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a b s t r a c t

Two distinct implementations of the Mohr–Coulomb failure model are used in conjunction with a non-
associated quadratic plasticity model to describe the onset of fracture in low carbon steel sheets. The
stress-based version corresponds to the original Mohr–Coulomb model in stress space. For the mixed
stress/strain-based version, the Mohr–Coulomb failure criterion is first transformed into the space of
stress triaxiality, Lode angle parameter and equivalent plastic strain and then used as stress-state depen-
dent weighting function in a damage indicator model. Basic fracture experiments including tensile spec-
imens of different notch radii and a punch test are performed to calibrate the material parameters of the
respective models. Subsequently, the models are used to predict the crack initiation in a Hasek test and
during the stamping of an anticlastic structure. Unlike for the calibration experiments, the loading history
during stamping is highly non-linear. Both models can be calibrated with similar accuracy, but the strain-
based model predicts the instant of onset of fracture with greater accuracy in the stamping experiment
which is an advantage of the empirical damage accumulation rule.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction of failure during sheet metal forming is an
important step throughout the virtual design of thin-walled struc-
tures. Forming Limit Diagrams (FLDs) are typically used to predict
the onset of through-thickness necking (e.g., Keeler and Backofen,
1963). The FLD describes the limiting strains in terms of major
and minor in-plane strains. Several analytical and numerical mod-
els have been developed to predict the FLDs (e.g., Hill, 1952; Swift,
1952; Marciniak and Kuczynski, 1967). The Marciniak–Kuczynski
(MK) model assumes a small region of thickness imperfection
and provides an estimate of the FLD for positive and negative min-
or strains, while Hill’s analytical model can only be used for nega-
tive minor strains. Alternatively, the FLD may be determined
experimentally using multi-axial experiments such as Hasek or
Nakazima tests. Conventional FLDs are strain-based and describe
the onset of necking for monotonic proportional loading paths
only. It is well-known that the strain-based FLD changes substan-
tially if the loading path is non-linear (e.g., Kleemola and Pelkki-
kangas, 1977). To address this issue, stress-based FLDs have been
proposed (e.g., Stoughton, 2000) which provide better estimates
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of the formability limits for non-proportional loading than conven-
tional strain-based FLD’s.

In some applications, sheet material structures are designed up
to the point of onset of fracture. In other words, the material’s abil-
ity to deform after the onset of through-thickness necking is taken
into account. In some rare (but important) cases, fracture may
occur before the onset of necking. In both cases, a reliable ductile
fracture model is needed. There exists a wealth of models that have
been developed based on the assumption that ductile fracture is
the result of the nucleation, growth and coalescence of voids. The
early investigations of McClintock (1968) and Rice and Tracey
(1969) on the evolution of cylindrical and spherical holes in ductile
matrices have set the foundation for numerous studies on the
micromechanics associated with void growth. The most prominent
is that of Gurson (1977), who proposed a porous plasticity model
based on the micromechanical analysis of a thick spherical shell
subject to hydrostatic pressure. The original Gurson model has
been repeatedly modified to account for additional processes
responsible for microstructural evolution and subsequent ductile
fracture: void nucleation (e.g., Chu and Needleman, 1980), loss of
load-carrying capacity associated with void coalescence (e.g.,
Tvergaard and Needleman, 1984), enhanced strain hardening mod-
els (e.g., Leblond et al., 1995), void shape effects (e.g., Gologanu
et al., 1993, 1994; Garajeu et al., 2000; Pardoen and Hutchinson,
2000) and plastic anisotropy (e.g., Benzerga et al., 2004). The reader
is referred to Lassance et al. (2007), Benzerga and Leblond (2010)
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Fig. 1. Micrograph of the low carbon steel cross-section with etched grain
boundaries (scale 5 lm).
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and Besson (2010) for a comprehensive review of successive
improvements of the Gurson model. The latter review also covers
continuum damage mechanics (CDM) models based on the work
of Lemaitre (1985) which are not addressed here. Recent works
on Gurson-type of models deal with its modification for shear-
dominated loading (Xue, 2008; Nahshon and Hutchinson, 2008;
Nielsen and Tvergaard, 2010). Models for porous solids based on
non-linear homogenization have also been proposed (e.g., Ponte
Castaneda and Zaidman, 1994; Danas et al., 2008; Danas and Ponte
Castaneda, 2009a,b). Defining the onset of fracture through peak
load or loss of ellipticity, homogenization models provide valuable
insight into the effect of stress triaxiality and Lode angle on the on-
set of fracture (Danas and Ponte Castaneda, 2012).

