition 5.1. Assume that Z is a sequence of iid random variables with E Z  1 = O, 

var(Z1) = cr 2 and EZ~ < oc. Let ~ ~ ~2(H) be such that 

~ln N(v,, S ,  dz)de < oQ. 

Then J,,z satisfies the C L T  in cg,(~), i.e. x / n ( J , , z -  J) a G with Gaussian limit 
process G given by 

G = Go(var(Z2))l /2ao + 20- 2 ~" G~a,, 
t = l  

where (Gt) are iid standard normal random variables. 

For ease of notation we a s s u m e  0 -2 = i in the sequel. We prove this proposition by 
a series of lemmas. The first one characterises convergence in distribution in the 
Banach space c~,(~). A proof for the path space (~ (Y)  can be found in Andersen and 
Dobri6 (1987) (their implication (2.12.3)o(2.12.1) of Theorem 2.12), and the same 
arguments work for the path space C,(ff). Andersen and Dobri6 (1987) attribute this 
result to Hoffmann-Jorgensen; a textbook treatment can be found in van der Vaart 
and Wellner (1996). 

Lemma 5.2. Let (if ,  d) be a totally bounded pseudometric space. Assume that the 
processes S, = ( S , ( f ) ) f ~  have almost all sample paths in c~,(y). Suppose the following 
two conditions hold: 

(a) The finite-dimensional distributions of(S,) converge. 
(b) (S,) is eventually uniformly d-equicontinuous, i.e. for each e > 0 

l i m l i m s u p P ( s u p l S . ( f ) -  S.(g)[ > e) = O, 
,LLO n ~ oe \ .~(,~) 

where i f ( b ) =  {(f, g): f g ~ f f ,  d(f, g ) <  6}. Then (S,) converges in distribution to 
a process with sample paths in cg,(~-). 

In view of this lemma we first have to check the convergence of the finite-dimen- 

sional distributions of the process x/n(J,,z - J). 

Lemma 5.3. The finite-dimensional distributions of ~fn(J,,z - J) converge to the cor- 
responding ones of G. 
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Proof. By the Cram6r-Wold device (see Billingsley, 1968, Theorem 7.7) and by 

linearity of the coeffÉcients at it is sufficient to prove, for each.le ~ ,  

x / /n(J , , . z ( f )  - J ( f ) )  ~ G ( f )  = Go(var(ZZ))~"aao( f ) + 2 ~ G,at( f ), (5.1) 
t--.1 

where (G,) are iid standard normal random variables. Choose a n y f e  ,T. To show (5.1) 
we use the decomposition (2.1). By the CLT for vector-valued martingales (cf. 
Theorem 3.33 on p. 437 of Jacod and Shiryaev, 1987) we obtain, for each {ixed 
M>~I,  

/ - -  

\/n(7,,.z(0) 1, ()',,.z(t)),=l. .,u) L ~- 1,2 - .. ((var(Zl)) ' Go, (Gt)tr l  ....... xi), 

given that E Z  4<oc , ,  E Z  2 =  1, EZ1 = 0 .  For every M~> I we conclude with the 
continuous mapping theorem (see Billingsley, 1968, Theorem 5.1) that 

M 

~/n(;.',.z(0) -- l )ao( f )  + 2 ~ (x~nnT,.z(t))a,(f)  
t = l  

M 

Go(var(Z~))~:2ao( f )  + 2 ~ @ a t ( f ) .  15.2) 
t = l  

In view of the representation (2.1) and by (5.2) it now suffices to apply a Slutsky 
argument (see Billingsley, 1968, Theorem 4.2), i.e. we have to show that, for every 
c > 0 ,  

(s ) lim l imsupP ~ 7, , .z( t )at( f )  > c  = 0. (5.3) 
M -+ n ~ t = M + 1 

By Oebyshev's inequality and by orthogonality of the ;'..z(t), the probability in the 
latter relation is bounded by 

t l -  J -  
- - 1  1 1 " 1 1 Z - at ( f )  Y, < 2 ( f ) .  r:,,  (n t ) a 2 ( f )  <<. ~ ~. 2 

; t = M + l  ~; t = M + l  r; I = M + I  

An application of Parseval's formula yields that the right-hand side of the latter 
inequality converges to zero as M --* oc. This proves (5.3) and hence (5.1). This shows 
the convergence of the finite-dimensional distributions, D 

We introduce some further notation: Let (ci,)t ~ y be a sequence of real numbers such 
that 

c~t 2~< 1, a t = c ~ - , , t ~  and a o = 0 .  
t e J  

Moreover, we write 

Yt~ -  y}n) = Zti , iz ,  l<~,,,~, ' _ E Z I l I ; z , I~ , ,~ } ,  t = 1 . . . . .  n, 

Y , =  f~n) = ZtI, iz ,  l>n,~ : - EZlI , , z ,q>, , ,~ , ,  t =  1 . . . . .  n. 

( 5 . 4 )  

(5.5) 



96 T. Mikosch, R. NorvaiJa/Stochastic Processes and their Applications 70 (1997) 85 114 

F o r  a sequence of real numbers  b = (b,) we write 

l 1 
0 , ( b ) =  c- I x / n  E 5t-sb~bt, 0 " 2 ( b ) : -  E 5{-sbsbt. 

