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We study, following Bertini et al. [1], the hidden conformal symmetry of the massless Klein–Gordon
equation in the background of the general, charged, spherically symmetric, static black-hole solution of
a class of d-dimensional Lagrangians which includes the relevant parts of the bosonic Lagrangian of
any ungauged supergravity. We find that a hidden SL(2,R) symmetry appears at the near event- and
Cauchy-horizon limits. We extend the two sl(2) algebras to two full Witt algebras (Virasoro algebras with
vanishing central charges). We comment on the implications of the possible existence of an associated
quantum conformal field theory.

© 2012 Elsevier B.V. Open access under CC BY license.
0. Introduction

A complete microscopic explanation of the entropy of an arbi-
trary black hole remains as an outstanding challenge for Theoret-
ical Physics. In the mid 90’s, the microscopic degrees of freedom
of a charged, static, extremal, black hole in 5 non-compact dimen-
sions were explicitly identified in the framework of String Theory,
in complete agreement with the Bekenstein–Hawking entropy [2],
providing a first breakthrough in this quest. The microscopy en-
tropy of many other 4- and 5-dimensional black holes has been
computed successfully following the same pattern.

Although these results were initially thought to depend on the
specific features of String Theory, it has become clear that this is
not the case and the UV details are not important in order to just
understand the area law from a microscopic point of view. The
existence of a UV completion, although important from a funda-
mental point of view, seems to be irrelevant for this purpose. This
irrelevance strongly suggests the existence of a universal under-
lying principle, which is included in, but not exclusive of String
Theory, which justifies these calculations.1

A major step in this direction was taken in [4] with the study
of the (2 + 1)-dimensional BTZ black hole [5]: it had been already
shown in [6] that the asymptotic symmetry algebra of this solution
was a Virasoro algebra; therefore any consistent quantum theory
describing this black hole should be a conformal field theory, and
hence the Cardy formula can be used to compute the asymptotical
growth of states, obtaining a result that is in agreement with the
Bekenstein–Hawking entropy. This analysis (with some differences,
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such as considering the symmetries in the near horizon limit) has
been extended to other, higher-dimensional black holes [7], and
a seemingly universal characteristic of all the black holes whose
entropy has been computed microscopically has emerged: they
all are described by 2-dimensional conformal theories, at least in
some limit.

A considerable effort has been dedicated to unveil the hidden
conformal symmetries of the near-horizon region of different kinds
of black holes. For instance, in [8], a duality between the extremal
Kerr black hole and a chiral 2-dimensional conformal theory was
found. For the non-extremal Kerr black hole, a different approach
has been adopted in [9], where the massless Klein–Gordon equa-
tion was used in order to elucidate the hidden conformal symme-
try. In particular, it was shown that it is possible to define a set
of vector fields of a particular submanifold of the space–time, such
as they obey the sl(2) algebra and the Casimir gives the massless
wave operator. This approach has later been used in [1] and [10]
(see also [20]) for the Schwarzschild and the Kerr–Newman black
holes, respectively,2 and it is the one that we are going to use for
general d-dimensional black holes in this Letter, using the metrics
introduced in [12] and [13].3

The Letter is organized as follows: in Section 1 we present the
theories that we consider and the generic black-hole metrics that
we will use as a background for the massless Klein–Gordon equa-
tion. In Section 2 we will study of the hidden conformal symmetry
in the near-horizon regions (inner and outer) of the 4-dimensional
case. The d-dimensional generalization is made in the next section
and we discuss our results in Section 4.

2 Previous, closely related results were published in [11].
3 The search for the hidden conformal symmetry in static black holes has a long

history. See, for example, [14–16], and, more recently, [17].
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1. The background metric

We are going to consider black-hole solutions of 4-dimensional
theories of the general form

I =
∫

d4x
√|g|{R + Gi j(φ)∂μφi∂μφ j

+ 2�mNΛΣ F Λ
μν F Σ μν − 2�eNΛΣ F Λ

μν � F Σ μν
}
, (1.1)

which includes the bosonic sectors of all 4-dimensional ungauged
supergravities for appropriate σ -model metrics Gi j(φ) and kinetic
matrices NΛΣ(φ) with negative-definite imaginary part. The in-
dices i, j, . . . run over the scalar fields and the indices Λ,Σ, . . .

over the 1-form fields. Their numbers are related only for N � 2
supergravity theories.