Phenomenological and empirical damage indicator models are
particularly popular in engineering practice. Unlike in Gurson,
CDM, and homogenization based models, the models describing
the evolution of plasticity and damage are uncoupled. Most uncou-
pled fracture/damage models are formulated in the space of stress-
triaxiality, Lode angle and equivalent plastic strain. The most basic
models (McClintock, 1968; Rice and Tracey, 1969; Hancock and
Mackenzie, 1976; Johnson and Cook, 1985; LeRoy et al., 1981; Oh
et al., 1979; Brozzo et al., 1972; Clift et al., 1990) neglect the effect
of loading path in that space and define the equivalent plastic
strain at the onset of fracture as an explicit function of the stress
triaxiality. Such models can also be integrated into a damage indi-
cator framework (e.g., Fischer et al., 1995), where an empirical
damage variable is defined by the integral of a stress-state depen-
dent weighting function along the equivalent plastic strain path.
Successful applications of the model by Cockcroft and Latham
(1968) are found in Borvik et al. (2009) and Fagerholt et al.
(2010). Bao and Wierzbicki (2004a) published a comparative study
on these models using the inverse of the above definitions of the
strain to fracture as weighting functions. The recent experimental
observation of a non-smooth fracture locus in the plane of fracture
strain versus stress triaxiality (Bao and Wierzbicki, 2004a,b; Bar-
soum and Faleskog, 2007) revived the discussions of the possible
effect of the Lode angle on the onset of fracture in metals. Phenom-
enological models accounting for the effect of the Lode angle have
been proposed e.g., by Bao and Wierzbicki (2004a,b); Bai and
Wierzbicki (2008), Coppola et al. (2009), Xue et al. (submitted)).
Recent studies comparing the predictive capabilities of phenome-
nological, Gurson and CDM models can be found in Dunand and
Mohr (2011), Li et al. (2011) and Malcher et al. (2012). The conclu-
sions from these comparative studies are not consistent which is
possibly due to experimental uncertainties, an effect of the inves-
tigated alloy, and some user influence on the model calibration.

The damage indicator model by Bai-Wierzbicki model is formu-
lated in the above space of equivalent plastic strain, stress triaxial-
ity and Lode angle parameter, but has been derived from the
Mohr–Coulomb model in stress space. Closing the loop with dis-
cussions in the 1920s (e.g., Lode, 1926), two recent papers suggest
criteria in stress space to predict ductile fracture. Stoughton and
Yoon (2011) revisited the experimental data on bulk Al2024-
T351 reported by Wierzbicki et al. (2005) to advocate a maximum
shear stress criterion for predicting ductile fracture (which in-
cludes the Mohr–Coulomb and Tresca model). Khan and Liu
(2012) supplemented the data of Wierzbicki et al. (2005) with
experimental results for free-end torsion, torsion with constant
tension, and biaxial compression in a channel-die; they proposed
an empirical stress criterion which expresses the maximum mag-
nitude of the principal stress vector as a function of a first-order
polynomial function of the first stress tensor invariant.