~ s , t  ~ n  n 1 <~s,t ~ n  

F o r  fixed c > 0, we define a non-negat ive,  increasing, convex function 0 with ~,(0) = 0: 
On  [ c -  1, oo), we have O(x) = e cx - e -  1 and, on [0, c -  a], we construct  ~ in the same 

way as ~ ,  before L e m m a  2.1 in Arcones and Gin8 (1995). 
The  following l e m m a  deals with (4.3) for Q, (Y )  where Y = (Y,). It will imply the 

eventual  uniform equicont inui ty  of  x/n(J, ,z  - J) via an appl icat ion of L e m m a  4.2. 

L e m m a  5.4. There exist constants ql, qz > 0 such that 

E e x p { q l [ Q , ( Y ) [ }  ~< q2 <oo,  n >~ 1. (5.6) 

Proof.  Let Y'  be an independent  copy of Y and I 7 = Y - Y'. We apply  a symmetr isa-  
t ion a rgumen t  for quadra t ic  forms. Not ice  that  E(0,(17)[ Y ' ) =  EQ,(Y) .  Then the 

convexi ty  of  the function ~ implies 

E e x p { q l l Q , ( Y ) [ }  <~ c + cE~(c[0,(17)1). 

Let e = (et) be a sequence of iid R a d e m a c h e r  r a n d o m  variables independent  of  I 7. 
Then I 7 and e17 = (e,17,) have the same distribution. Hence,  to show (5.6), it suffices to 

p rove  that  

I(x) = P(l(~,(e17)[ > x) <~ ce -°x, x > O, 

for some cons tant  c > 0. Wri t ing 172 = (17t 2) we obta in  

I(x) = P(10,(e17)l > x, 02(172) <~ x) + P([Q,(eY)I  > x, 0 2 ( I  72) > x) 

= 11 (x) + 12(x). 

Since 0.2(172) is uniformly bounded  by a cons tant  c', 1 2 ( x ) = 0  for x ~>Xo, 
say. Condi t ioning  on 17 and  applying par t  (B) of L e m m a  4.3, we conclude that  for 

X ~ XO~ 

/l(X) = E:7(I{~(~)~< x} P([O,(E17)[ > x] 17)) 

cEf(e{oA(?2)<~c'}exp{ (~)2 (~2))1/2}) 

c e - %  x >~ Xo. 

This proves  the lemma.  [ ]  

Recall the definition of Y = (Yt) and I 7 = (17t) f rom (5.4) and (5.5). 

L e m m a  5.5. The following relations hold as n ~ co: 

I l x ~ Q , ( y ,  17)11J L 0 and [[x/~Q,(17, Y)[[~ ~ 0. 
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Proof .  For each e > 0 we have 

P( IIv/~Q.(Y, 17)11~ > c) 

<~ P ~ Zd,,iz,! >,,"~I at-~Y, > v/no/2 
s= 1 t = l,t # s 

+ P  EZlI,iz,l>.,q[ at .~Y, > no/2 
~ = 1  r =  l , t  yes 

=11 +•2. 
Then 

9 7  

11 <~P(IZtlI,Iz, I>,,,.~: > 0  for somet~{1 . . . . .  n)) 

<~ nP(IZll > n 1/4) = o (1 ) ,  

and, by the Cauchy Schwartz and the Markov inequality. 

12 <~ P cn-5/4 (Ys+, + >c/2  
l = l  

<~ P cn -,'4 ~ a~ ~ ~ (Ys+,+ YD) ) >~:/2 
t = l  .~  \ t = l  \ s = l  )2 

~ :  2crt-s/2t2E (Y~+,+ Y,) 
\ s ~  1 

~, 2 c n  1/2 

This proves the first statement; the second one can be proved analogously. [] 

Proof of Proposition 53. By Lemmas 5.2 and 5.3, it suffices to check the eventual 

uniform equicontinuity of V,,z = ~n(Jn.z - J). By (2.1), for X = Z we have for each 

IV.,z(f) - V.,z(g)L 

= \ /n lT . , z (0 ) -  l l x / ~ l l / -  ~112 + .,fnlQ.,z(f) - Q..z(g)l. (5.7) 

With Y and Y as in (5.4) and (5.5) we obtain 

Q.,z = Q.(Y, Y) + 2Q.(I7, Y) + Q.(Y, Y). 

In view of Lemma 5.5 and by (5.7) it suffices to show that, for each c > 0, 

lim lim sup P ( . , ~  sup ,Q, , .r( f )-Q. ,r(g) ,>e)=O. 
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We apply the chaining Lemma 4.2 to Sf, o = xfn(Q,,r(f)  - Q,,r(g)) with 

f g ~ ' ( 6 )  = { f  - g" f g E Y ,  d2(f,  g) < 6}. 

Note that, for each t: > 0, 

N(~, ~- ' (6) ,  d2) ~< NZ(e/2, Y,  d2). 

The function ¢ introduced before Lemma 5.4 satisfies the conditions of 
Lemma 4.2. By Lemma 5.4, (4.3) holds for S f, o. This concludes the proof of 
Proposition 5.1. [] 

To prove Theorem 3.1 we need the following decomposition for the periodogram of 
the linear process (1.1): 

I,,x(2) = 1C(2)121. ,z( ,~)  + n-lR,(2), 2~H, (5.8) 
where 

R.(2) = C ( 2 ) L . ( 2 ) K . ( - 2 )  + C ( - - 2 ) L . ( - 2 ) K . ( 2 )  + IK.(,012, (5.9) 

L,(),) = ~ Z,e -i~', Kn(2) = ~, c je-UJV,  j()O, 
t=l  j=0 

n j 
U.j(2) = ~ Z,e - i ' u -  ~ Z,e -i'~'. 

t = l - j  /=1 

Relation (5.8) follows by noting that n-l lL,(2)l  2 = l,,z(2) and 

nI,,x(2) = ]K,(2) + C(2)L,().)] 2. 