The metrics of all spherically symmetric, static, black-hole solu-
tions of the action Eq. (1.1) have the general form [12]

ds2 = e2U dt2 − e−2U γmn dxm dxn,

γmn dxm dxn =
(

r0

sinh r0τ

)2[(
r0

sinh r0τ

)2

dτ 2 + dΩ2
(2)

]
, (1.2)

where r0 is the non-extremality parameter and U (τ ) is a func-
tion of the radial coordinate τ that characterizes each particular
solution. In these coordinates the exterior of the event horizon is
covered by the negative values of τ , the event horizon being lo-
cated at τ → −∞ and spatial infinity at τ → 0− . The interior of
the Cauchy horizon (if any) is covered by part of the positive val-
ues of τ , the inner horizon being located at τ → +∞ while the
singularity is located at some finite, positive, value of τ [18].

The last term in the action Eq. (1.1) can only occur in d = 4
dimensions. Therefore, in the general d-dimensional case we shall
consider the Lagrangian

I =
∫

ddx
√|g|{R + Gi j(φ)∂μφi∂μφ j

+ 2IΛΣ(φ)F Λ
μν F Σ μν

}
, (1.3)

where IΛΣ(φ) is an invertible, negative-definite, scalar-dependent
matrix. The metrics of the spherically symmetric, static, black-hole
solutions of (1.3) have the general form [13]

ds2 = e2U dt2 − e− 2
d−3 U γmn dxm dxm,

γmn dxm dxm =
(

B
sinhBρ

) 2
d−3

×
[(

B
sinhBρ

)2 dρ2

(d − 3)2
+ dΩ2

(d−2)

]
. (1.4)

Here B is the higher-dimensional generalization of the non-
extremality parameter r0 and the metric is well defined and covers
the exterior of the event horizon for positive values of ρ , the event
horizon being at ρ → +∞ and spatial infinity at ρ → 0+ .

If the above metric describes the exterior of a regular black
hole, one can find from it the metric that covers the interior of
the Cauchy horizon (if any) that metric according to [19]

ρ → −, e−U (+)(ρ) ≡ e−U (ρ) → −e−U (−) ≡ −e−U (−)(). (1.5)

The new metric, determined by the function U (−) has the same
general form in terms of the coordinate  which now takes values
in the range  ∈ (sing,+∞) because the metric will generically

hit a singularity before  reaches 0: if the original e−U (+)
is always

finite for positive values of ρ , the transformed one will have a zero
for some finite positive value of .
In the 4-dimensional case, the area of a 2-sphere at fixed radial
coordinate τ = τ0 is given by

A(τ0) = 4π f 2(τ0)e−2U (τ0), (1.6)

where

f (τ ) ≡ r0

sinh r0τ
. (1.7)

Therefore, the areas of the event and Cauchy horizons, A+ and A− ,
respectively, are given by

A± = lim
τ0→∓∞ A(τ0). (1.8)

In the d-dimensional case, we can write a common expres-
sion for the area of a (d − 2)-sphere at fixed radial coordinate
ρ = ρ0 > 0 in the exterior of the event horizon or  = ρ0 > 0 in
the interior of the Cauchy horizon:

A(ρ0) = Cd−2
∣∣e−U (+)(ρ0)g(ρ0)

∣∣ d−2
d−3 , (1.9)

where

C(d−2) = 2π
d−1

2

Γ (d−1
2 )

, (1.10)

is the volume of the round (d − 2)-sphere of unit radius and

g(ρ) ≡ B
sinhBρ

. (1.11)

The area of the outer (+) and inner (−) horizons, A± are given by

A± = lim
ρ0→±∞ A(ρ0). (1.12)

We will use Eqs. (1.8) and (1.12) later in order to interpret the
near-horizon limits of the massless Klein–Gordon equation.