The purpose of the present work is to compare the predictive
capabilities of a conventional Mohr–Coulomb criterion in stress
space (stress-based model) and a damage indicator model (mixed
stress/strain-based model) with a stress-state dependent weight-
ing function that has been derived from the original Mohr–Cou-
lomb criterion. Our attention is limited to a rather narrow, but
important range of nearly plane stress states between uniaxial
and equi-biaxial tension. Tension and punch experiments are
performed on notched specimens extracted from thin low carbon
steel sheets. The large deformation behavior is described through
a quadratic plasticity model with isotropic hardening and
non-associated flow rule (Mohr et al., 2010). The two parameters
(friction coefficient and cohesion) of the respective stress-based
and mixed stress/strain-based models are subsequently identified
using a hybrid experimental-numerical inverse identification pro-
cedure. The models are then used to predict the onset of fracture
in a Hasek test as well as in a complex forming experiment of an
anticlastic structure with highly non-linear loading paths. It is
found that the Mohr–Coulomb fracture model provides better
estimates of the instant of onset of fracture during stamping when
it is embedded in a damage indicator framework as opposed to its
original stress-based version.

2. Material and plasticity model

2.1. Material

All specimens are extracted from 0.36 mm thick galvanized low
carbon steel sheets. The thickness of the Commercial Steel (CS)
Type B is achieved by a hot rolling process ðtsheet P 1mmÞ followed
by cold rolling prior to hot dip galvanizing. The latter process adds
6 lm to each sheet surface according to the G30 coating designa-
tion. An average grain size of 5 to 10 lm has been estimated from
a cross-section micrograph (Fig. 1). To visualize the grain bound-
aries, the polished surface has been etched using a 2% Nital
solution.

The true stress-strain curves for uniaxial tension along three
different material directions are shown in Fig. 2. The curves feature
an upper yield stress followed by a lower yield stress plateau prior
to monotonic strain hardening. This response is the characteristic
signature of Lüders’ bands which are also observed in the corre-
sponding DIC strain field measurements (not shown). After onset
of monotonic strain hardening, almost the same stress-strain re-
sponse is measured for tension along the rolling and the diagonal
direction, while the stress level is about 3% lower for the transverse
specimen. The plastic strains are determined assuming a Young’s
Modulus of E = 200GPa and an elastic Poisson’s ratio of m = 0.3.
The corresponding Lankford ratios as determined from the average
slopes of the logarithmic plastic width strain versus logarithmic



Fig. 2. Measured true stress versus logarithmic plastic strain curves for uniaxial
tension along different in-plane directions (solid lines) and isotropic hardening law
approximation (dashed line).
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plastic thickness strain curves are r0 = 1.27, r45 = 0.96 and r90 = 1.05
.

2.2. Plasticity model

The direction-dependency of the r-values indicates planar
anisotropy while the small differences among the stress-strain
curves suggest a nearly planar isotropic material behavior (except
for the Lüders plateau). A quadratic plane stress plasticity model
with non-associated flow rule (Mohr et al., 2010) is therefore used
to describe elasto-plastic behavior of the sheet material.

The model assumes a von Mises yield function,

f ðr; kÞ ¼ �rvM � k ¼ 0; ð1Þ

where �rvM denotes the equivalent von Mises stress,

�rvM ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2

s � s
r

with s ¼ r� rm1 and rm ¼
trr
3
: ð2Þ

r is the Cauchy stress tensor in material coordinates, s the cor-
responding deviatoric stress tensor, and rh is the hydrostatic
stress. The direction of plastic flow is assumed to be aligned with
the stress derivative of a flow potential function g(r),

dep ¼ dk
@g
@r

; ð3Þ

where deP denotes the plastic strain tensor increment in material
coordinates; dk P 0 is a scalar plastic multiplier. The potential func-
tion g(r) is defined as an anisotropic quadratic function in stress
space

g2ðrÞ ¼ r2
11 þ G22r2

22 þ ð1þ 2G12 þ G22Þr2
33 þ 2G12r11r22

� 2ð1þ G12Þr11r33 � 2ðG22 þ G12Þr22r33 þ G33r2
12

þ 3r2
13 þ 3r2

23 ð4Þ

with the anisotropy coefficients G22, G12 and G33. The above function
corresponds to a special case of the Hill’48 function which accounts
for the apparent planar anisotropy associated with the direction-
dependency of the r-values.
Table 1
Isotropic hardening law approximation.