By (5.8) we may write for each f 

~ ( J . . x ( f )  -- J c ( f ) )  = x/n(Jn,z( f lC] 2) - J(UICI2)) 

+ n-  1/2 ~nf(x)R.(x ) dx. (5.10) 

Therefore to prove Theorem 3.1 it is sufficient to use Proposition 5.1 and the 
relation 

~nn SUp f f ( x ) R , ( x ) d x  e O, 
rE~ IJn 

whose proof is given by the following two lemmas. 

oo c2j3/2 Lemma 5.6. Assume supt~y [[fl/2 < c~ and 11 = ~j= 1 J < 00. Then 

Esup [ f (x) lK, (x)12 dx  <~ c, n >1 1. 
.IE "7 Ig n 

In particular, 

sup f n f ( x ) l K . ( x ) 1 2 d x  = O e ( 1 ) .  
.f~ .~ 

(5.11) 
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Proofi We have by the Cauchy Schwartz inequality 

ft/'(x)[Kn(x}' 2 dX <~ f, f 2(?¢)dx f, lK.(x)l~ d-v. 

Since sup:~ ~ 11./112 < ~-0 it suffices to show that 

E ( I K,,(x)]4 dx ~ c, n >~ 1. 
21 I 

Observe that 

{5.12) 

E ]K,,(x)14dx <~ c E ca e- ~x.i y" Z~e i,:~ dx 
1 / s =  1 j 

+ c ie - i x j  Zs e-  i.,.~ dx + 
I j= 1 s=n j+ 1 ~ 1 . j = n +  1 

, 'z 4 

t i e  ix.j ~ Z se- ix.~ d \  
x = 1 

+ cf i - i~  ~ Z~e-iX~ dx 
/ j = n +  1 s = 1 - j  

= c(I1 + 12 + 13 + 14). 

We frequently make use of the identity 

k ',,2L 
c.ie- = c.~ + cos(x./) crG+i, t5.13) 

, =  j=s+ 1 j=s+ l 1 r=s + 1 

By the Marcinkiewicz-Zygmund and the Minkowski inequality, using the ortho- 
gonality of the cosine functions and (5.13), 

. o L i e 'x j4dx f ,  ( " L  1 L cie- 'Xi2) 2 I1 = l. E ~ Z~e-iX~ c ~ c dx 
d II s = l  - n  j= l - s  l \ s = O  ] j=s~- I 

( ~ 2 j ) 2  f [  ( n L 1  n j - I  ,, i ) 2 d x  
~<c c , + c  c o s ( x j )  y ,  c , c , .  i 

\ j =  1 / 1 \ j =  1 s = O  t = s 4  1 

~< c[~ + c c,,', +,i 
j= 1 t=s+ 1 

° '  V- 

j = 1 

An application of the Cauchy Schwartz inequality and the assumption I~ < :_ yield 

n n - - j  n - - j  

I1 ~ cl  2 + C 2 Z C 2 t 3 / 2  ~ C2+-J( l - t - j ) l / 2  
j - l t - I  t - 1  

j = 1 t -  j 

The same ideas apply to the estimation of 12, I3, I4. We omit details. [] 
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c 2 j 3 / 2  + L e m m a  5.7. Assume that supj~.# [ I f  112 < oO and ~ ~= a J < oo for some e > O. 
Then (5.11) holds. 

Proof. Lemma 5.6 and by (5.9), it is sufficient to prove that 

l~sup ~ f(x)C(x)L,(x)K,(-x)dx • O. 
t J,, 

Since (5 ~, d2,c) is totally bounded, for every 6 > O, we find functions f l  . . . . .  f , , ~ Y  
such that 

sup rain d2,c(ff.) < 3. 
f ~  i=1 .... ,m 

We have by the Cauchy-Schwartz inequality 

f f(x)C(x)Ln(x)Kn(-x)dx ~<~c6sup[[fl]2fn]L,(x)K,(-x)12dx 
1 j e  

+ c max ~ fi(x)C(x)L,(x)K,(-x)dx 2. 
i=1, ...,re[rill 

Since supi~.~ ]]f[[2 < oo it suffices to show that, for e a c h f e ~ ,  

= n-  x/2 fnf(x)C(x)L,(x)K,(_x) dx = op(l), (5.14) I(f)  

I = n -a f ,  IL,(x)K,(-x)l 2 dx = Op(1). (5.15) 

We have by the Cauchy-Schwartz inequality and by orthogonality of the cosine 
functions 

12 <~ IZ,,z(x)dx [K,(-x)14 dx <~ c ~ 2 7,,z(t) ]K,(- x)[g dx. 
t=O 

But . -  1 2 Y~=o 7,,z(t) = Op(1), and ~nlK,(-x)14dx = Op(1) in E~t=o 7,,z(t) ~< c, hence ,-1 2 
view of (5.12). This proves (5.15). 

Now we turn to (5.14). We have 

Ell(f)12 <~ cn-'E t= ~ ,=o ~ ZtZ_~ j = s +  ~ 1 ci fn f(x)C(x)e-ix(~+'-j,dx 2 

+ cn-lE ,=~ ~=~-, Z,Z_~ j =. + ~+~ 1CJfn f(x)C(x)e-'~'s+'-j,dx z 

cn-  i i i 
t=ls=O j=s+l 

1E ~" ~ ~ fH dx 2 + cn- ZtZ~ c~ f(x)C(x)e -i~('-J-') 
t= 1 s= 1 j = n - s +  1 
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+cn- lE  ~. ~oZ,Z ,~ cj f(x)C(x)e -i:'(t J+~dx 
t= l  s= j=n+s+l 1 

= C(I 1 + 12 + 13). 