2. The massless Klein–Gordon equation in a general static black
hole background

In [1] it was shown that the massless Klein–Gordon equation in
the background of a 4-dimensional black hole exhibits a SL(2,R)

invariance in the near-horizon limit which extends to spatial in-
finity at sufficiently low frequencies. Here we will generalize these
results to the charged, static, spherically symmetric black-hole so-
lutions of 4-dimensional theories of the form Eq. (1.1), with metrics
of the general form Eq. (1.2).

In the space–time background given by the metric (1.2), the
massless Klein–Gordon equation

1√|g|∂μ

(√|g|gμν∂νΦ
) = 0, (2.1)

can be written in the form

e−2U ∂2
t Φ − e2U f −4∂2

τ Φ − e2U f −2�S2Φ = 0, (2.2)

where f (τ ) has been defined in Eq. (1.7) and

�S2Φ = 1

sin θ
∂θ (sin θ∂θΦ) + 1

sin2 θ
∂2
φΦ, (2.3)

is the Laplacian on the round 2-sphere of unit radius. Using the
separation ansatz

Φ = e−iωt R(τ )Y l
m(θ,φ), (2.4)

and

�S2 Y l
m(θ,φ) = −l(l + 1)Y l

m(θ,φ), (2.5)
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we find

ω2e−4U f 2 R(τ ) + f −2∂2
τ R(τ ) = l(l + 1)R(τ ), (2.6)

so we can write Eq. (2.2) as

K4Φ = l(l + 1)Φ, (2.7)

where K4 is the second-order differential operator

K4 ≡ −e−4U f 2∂2
t + f −2∂2

τ . (2.8)

In order to exhibit the hidden conformal structure of the given
space–time, we want to find a representation of SL(2,R) in terms
of first-order differential operators (vector fields) in the t − τ sub-
manifolds, such as the SL(2,R) quadratic Casimir, constructed from
those vector fields is equal to the second-order differential opera-
tor K4. Thus, we want to find three real vector fields

Lm = amt∂t + amτ ∂τ , m = 0,±1, (2.9)

for some functions amt(t, τ ), amτ (t, τ ), whose Lie brackets are sl(2)

Lie algebra

[Lm, Ln] = (m − n)Lm+n, m = 0,±1, (2.10)

and such that

H2 ≡ L2
0 − 1

2
(L1L−1 + L−1L1) = K4. (2.11)

In order to simplify this problem, following [1], we have to
make some additional assumptions on the functions aIt(t, τ ),
aIτ (t, τ ). Thus, we make the following ansatz

L1 = l(t)
[−m(τ )∂t + n(τ )∂τ

]
, (2.12)

L0 = − c

r0
∂t, (2.13)

L−1 = −l−1(t)
[
m(τ )∂t + n(τ )∂τ

]
, (2.14)

where m and n are functions of τ , l is a function of t and c is a
real constant.

Plugging this ansatz into Eq. (2.10) we obtain two differential
equations

m2∂t log l + n∂τ m = c

r0
, (2.15)

c

r0
∂t log l = 1, (2.16)

and plugging it into Eq. (2.11) we obtain three equations

m = h∂τn, (2.17)

m2 = e−4U f 2 + (c/r0)
2, (2.18)

n2 = f −2. (2.19)

These equations cannot be solved for arbitrary U (τ ): we can
find l, m, n as functions of f (τ ) and the constant c

l(t) = c0er0t/c, n2(τ ) = f −2, m(τ ) = h cosh(r0τ ), (2.20)

for some real constant c0, leaving the following equation for the
constant c to be solved:

c2 = (
e−2U f 2)2

. (2.21)