�ep (–) 0.00 0.04 0.05 0.06 0.07 0.08 0
k [MPa] 301fs 330 353 368 380 390.5 4
Isotropic hardening is introduced into the model through the
equation

k ¼ k½�ep�; ð5Þ

with the equivalent plastic strain defined as �ep ¼
R

dk .

2.3. Model calibration

The coefficients of the orthotropic flow potential function are
determined from the r-values using the analytical relationships

G12 ¼ �
r0

1þ r0
; G22 ¼

r0

r90

1þ r90

1þ r0
and G33

¼ 1þ 2r45

r90

r0 þ r90

1þ r0
: ð6Þ

The strain hardening curve k½�ep� is approximated by a piecewise lin-
ear function (Table 1, Fig. 2). The measured stress-strain curve is
used up to the onset of necking (at an equivalent plastic strain of
about 0.2). Note that the initial Lüders band dominated stress-strain
response (�ep < 0:005) is not modeled in detail and is approximated
by a monotonically increasing function instead. The strain harden-
ing for large strains (�ep > 0:2) is determined through the inverse
calibration with respect to the measured force-displacement curve
of a specimen with a shallow notch (R = 20 mm, to be discussed in
Section 3).

Fig. 3 compares the predicted and the measured engineering ax-
ial stress-strain curves and engineering width versus axial strain
curves for the three material directions. For reference, the results
are also shown for an isotropic and an anisotropic quadratic model
with associated flow rule. Among the three models, the non-asso-
ciated flow rule model clearly provides the most accurate descrip-
tion of the experimental results. Note that similar observations
advocating the use of non-associated flow rules have been made
by others (e.g., Stoughton and Yoon, 2004; Cvitanic et al., 2008;
Mohr et al., 2010).

3. Hybrid experimental-numerical fracture characterization

A first set of fracture experiments is performed to calibrate the
fracture models presented in the next section. The calibration
experiments include the tensile testing of specimens of different
notch radii and the punch testing of a disc specimen. A hybrid
experimental-numerical approach is taken to determine the corre-
sponding loading path to fracture in the space of stress triaxiality,
Lode angle parameter and equivalent plastic strain.

The stress triaxiality is defined as the ratio of the mean and the
von Mises stress,

g :¼ rm

�rvM
ð7Þ

while the Lode angle parameter �h is related to the ratio of the third
and second invariant of the deviatoric stress tensor,

�h :¼ 1� 2
p

arccos
27
2

detðsÞ
�r3

vM

� �
: ð8Þ

Note that values of the Lode angle parameter always lie in the
interval [ �1, 1]. In a first approximation, the Lode angle parameter
corresponds to the opposite of the original Lode parameter l (Lode,
1926),
.1 0.12 0.14 0.16 0.2 0.25 0.3 1
08 423 436 448 469 491 509 761



Fig. 3. Comparison of the effect of different plasticity model assumptions (von Mises with AFR, Hill with AFR, and von Mises with Hill FR) on the stress–strain response for
different loading directions.
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�h :ffi �l: ð9Þ

The limits �h ¼ 1 and �h ¼ �1 therefore correspond to axisym-
metric tension (e.g., uniaxial tension) and axisymmetric compres-
sion (e.g., equi-biaxial tension), respectively. �h ¼ 0 corresponds to
generalized shear (e.g., pure shear or plane strain tension).
3.1. Experiments and simulations for notched tension

Following the basic fracture testing program proposed by
Dunand and Mohr (2010), tensile specimens with the notch radii
R = 20 mm, R = 10 mm and R = 6.67 mm are prepared (see Fig. 2
in Dunand and Mohr (2011) for technical drawings of the
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specimens). The tensile axis of all specimens is aligned with the
rolling direction. The specimens are mounted on a hydraulic test-
ing machine (Model 8080, Instron, MA) and loaded under quasi-
static loading conditions at a constant crosshead velocity of
0.5 mm/min. A 50kN load cell is used to record the axial force,
while a DIC based optical extensometer is employed to measure
the relative displacement of the specimens shoulders. A com-
puter-controlled digital camera (QImaging Retiga 1300i with
85 mm Nikon Nikkor lenses) acquired about 400 photographs of
the speckle painted front surface of the specimens during the tests.
The camera is positioned at a distance of 1 m to monitor the entire
specimen gage section (square pixel edge length of 56 lm). The
Fig. 4. Plots of the experimental and numerical results of the notched tensile
specimens with (a) a cutout radius R = 20 mm, (b) R = 10 mm and (c) R = 6.67 mm.
average speckle size is about 200 lm. The displacement is calcu-
lated by DIC (VIC2D, Correlated Solutions) using a virtual exten-
someter of the window size 21 x 21 pixels and the step size of
one pixel.