Using the Cauchy Schwartz inequality we obtain for some c > 0 

l l ~ # l _ l k k I ( ~ , . 2 ; l / 2 + e ) ( ~  1 ; 2)]  t j f l  I l j l , 2 +  e f(x)C(xje ix{s+t J-')d.x 
t = l s = O  j l = S + l  j -=s+ - / 

• • - f(x)C(x)e-iX~,-~>dx ~(_' ~ (_2S3/2+~ ?1 I k ~ 1 , ~  /" 
,s=l t = l j  

CF/- I n  I f(x)C(x)e -ix' + /'(x)C(x)e i~' l 

t=0 l . J ,]1 +2~: 

i ~ f, fO'~)c(x) e'x~ 6.42 +on  -1 ~ ( j + t )  1:2-~ " • 15.16) 
t=l j=n t + l  

~<cn -1 f(x)C(x)e -i~t dx + "Jlt f(X)C(X)e ixt dx 2] f 

~-¢"1-1 k ~ f l  J ( x ) C ( x ) e i X J d x  2. 
t = l j = t  I' 

The right-hand side converges to zero as n ---, 3c since, by Parseval's formula, by the 
Cauchy-Schwartz inequality and since sups~ ~ Ilfll2 < oc, 

( f(x)C(x)ei~Jdx 2_~_ 2~ f, f2(x)lC(x)[2 dx ~< 2rt[[fll2llfll2.c <~ c <'s~. 
j = - < ~  , I 1 

The estimation of I3 follows the same patterns and is therefore omitted. 
The term 12 can be bounded as follows: 

=n k f l ... 2 12 <~ cn- 'E ~ (Z~ -- EZ 2) cj 7f(x)C(x)el~Jdx 
1 j=n- t+ 1 

~=l j= , - ,+ l  / (x)C(x)e'~jdx 

1El  ~ • fs dxa" +on- Z,Z~ ~ cj f (x)C(x)e-~. .s-,~, 
~t#s<~n j=n s + l  / 

Then similar moment estimates and multiple use of the Cauchy-Schwartz inequality 
yield that 12 ~< c. This proves (5.15) and concludes the proof of the lemma. [] 

Proof  of Theorem 3.1. Let ,~-c = {flCI2:f~,7}.  Then N(c, -~c, d2) = N(~;, .~, d2,c) for 
each c > 0. Hence, by Proposition 5.1, we have 

~,~nn(J,.z(fl e l  2) - -  J(f l  CIz))t~ f ~ (G(f] Cl2))i~ ~ = (Gc(f))r~#. 
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Now the statement of Theorem 3.1 follows from the representation (5.10) and from 
Lemma 5.7. [] 

Proof  of Theorem 3.2. In view of decompositions (5.8) and (2.1) for X = Z, by Lemma 
5.7, we may conclude that 

=N~(Jn,z(flCl2)--~Jn,z(l)-~J(f[C[2)) 
1 fn J( f lC[2)  ( R ( x )  I(x)e.(x)dx 

n - 1  

= 2 x ~  • a,,c(f)y.,z(t) + op(1) 
t = l  

uniformly fo r f~  J~. Now the same arguments as for the proof  of Theorem 3.1 apply 
showing that #. ~ Gc in cg.(y). [] 

6. Proof of Proposition 3.3 

We first formulate and prove Proposit ion 3.3 for X = Z: 

Proposition 6.1. Assume that Z is a sequence of lid random variables with EZ1 = 0, 
va r (Z0  = a 2 < ~.  Let ~ c ~ 2 ( H )  be totally bounded. Then J,,z satisfies the W L L N  
in (~,,(Y), i.e. ]]J,,.z -- J[[~ ~ 0. 

For  ease of notation we always assume 0 .2 = 1. 

Proof. By (2.1) for X = Z, we have for e a c h f c ~  

IJ, ,z( f)  - J ( f ) ]  ~< ~ sup]l f i le 17,,z(0) - II + [Q,,z(f)]. 
[ E  . ~  

Hence, by the SLLN for 7,,z(0), it is sufficient to show that, for each e > 0, 

limsupP(l[Q,,z[l~ > E) ~< e. (6.1) 
n ~ 3  

Fix e > 0. Since { f l C l Z : f e ~ }  is totally bounded there exist functions f l  . . . . .  f m 6 ~  
such that 

sup min [[f  -- fiH2 < l g  3/2. 
. f E . ~  i -  1, . . .  , m  
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Therefore  

P(IIQ,.zl I~ > ~) 

<~ P(IQ..z(J))I > ~) + e sup I O . , z ( f )  i Q.,z(g)l  > ~ , 
i=  1 \ . ~ ( c  2.'4~ 

(6.2) 

where ,~-(6) = {(f, g):f, g c J ,  I l f -  92112 < 6}. By Cebyshev 's  inequali ty and by or tho-  
gonali ty of the 7,,z(t) for each i = 1 . . . . .  m 

P(IQ,.z(J;)I > ~) =- P 7,.z(t)at(f i) > 
\ l t = l  

( n ~ l  ) 2  n ~ l  
~< 4 2 g - 2 E  7,.z(t)a,(.~) = 4 2 t l - 2 , :  2 a2(jl)(n --  t) 