This equation can only be exactly solved, for all values of the
radial coordinate τ for eU ∼ f , which does not correspond to any
asymptotically flat black hole. We have to content ourselves with
a range of values of the coordinate τ in which the above equation
can be solved approximately. The two ranges that we have identi-
fied correspond to the two near-horizon regions (event and Cauchy
horizons τ → −∞ or τ → −∞, respectively) in which

(
e−2U f 2)2 τ→∓∞∼

(
A±
4π

)2

+O
(
e±r0τ

) = c2 +O
(
e±r0τ

)
, (2.22)

according to Eq. (1.8).
We conclude that in the geometry of any 4-dimensional,

charged, static, black-hole solution of a theory of the form Eq. (1.1),
there are two triplets of vector fields L+

m and L−
m , m = 0,±1 given

by

L±
1 = −er0πt/S±

r0

(
S±
π

cosh(r0τ )∂t + sinh(r0τ )∂τ

)
, (2.23)

L±
0 = − S±

r0π
∂t, (2.24)

L±
−1 = −e−r0πt/S±

r0

(
S±
π

cosh(r0τ )∂t − sinh(r0τ )∂τ

)
, (2.25)

where S± = A±
4 , which generate two sl(2) algebras whose quad-

ratic Casimirs

H±2 ≡ (
L±

0

)2 − 1

2

(
L±

1 L±
−1 + L±

−1L±
1

)
, (2.26)

approximate the massless Klein–Gordon equation in the two near-
horizon regions4:

K4Φ = {−e−4U f 2∂2
t + f −2∂2

τ

}
Φ

τ→∓∞−→ f −2{−(S±/π)2∂2
t + ∂2

τ

}
Φ = H±2Φ. (2.28)

We can see from Eq. (2.23) that the extremal limit r0 → 0
is singular. The reason is that the operations of taking the near-
horizon limit and of taking the extremal limit r0 → 0 do not com-
mute.

The sl(2) algebra that we have just found can be immediately
extended to a complete Witt algebra (or a Virasoro algebra with
vanishing central charge) with the commutation relations (2.10) for
all m ∈ Z. The generators of the Witt algebra are given by

L±
m = −emr0πt/S±

r0

(
S±
π

cosh(mr0τ )∂t + sinh(mr0τ )∂τ

)
. (2.29)

3. Hidden conformal symmetry in d dimensions

We are now ready to generalize the results of the previous
section to arbitrary d � 4 dimensions, using the general metric
Eq. (1.4). In this background, the massless Klein–Gordon equation
can be written as

e− 2(d−2)
(d−3)

U g
2

d−3 ∂2
t Φ − (d − 3)2 g−2∂2

ρΦ − �Sd−2Φ = 0, (3.1)

where g(ρ) is defined in Eq. (1.11) and �Sd−2 is the Laplacian in
the round (d−2)-sphere of unit radius. Using the separation ansatz

4 Observe that we only approximate some terms (i.e. we keep some sub-
dominating terms):

e−4U f 2 = f −2(
e−2U f 2)2 ∼ f −2

[(
A±
4π

)2

+O
(
e±r0τ

)]

∼ f −2
(

A±
4π

)2

+O
(
e±r0τ

)
, (2.27)

which is correct to that order. On the other hand, we do not need to restrict our-
selves to any particular range of frequencies.
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Φ = e−iωt R(ρ)Y l
μ(�θ), (3.2)

where Y l
μ(�θ) are the spherical harmonics on Sd−2, Eq. (3.1) takes

the form

e− 2(d−2)
(d−3)

U

(d − 3)2
g

2
d−3 ω2 R(ρ) + g−2∂2

ρ R(ρ) = l(l + d − 3)

(d − 3)2
R(ρ), (3.3)

so the Klein–Gordon equation takes the form

KdΦ = l(l + d − 3)

(d − 3)2
Φ, (3.4)

where we have defined the reduced Klein–Gordon operator Kd

Kd = −e− 2(d−2)
(d−3)

U

(d − 3)2
g

2
d−3 ∂2

t + g−2∂2
ρ. (3.5)