Fig. 4 shows the recorded force-displacement curves for the
three different notched specimens all the way to fracture. Note that
all curves exhibit a force maximum prior to crack initiation. Frac-
ture is expected to initiate within the specimen mid-plane at the
center of the specimen. Both strains and stresses cannot be mea-
sured directly at this location and a hybrid experimental-numeri-
cal approach is necessary. Exploring the symmetry of the
mechanical system, only one eighth of the specimen is modeled.
A uniform, constant velocity is assigned to the upper specimen
shoulder, whereas zero normal displacement is imposed on the
three boundary surfaces that correspond to symmetry planes.
The required mesh density of four first-order solid elements along
the half-thickness is determined with respect to convergence of
the equivalent plastic strain estimates at the specimen center for
the R = 10mm notched tensile specimen.

Figs. 5a and 5b show the computed evolution of the equivalent
plastic strain at the specimen center as a function of the Lode angle
parameter and the stress triaxiality, respectively. All curves are in
hierarchical order. The equivalent plastic strains to fracture are
0.36 for R = 6.67mm, 0.36 for R = 10mm and 0.39 for R = 20mm. It
is worth noting that the loading path for each experiment is non-
linear in the space of stress triaxiality, Lode angle parameter and
equivalent plastic strain; this is mainly attributed to the through-
thickness necking of all notched specimens prior to fracture.
Fig. 5. Evolution of the equivalent plastic strain: (a) as a function of the stress
triaxiality, (b) as a function of the Lode angle parameter.



Fig. 6. (a) Schematic of set-up for punch experiments, (b) fractured punch and Hasek specimens; force–displacement curves for punch experiment on (c) a circular disc, (d)
Hasek specimen.
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3.2. Punch experiments

A disc specimen is clamped on a circular die (Fig. 6a) and mono-
tonically loaded up to the point of fracture using a hemispherical
punch. The circular die has an inner radius of R0 = 24.5mm and a
die corner radius of R = 1mm. The clamping pressure is applied
through sixteen (1/2)00-20 screws. For both experiments, a hemi-
spherical punch of radius Rb = 22.2mm loads the specimen at a con-
stant velocity of 3 mm/min. A stack of four oil-lubricated 0.05 mm
thick Teflon films is used to reduce friction between the specimen
and the punch surface. Fig. 6c shows the respective measured
force-displacement curves for two punch experiments. The corre-
sponding fractured specimens are shown in Fig. 6b. A dramatic
drop in force level is observed as a macroscopic crack becomes
visible on the specimen surface. Note that the crack in the speci-
men does not initiate at the specimen center as the visible crack
is located at a distance of about 8 mm from the apex of the
punched specimen.

The corresponding finite element model comprises only one
quarter of the specimen, whereas the clamping and loading system
is modeled using analytical rigid surfaces. The geometry is meshed
with linear, reduced-integration solid elements (C3D8R). The mesh
featured eight elements through the thickness and an element size
of le = 100lm at the specimen center. The punch/sheet contact is
modeled using a sliding contact model with a friction coefficient
of 0.04, while neglecting the effective punch radius increase due
to the Teflon layers. The evolution of the equivalent plastic strain
and the stress state is plotted in Fig. 5 for the integration point of
an element situated near the point of the observed crack. The cor-
responding estimated equivalent plastic strains at failure is 0.53 .
4. Mohr–Coulomb based fracture modeling

In sheet metal forming simulations, the plastic strain just out-
side the neck is often used to characterize failure (e.g., forming lim-
it diagrams). Our goal on the other hand is to predict the onset of
ductile fracture. Depending on the material and stress state, ductile
fracture may occur before or after the necking limit. All simulations
will thus be performed with eight first-order solid elements along
the sheet thickness-direction to be able to approximate the stress
and strain fields before and after necking. At the same time,
Mohr–Coulomb based fracture models will be employed to predict
ductile fracture.