\ t = l  t = l  

~< 42n-  1 c -  2 I1.~ I1~. 16.3) 

In the last step we used Parseval ' s  formula.  Applying Markov ' s  inequali ty we con- 
clude that  

P(llQ..zll.~t,:,~,41 > ~) = P sup ~ ; , . . z ( t )a , ( f  - > 
II / - g/I 2 <:- ~ ~ ' - ' /4  t = l  

n -  l ~l} 2, 
4 2 g - Z E  s u p  ~ ) ' n . z ( t ) a t l f - -  ( 6 . 3 ' i  

l i . / - -  !¢ z < / :~ 24  t = l 

The r ight-hand side can be bounded  by use of the Cauchy  Schwartz  inequality and by 
Parseval ' s  formula  as follows: 

RHS of (6.3') ~ 42g..-2 sup 2 . 2 a, ( J -  ~j) E ,,..~(t) 
Ill -- gll_, < ::' z4 t = 1 \ t  = 1 

n - 1  
~.  426,, - 2  sup H f -  gl[~ ~ E72,z(t) 

II! ~Hl: < c' 2,4 t = l  

n 1 
= c,n -2  ~ (n -- t) ~< c. (6.4) 

t = l  

Therefore  (6.1) follows f rom (6.2)-(6.4). This proves  the proposi t ion.  [ ]  

Propos i t ion  3.3 follows now f rom Propos i t ion  6.1, the decomposi t ion  (5.8) and the 
following lemma.  

Lemma6.2. Assume oo . 2 .  . ~ ~ that ~,j= o t j y < 3c,. Le t  ,<~ be a totally bounded subset q[ Y -( 17, C) 

with supt,  s 11,1112 < oc. Then  

n - l s u p  ~ R , ( x ) f ( x ) d x  L O. 
fE On 
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Proof. Recall the decomposition (5.8). The Cauchy-Schwartz inequality yields 

n-~lf/(x)C(x)L.(x)K.(-x)dx 
<. (fnlf(x)[[C(x)[2I.,z(x)dx)l/2(n-l fnlf(x)l[K.(x)12 dx)l/2. 

Since o~ is totally bounded we conclude from Proposition 6.1 that (J,,z([f[lCI2))fe,~ 
satisfies the WLLN. Hence it suffices to show that 

n-asup fnlf(x)l[K,(x)12dx ~ O. 
fe .~ 

We have 

n if  If(x)l[K.(x)12dx 

<. cn-' f lf(x), j=~+lcJe-ixj k,=, Z,e-iX' 2dx 

+ n -1  I f ( x  cje -ixj Zte  -ix' d x  
j = n + l  t=l  --j 

fn k cje-ixJ k 2 + cn -1  If(x)[ Zte -ix' d x  
j = l  t=l  j 

+cn-lfrl[f(x)[ j=~lcje-ixjt=ntj+lZte-lXt2dx 

= c( l  1 -it- 12 + 13 + 14)" 

We restrict ourselves to the estimation of /3  in order to illustrate the method. We 
have 

ill n--1 j=t~+ l 2 13 = n- 1 If(x)l ~ Zt e cje -ixj dx 
t=O 

+ . - i f . , f ( x ) l  Z z , z ,  k ci* e-i~O'-s) k ca: eix(j:-',dx 
O~<s¢t4n--I j,=s+l j2=t+l  

= I31 + I32. 

Applying (5.13) and using the Cauchy-Schwartz inequality, Parseval's formula and 
the assumption y,a~ 1 c~j < oc, we obtain 

n--1 i/n-t--1 ) l /2(n 1(  --__nt~+J ~2~1/2 
1E ~ g 2 '  ~ a2,([f[) -k- Gc¢+j,) ) eI31 c,- ' \ j 2 o  J , 1 

nkl(n--k--I --~J n-Jlcee+j)l/2 
V c[[f[]2 n - 1  C2,'~ Z 2 

t=O \ j=O rl 1 r 2 = l +  

~c[[f[]2 kc2r) I/2FI-I t=O r=t+lk C2) 1/2 0(1). 
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In the last step we used that s u p r ~  [[fl[2 <~=. Applying the Cauchy-Schwartz  

inequality, we have 

I I  0 n ~ 2 El~2~ellfH2n-2g ~ Z s Z  t ~ c j e  ix(j, s) cjeixli~-,) 
I <~sCt<~n--1 j l = s * l  . j :=t+ 1 { 

~< cllfll~n-: 2 f, / ~ cs e-'~<s' ~ cj eixJ-~ 2dx. 
O~s~-t~#l l ,  I = s + l  .j2=t+l 

dx 

Representation (5.13), the orthogonality of the cosine functions and the Cauchy 
Schwartz inequality lead to the estimate 

2 - 2  n - s  n@l n l 
E122 ~ cl[fl[zn ~ Z , -  cs,cs,+; Y. c9~qi~.+t 

0~<s<t~<n I=0 j l = s + l  .j2=t+l 

s l 

= o( ;1 c,) = o,,, 
This concludes the proof of the lemma. [] 

7. Proof of Theorem 3.4 

We first formulate and prove Theorem 3.4 for X = Z: 

Proposition 7.1. A s s u m e  Z is a sequence of lid random variables with EZ~ = O, 

var(Zl)  = a 2 and EZ~ < c~. Let J ~ S2( I I ,  C) be totally bounded. Then J,.z satL~fies 
the S L L N  in ~ , ( Y ) .  i.e. 

IlL.z- J G  a.~. O. 