As in the 4-dimensional case, we want to find two triplets of
vector fields generating the sl(2) Lie algebra and whose quadratic
Casimir approximates the d-dimensional reduced Klein–Gordon
operator Kd in some region of the black-hole space–time. It is not
too hard to show that the two triplets

L±
1 = −e(d−3)C(d−2)Bt/A±

B

×
(

A±
(d − 3)C(d−2)

cosh(Bτ )∂t + sinh(Bτ )∂τ

)
, (3.6)

L±
0 = − A±

(d − 3)C(d−2)B
∂t, (3.7)

L±
−1 = −e−(d−3)C(d−2)Bt/A±

B

×
(

A±
(d − 3)C(d−2)

cosh(Bτ )∂t − sinh(Bτ )∂τ

)
, (3.8)

where Eqs. (1.9) and (1.12) have been used in order to take the
near horizon ρ → ±∞ limit.

Extending these two sl(2) algebras to two full Witt algebras is
straightforward:

L±
m = −em(d−3)C(d−2)Bt/A±

B

×
(

A±
(d − 3)C(d−2)

cosh(mBτ )∂t + sinh(mBτ )∂τ

)
. (3.9)

4. Discussion

In this Letter we have constructed two Witt algebras which
have a well-defined action in the space of solutions to the wave
equation in the background of the exterior and interior near-
horizon limits of a generic, charged, static black hole. The two
sl(2) subalgebras are symmetries of these wave equations, since
the wave operators can be seen as their Casimirs, but they are
not symmetries of the background metrics which, being essen-
tially the products of Rindler space–time (locally Minkowski) and
spheres, have Abelian (in the time-radial part) isometry alge-
bras.

This result generalizes those obtained in [1,10,20,11], and
presents an opportunity to put to test some conjectures and com-
mon lore of this field. To start with, is there a CFT associated to the
Witt algebras and can one compute the central charge of the Vira-
soro algebra? The most naive computation does not seem to give
meaningful results. This, of course, does not preclude the possibil-
ity that a more rigorous calculation, preceded of careful definitions
of the boundary conditions of the fields at the relevant bound-
aries (which have to be identified first) may give a meaningful
answer.

Meanwhile, it is amusing to speculate on the possible conse-
quences of the existence of such a CFT with left and right sectors
whose entropies SR, SL and temperatures would be related to the
temperatures and entropies of the outer and inner horizons (T+ ,
T− and S+ , S− , respectively) by

S± = SR ± SL, (4.1)

1

T±
= 1

2

(
1

TR
± 1

TL

)
, (4.2)

and obeying the fundamental relation

S+ = π2

12
(cRT R + cLTL), (4.3)

where cL,R are the central charges of the left and right sectors,
which will be assumed to be equal5 cR = cL = c.

The temperatures and entropies of the outer and inner horizons
are related to the non-extremality parameter t0 by

2S±T± = r0, (4.4)

which implies for the temperatures of the left and right sectors

4SL,RTL,R = r0. (4.5)

In the extremal limit

SL → 0, TR → 0, T± → 0, S± → SR, (4.6)

and both SR and TL remain finite and are convenient quantities to
work with. In particular, we can express the central charge that the
CFT should have in order to reproduce the Bekenstein–Hawking
entropy consistently with this picture, in terms of these two pa-
rameters:

c = 12

π2

SR

TL
. (4.7)

Finally, let us comment on possible extensions of this work
to more general families of black-hole solutions (asymptotically
AdS, rotating etc.). In this work we have made heavy use of our
knowledge of the form of the most general static, spherically-
symmetric black-hole solutions of a wide class of theories: we
know them up to an unknown function U whose asymptotic and
near-horizon behavior we, however, know. Static, asymptotically-
AdS 4-dimensional black-holes have been considered, for instance,
in Refs. [21–23]. Two unknown functions of the radial coordinate
are needed to describe them U and ψ , but the asymptotic and
near-horizon behavior of the second is not known in general, as
yet. For wider classes of solutions similar problems are present but
they are not necessarily unsurmountable. More work is needed in
this direction.
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