The Mohr–Coulomb model had been proposed by Mohr (1900)
to describe the failure of steels through a failure surface in stress
space. Bai and Wierzbicki (2010) made use of this model as the
starting point for the construction of a stress-state dependent
damage indicator model. The latter formulation involves the
partial transformation from stress to strain space. We thus
differentiate between stress-based Mohr–Coulomb model which
corresponds to its original version and a mixed stress/strain-based
damage indicator version which will be developed below.

4.1. Stress-based Mohr–Coulomb fracture model

The Mohr–Coulomb failure surface is well-known in the form

max
n
ðsþ c1rNÞ ¼ c2 ð10Þ

with s and rN denoting the respective shear and normal stresses
acting on a plane of normal vector n. The coefficients c1 and c2
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are commonly referred to as the friction and cohesion of a material.
As shown in Bigoni and Piccolroaz (2004), it can also be written in
terms of the stress tensor invariants f�r;g; �hg,

�rf ¼
c2ffiffiffiffiffiffiffiffi

1þc2
1

3

q
cos½p6 �h� þ c1ðgþ 1

3 sin½p6 �h�Þ
ð11Þ

with �rf ¼ �rf ½g; �h� denoting the von Mises equivalent stress at failure
as a function of stress state. The corresponding fracture criterion
can then be written in the form �r P �rf .

4.2. Mixed Stress/strain-based Mohr–Coulomb (damage indicator)
fracture model

For the present plasticity model, a one-to-one relationship be-
tween the equivalent plastic strain to fracture, �ef

p, and the von
Mises stress to fracture, �rf , is given by the isotropic hardening
law. Assuming that the envelope defined by (11) lies outside of
the initial yield surface (�rf P k½0�), the equivalent plastic strain
to fracture can be expressed as a function of the stress state by
combining Eqs. (5) and (11),

�ef
p½g; �h� ¼ k�1 c2ffiffiffiffiffiffiffiffi

1þc2
1

3

q
cosðp6 �hÞ þ c1ðgþ 1

3 sinðp6 �hÞÞ

2
64

3
75: ð12Þ

Using �e P �ef
p½g; �h� as fracture criterion is fully-equivalent to

using the stress-based Mohr–Coulomb fracture model (10).
Here, an empirical damage indicator framework (e.g., Fischer

et al., 1995) is used in conjunction with Eq. (12). The onset of frac-
ture is said to occur when a scalar-valued damage indicator func-
tion D of initial value zero reaches unity, D = 1. The evolution
equation for the damage indicator function reads,

dD ¼ w½g; �h�d�ep; ð13Þ

where the stress-state dependent weighting function w½g; �h� is de-
fined through the reciprocal of the fracture strain �ef

p½g; �h�,

w½g; �h� ¼ 1
�ef

p½g; �h�
: ð14Þ
4.3. Model parameter identification

The model parameters are identified based on the results from
three notched tensile experiments and the punch test. As illus-
trated by Fig. 5, these four experiments cover stress triaxialities
ranging from 0.4 to 0.66 which is critically important for sheet me-
tal forming. At the same time, the Lode angle parameter varies
from �1.0 to 0.9.