We first give two tail estimates for the maximum of the norms of (gd,Y)-valued 
quadratic forms. 

Lemma 7.2. Let (Zt) be iid random variables and .~ ~ 5(~2(F/) be totally bounded. 

Assume that EZ1 = 0 and EZ~ = 1. Let Z' = (Z't) be an independent copy qf Z. For 
every x > 0 and 6E(0, 1) there exist a constant c = c(6, x) > 0 and an inte~ler no such 
that the [bllowing relation holds: 

~P(!maxl[kQk(Z,Z') , ,~>~ ~,, x )  

= q l P ( q z H Q , ( Z - Z ' , Z - Z ' ) H ~ > x ) + - + 5 P  Z 2 > 2  . n>~no. 
n t 1 

where ql, q2 > 0 are absolute constants. 
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Proof. Fix x > 0 and 3 ~ (0, 1). Since ~ is totally bounded, for each 7 ~ (0, 1) there exist 
functions fl,  .--, f,, such that 

sup min d2(ffi) < 7. (7.1) 
[E .~, ~ i = 1  . . . . .  m 

First we bound the conditional probability 

I 1 = p(lmaxl,kQk(Z, Z'),,.~ >x  ,) 
\ n k < ~ , ,  ~ Z . 

In view of (7.1), I1 is bounded by the sum of the probabilities 

4) 12 = P - m a x  max [kQk(Z,Z')(f)] > Z' , 
~l~l k ~ n  i = 1  . . . .  , m  

I3 = P l m a x  max sup [kQk(Z,Z')(f--f/)[ > ~  Z' . 
\ r l  k<~n i = 1  . . . . .  m d 2 ( £ ~ ) < 7  

By Doob's submartingale maximal inequality, we have 

12 ~ i=, ~ P(l-maxlkQk(Z'Z')(f)lkn k<,, >4 Z') 

42 
<~ 4 ~  ~ E((Q,(Z, Z')(f~))2[Z ') 

i = l  

( 7) 43 =~ 1 1 ~ at-s(fl)Zs (7.2) 
" =  t = l  s = l , s C t  

Again using Doob's inequality for Banach space valued martingales (cf. Proposition 
4.1.1 in Kwapiefi and Woyczyfiski, 1992) we obtain 

) I3 ~< 4 ~ E  max sup [Q,(Z,Z')(f- f)[  2 Z' 
\ i = l  . . . . .  m d 2 ( £ £ )  < ' ;  

4 3 (  ,-1 ,-t Z,sZs+t) 2 )  -x-T~nzE max sup ~, at( f - - f )  ~, (ZsZ'~+t + Z' . 
\ i = 1  . . . . .  m d2(f f )<7 t = l  s = l  

An application of the Cauchy Schwartz inequality and of Parseval's formula yields 

\ \ s = l  

44,2n- ,  (4472"~(1 n ) ? 
~< x ~  ,"~'=, )'-' (Z;)2 ~< \ ~ 5 - J  ns x= (Z;) 2 . (7.3) 

s = l  1 

We introduce the two events 

A1 = a,-s(fi)Z's <,-- i= 1 . . . . .  m , 
t s = l , s # t  D'I 
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for an arbitrary 71 > O. Choosing 7 and 71 in such a way that 

43~,1 4572 
x ~  + - ~ -  ~< 1 -- , ,~ ,  2(- 

we conclude from (7.2) and (7.3) that the relation I1 ~< 1 - x/6 holds on AI~A2. Let 
(Z/) be an independent copy of Z' and of Z and set 27 = Z~ - Z't' for all t. Then we 
obtain on AlcoA2 

i~ (lmax[ikQdZ, Z,)[l~ > x Z') v/O P \n k ~ ,, 

<~ p(lmaxllkQk(Z,Z')ll .¢>x z)P(-maxl lkQk(Z' ,Z ' ) l l~ <~ z' 
\ n  k ~,, I / \ n  k<.,, 

<~ p(lmax"kQd2'Z') '[~ k <. ,, Z') 

~< 2P IIQ.(2, z ') l l< > ~ z '  . 

In the last step we used L~vy's inequality for sums of independent symmetric random 
variables, conditionally on Z'. Taking expectations with respect to Z' we finally obtain 
the unconditional bound 

6P(l-maxl[kQdZ'kn k <. ,, Z')H~ > x )  

/' - c <~ x//52P [[Q,(Z, Z')l[~ > + x//6P(A]) + V 6P(A2), (7.4) 

where A c is the complement of the event A. Conditioning on 2 = (2~), the same 
arguments as above together with (7.4) lead to the estimate 

g)p(lmaxllkQdZ'kn k <. ,, Z')[[~ > x)  

<~2P(,,Q,(2, Z'), , .~>4)+P(A])+P(A~2)+2P(A~)+2P(A~), 

where Z' = (2'7) is an independent copy of ;Z and 

A:~ = a,-,(fi)2, <~ --, . . . . .  
t 1 s = l . s ~ - t  t ' n  

Notice that by Markov's inequality 

.Z5 lmZ L ( L )2 max E a,_,(.~) Z~ 
P ( A ] ) < ' n  T l i = l  ........ t= l  \ ~ = 1 , ~ / ,  

t = l s = l . s v ~ t  
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Notice that the right-hand side can he bounded by c/n for a constant c = c(x, 6). The 

probability P(ACs) can be treated in the same way. Finally, observe that 

P(A]) <~ 2P(A~). 