4.4. Stress-based model calibration

In the case of the stress-based fracture model, the deterministic
parameter identification based on two data points f�rð1Þ;gð1Þ; �hð1Þg
and f�rð2Þ;gð2Þ; �hð2Þg leads to the solution

c1 ¼
signðAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2 � 1

p with A :

¼
�rð1Þfgð1Þ þ 1

3 sinðp6 �hð1ÞÞg � �rð2Þfgð2Þ þ 1
3 sinðp6 �hð2ÞÞg

��rð1Þ cosðp6 �hð1ÞÞ þ �rð2Þ cosðp6 �hð2ÞÞ
; ð15Þ

c2 ¼ �rð1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

1

3

r
cos

p
6

�hð1Þ
h i

þ c1 gð1Þ þ 1
3

sin
p
6

�hð1Þ
h i� �( )

along with the constraint
A2 P 1=3: ð16Þ

This constraint implies that the two parameter Mohr–Coulomb
model cannot be fitted exactly to any two experimental data
points. For instance, for the present material data, condition (16)
is not satisfied when choosing the punch experiment along with
a notched tensile experiment. The Mohr–Coulomb fracture model
can thus only be identified in an approximate manner for the pres-
ent material. We chose all three notched tensile experiments and
the punch experiment for calibration based on the minimization
of the cost function

w½c1; c2� ¼
X4

i�1

ðk�1½�rðiÞ� � �ef
p½gðiÞ; �hðiÞ�Þ

2 ð17Þ

while

ðc1; c2Þ ¼ arg minðw½c1; c2�Þ: ð18Þ

It is important to determine the cost function in terms of the er-
ror in the predicted equivalent plastic strain to fracture. It is more
natural to define an error norm in the stress space, e.g.,

~w½c1; c2� ¼
X4

i�1

ð�rðiÞ � �rf ½gðiÞ; �hðiÞ�Þ2 ð19Þ

However, due to the asymptotic nature of the function k½�ep�, the
minimization problem becomes more accurate from an engineer-
ing point of view when using (17) instead of (19). It is also empha-
sized that the stress-based model calibration is based on the strain
to fracture as determined from hybrid experimental-numerical
analysis. In other words, there is no need to measure the stress
to fracture to determine the parameters of a stress-based fracture
criterion for ductile materials. It is actually important not to use
measured stresses directly as the predictions of a stress-based frac-
ture model depend strongly on the underlying plasticity model.

After applying the above calibration procedure, we obtained a
friction coefficient of c1 = 0.32 and a cohesion of c2 = 415MPa. The
measured and predicted fracture strains are listed in Table 2 for
all calibration experiments. Based on this calibration, the model
overestimates the strain to fracture by 6% for notched tension with
R = 20 mm, while it underestimates the strain to fracture by 3.6% in
the case of the punch experiments. The corresponding error is
smaller than 4.1% for the other two notched tension experiments.

4.5. Mixed Stress/strain-based damage indicator model calibration

The model parameter identification of the mixed stress/strain-
based damage indicator model requires a full inverse calibration
procedure. For given set of parameters (c1, c2), we integrate the
damage increments according to (13) along the computed experi-
mental loading path for each experiment to determine the pre-
dicted strain to fracture as D = 1. The cost function given by (17)
is then employed to specify the optimization problem for c1 and
c2. It is worth noting that a calibration constraint similar to Eq.
(16) also applies implicitly to the mixed stress/strain-based model,
i.e., the 2-parameter model cannot always be fitted exactly to two
experiments. For the low carbon steel, the numerical optimization
using a derivative-free Nelder-Mead algorithm (Matlab) yields the
parameters c1 = 0.31 and c2 = 405 MPa. The comparison of the mea-
sured and predicted equivalent plastic strains to fracture reveals
errors of up to 11.5% which is about twice as high as for the
stress-based model. In other words, the ability of the Mohr–
Coulomb model to be fitted to the present experimental data is
reduced through the introduction of the damage accumulation
framework. However, it is worth noting that the obtained parame-
ters are close to those obtained for the stress-based model which
indicates that the damage accumulation framework seems to



Table 2
Measured and predicted strain to fracture of all calibration tests.