The final statement of the lemma now follows by an application of a coupling 
argument for quadratic forms (see de la Pefia and Montgomery-Smith ,  1995). This 
concludes the proof  of the lemma. []  

Lemma 7.3. Assume Z = (Z,) is a sequence of iid symmetric random variables with 
EZ~ < oo. There exist positive constants ql, qe and an integer no such that for all 
sufficiently small x > 0 and for n >>- no 

p ( l m a x  ]lkQk,zl[,~ > x )  
\n k~n 

( (1 =~ 1 ) (1-~ 1 ) ! )  <~ ql e-q2"/;x2 + P n,  Zt4 > 2EZ~ + P n r Z2 > 2EZ2 + " 

Proof. In view of L6vy's maximal inequality for quadratic forms (Kwapiefi and 
Woyczyfiski, 1992, Theorem 6.2.1) we have, for some absolute constant q > 0 and all 
x>0 ,  

p ( 1  max ]]kQk,z[[~ > x )  <~ qP(llQn.zll~ > X). (7.5) 
\ r l  k<~n / 

Let e = (e,) be a Rademacher  sequence independent of Z and write eZ = (etZ,). To 
estimate the right-hand side of(7.5) we replace Z by gZ, condition on Z and apply the 

exponential tail estimate from part A of Lemma 4.3. Define 

Co = ~ a ff ~ ~< sup[lfll  2 < c~ 
t = 1 /"~ ,~ 

and 

1 " & 2 ~-~ ..2 "72 ,-12 
--~--1 ~ 61t--sLt l~s 

~n 7 t s= l ,s # t 

We introduce the events 

A, = ,=1 Z~ <~ 2EZ}  , Z2 = n, Z'2 <~ 2EZ2 ' 

for a constant c~ > 0 to be chosen later. Then we have 

P([IQn,z[b, > x) = P(IIQ,,~z[I.~ > x) 

<~ gz(P(llQn,~zl[,,~ > x l Z ) I A , ~ A ~ )  + p(ACl) + P(AC2) + P(A;). 
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We have 

P(A~3) <~ P a2 < 2 + P a2" > (c° + ca) =1~ +12.  

By definition of Co, we find an)Co ~ g such that  for sufficiently large n 

3(:0 -' i i .,2 ~(jo)>- 
I l t = l x = l , s ¢  t 4 

For  such an fo, by Cebyshev's inequality and by (7.6), 

11 <~P n ,  ~ = l . , # t a t  ~ ( f o ) Z t Z s  < 

1 n 

<. e ;2_1 ~ .~,_~(fo)(Z~- Ez~)(z~- EZ~l) 
s=l ,s ,a t  

at ~(fo)(Zt  -- E Z  2) < +-Ez~ E 2 2 
H t = l s = l , s C t  

a2_s(fo) + 2 
~ 1 2  t l s = l , s e t  t = s = l , s #  

C 
~< 

n 

for sufficiently large n. Moreover ,  by the Cauchy-Schwar tz  inequality, it follows 

12 = P a t ZsZ~+t  > c o + Cl 
t s= 1 I I." 

(1. 1!,., ) > + 
P F/t= 1E Z 4  2 2C'o/" 

Choose cl such that 1 + Cl/Co > 4EZ~.  Then 

(: )) P ( A ; )  <~ c + P n Z~ > 2 E Z ~  . 
t = l  

We also obtain 

) p(ACl) <~ P n ,  Zt4 > 2 E Z ~  , 

From (7.7) and (7.8) we thus obtain 

P(A~) ~< n ,=, 

P(A~)  + P(A~2) + P(A~3) 

<~ c + P Z ~  > 2 E Z  + P ~ Z ;  > 2 E Z  . 
t = l  t - - I  

t7.6) 

(7.7) 

(7.8t 

(7.9) 
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Next  using part  (A) of  L e m m a  4.3 we estimate the condit ional  probabil i ty 

P(I[Q.,,zlI.~ > x[Z)IA,~,Aj, A~. 

Given Z we set bts  = n - l a t _ s Z t Z s  . We have to 
L e m m a  4.3, i.e. we must  find m, M such that 

P(IIQ,,~zlI~ > M I Z )  < 6t4 

and 

find m, M > 0 as required in 

(7.10) 

)2 ) ,  ,7 , , ,  
J1 = P Z2 at-sZsss > m 2 Z < 16 

t = l  s = l , s c t  

hold on Alc~Azc~A3. We assume that xe(O, 1). We will apply Lemma 4.3 for y > 0 
such that  x ~ M + my + a ,y  2. We choose 

X X 2 
M = ~ ,  y 2 - -  2 , m = x ~ n n C 4 ,  

C30" n 

and c3, c 4 > 0  such that c 2 > 3  and c4/c3<~½. Then it is immediate  that 

M + my + a , y  2 <~ x and, on A I ~ A 2 ~ A 3 ,  part  A of Lemma 4.3 yields the estimate 

P(IIQ.,~zIIJ > xrZ)  

~< c e x p { - c y  2} = c e x p { - c x 2 / ( c 2 a , ) }  <~ cexp{-cx2x / -£} .  

After taking expectations with respect to Z the latter estimate together with (7.9) 

concludes the proof. 

Thus  it remains to find m, M as in (7.10) and (7.11). We start with M. Using the same 

arguments  as in the p roof  of  Propos i t ion  6.1, for every ~ > 0 we find an n~ such that for 

all n ~> n~ and co e A2 

P(IIQ.,~zlI,~ > clZ) < e. 

Thus we may choose M > 0 arbitrarily small, in particular, we may set M = x/3. Next  
we show that  we may choose m 2 = cZcr,. We have 

J1 ~ / { n  2 Z , Z ,>cio-./2} 

p( l  ~ Z2 t ~ Clt s at_s2ZsZs2,SSl,SS2 > C24~n Z) 
-{- ~ t = l  SIS2=I,sI¢I, Sz#t,,~I¢,~ 2 

= J 2  + J 3 .  

Notice that, for co E A3, 

J 2  = I{ . . . .  .42/2} = 0 
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for n ~> no where no does not depend on co. Moreover, by the Cauchy-Schwartz  
inequality and by the orthogonality of the cosine functions 

n 

at-s~CIt-s2Zs~Zsf slQs2 E 
t - -  1 ~t~:  = 1 , s l  ¢ t , s  2 ~ t, ~l ~ s2 

( f l ( n l  , 2  , 1 ' 2  ( n  1 ) 1 , 2  

l \ t = l  \ t = l  ~"~ 

where 

D, = sZ~+tCs+t as-~ Zs G , a  2 , 2  

~ =  1 s2 = 1..%, ¢ s, s2 g: ~ ~ i 

+ Zs+~Z~G a~ ~_~ Z ,  G • 
s2 = 1, ~2 ¢ ~,.~2 ¢ s + ¢ 

The same arguments, now applied to lhe coefficients a~_ s~, at + ~-.~, lead to an estimate 
of the right-hand side of the type 

\ , \ 1 ,  

where each of the sums y , ,  ~ , ,  ~s, ranges over at most 2n summands, and summation 
in Y~: is such that all indices s~, s2, t are different. The latter fact and Markov's  second 
moment  inequality yield o n  A I ~ A  2 

C4F/ O'n \ t sa " ~ ' ' , 

C 5 

c 4 naT, 

for some constant c5. Thus we have for all o)eA~n,42c>A3 

2c5 
J1 <~ J2 + J3 <~ c~c~o" 

Choosing c~ large enough, we achieve that the estimate J~ < 1/16 holds on 
A1 ~ , 4 2 ~ A 3 ,  just as required by (7.11). Recall that we also required that c~/c3 <~ 1/3 
which is possible since we may choose c3 arbitrarily large. This concludes the proof of 
the lemma. [] 

Proof  of Proposition 7.1. The following identity holds for iid Z, Z': 

Q,(Z,  Z)  + Q,(Z' ,  z ' )  = Q, ( z  -- z ' ,  z - z ' )  + 2Q,(Z,  z ' ) .  

An application of Lemmas 7.2 and 7.3 along the subsequence n = 2 k together with 
a Borel Cantelli argument show that 

I I Q , ( Z -  Z ' , Z -  Z')I[# .... , 0  and IIQ,(Z,Z')II.# .... ,0 .  
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Hence [[Q,,z + Q.,z,l[¢ .... ~ 0. Having in mind the W LLN  of Proposition 6.1, an 
application of Lemma 4.4 yields Q,,z .... ,0. From decomposition (2.1) and by the 
SLLN for 7,,z(0) and Q.,z we obtain 

IIJ.,z - J[I,~ ~< x / ~ s u p  [[f[[217,,z(0) - 1[ + [[Q,,z][~ .... ,0. 
f a  .~ 

This concludes the proof. [] 

The proof of Theorem 3.4 is a consequence of Proposition 7.1, the decomposition 
(5.8) and the following lemma. 

c2j3/2 Lemma 7.4. Assume that ~j= 1 J < ~. Then 

-lsup I R,(x)f(x)dx . . . .  ) 0 .  

n f~,~ Jtl  

Proof. We follow the lines of the proof of Lemma 5.7 with the normalisation 1/n 
instead of 1/x/-n. Instead of (5.14) and (5.15) we show, for a n y f ~ W ,  

I ( f )  = n -1 fn f (x)C(x)L, (x)K,( -x)dx  = o(1) a.s. (7.12) 

= n-2f lL , (x)K, ( - -x)12dx  = o(1) a.s. (7.13) I 

By the Cauchy-Schwartz inequality we have 

I2<~fnI2,,z(x)dx(n-2frlK,(x)14dx ) .  

By (5.12) and using a Borel-Cantelli argument we have 

n-2 f lK , (x )14dx  = o(1) a . s .  

Notice that 

f Fl n 1 2 t IZ.,z(x)dx ~ c ~, Y..z(), 
/ = 0  

y,2,z(0 ) converges a.s. by the SLLN and 

n - 1  n 1 

An = n2 Z 2 7,,z(t)-- ~ (n - t)Z~ z, n >>- 2, 
t = l  t = l  

is a martingale. Doob's submartingale maximal inequality yields 

P(maxlA' l  > g22k) ~ ce-e2-4aEAz~ <~ ~ 2 k 

and a Borel Cantelli argument shows that n-ZA, a.~. 0 which proves (7.13). Thus it 
remains to show (7.12). We follow the lines of the proof of (5.14) and we restrict 
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ourselves to show that (cf. (5.16) with e = 0) 

,_ . - i  l' . k 2 
LI = ~ n - 2 1 n n  =0E , J I | / ( x ) C ( x ) e  'Xtdx <oc, 

n= 1 t 

" " ~ frl 2 L2 = Y, n 2 5[ j 1,'2 f(x)C(x)eiXJdx < ~  
n = l  t = l  j = t + l  

which, together with a Borel-Cantelli  argument, proves that (7.12) holds. Notice that 
L1 + L2 < ~- follows by change of summation and by applications of Parseval's 
formula. [ ]  
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