Notch Punch

R = 20 mm R = 10 mm R = 6.67 mm

�ef
p;measured (–) 0.388 0.358 0.357 0.527

�ef
p;stress-based (–) 0.413 0.373 0.353 0.509

Err (%) 6.0 4.1 �1.3 �3.6

�ef
p;mixed-based (–) 0.429 0.383 0.357 0.473

Err (%) 9.6 6.6 0.1 �11.5
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preserve some of (instead of completely overwriting) the original
physical meaning of the original Mohr–Coulomb model for the
present calibration experiments. Note that the stress-based and
mixed stress/strain-based models are only identical when the
stress triaxiality and Lode angle parameters remain constant
throughout an experiment.

4.6. Visualization of the calculated fracture functions

The calibration of the stress-based and mixed stress/strain-
based fracture models yielded two different sets of (c1, c2). How-
ever, in the special case of the radial loading, the stress triaxiality
and the Lode angle parameter remain constant, and the fracture
strain predicted by both models is given by Eq. (12). For visualiza-
tion purposes, we limit our attention to plane stress states where
the equivalent plastic strain to fracture can be represented as a
function of the stress triaxiality only due to the relationship

�h ¼ 1� 2
p

arccos �27
2

g g2 � 1
3

� �� �
: ð20Þ

The blue curve in Fig. 7 depicts the envelope for the stress-
based model, while the corresponding curve for the mixed stress/
strain-based model is depicted in red. The comparison of these
two curves reveals that the predicted strain to fracture for propor-
tional loading under plane stress conditions is by about D�ep ¼ 0:02
lower for the strain-based model. The shape of the fracture enve-
lopes shows that the strain to fracture is the same for uniaxial ten-
sion and equi-bixial tension along with a minimum for transverse
plane strain which is a characteristic feature of the combination of
a von Mises yield surface with isotropic hardening and the
Mohr–Coulomb fracture model.
Fig. 7. Comparison of the fracture envelopes for proportional plane stress loading
for the stress-based model (red) and mixed stress/strain-based damage indicator
model (blue). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
5. Model validation and discussion

5.1. Validation experiments

Two validation experiments are performed. The first is a punch
experiment on a Hasek specimen. The disk-shaped Hasek specimen
(see deformed specimen in Fig. 6b) features two circular cut-outs
of 16 mm radius along with a minimum gage section width of
17 mm. The specimen is extracted such that its tensile axis is
aligned with the transverse sheet direction. The same experimental
set-up is employed for the Hasek tests as for the above punching
experiment (including the stack of four oil-lubricated Teflon lay-
ers). The measured force-displacement curve for a punch velocity
of 3 mm/min is shown in Fig. 6d. Note that a significantly smaller
displacement to fracture is achieved than in the punch experiment.

The second validation experiment is the stamping of an anti-
clastic structure with a set of two male dies. This particular stamp-
ing experiment is chosen because it features severely strained
zones under equi-biaxial tension and transverse plane strain ten-
sion. Furthermore, it can be performed without using a blank
holder. The bottom die features a square array of 25 pins, while
the top die comprises only 16 pins. The pins have a diameter of
9.2 mm while a pin spacing of D = 13.5mm is used. A flat specimen
of the size 70x70 mm is used in this experiment. A thin layer of
grease has been applied to the sheet and the dies to reduce friction.
Throughout the experiment, the top die moves downward at a con-
stant velocity of 2 mm/min. A 250kN load cell is used to record the
total vertical force along with the position of the cross-head. Fig. 8a
shows the recorded force-displacement curve for the stamping
experiment. The experiment on a second specimen has been inter-
rupted at a cross-head displacement of 5.9 mm for optical inspec-
tion. While two small cracks are visible at a displacement of
6.0 mm, no cracks are visible at a magnification of 10x on a stereo
microscope for a displacement of 5.9 mm. The cracks are located in
the unsupported region between two neighboring upwardly and
downwardly pointing pins (Fig. 9).
5.2. Modeling of the validation experiments

The numerical model of the Hasek test is built in close analogy
with the model for the punch experiments (about the same ele-
ment size and also eight solid elements along the thickness direc-
tion; friction coefficient of 0.04). The comparison of the measured
and computed force-displacement curves (Fig. 6d) indicates very
good agreement. The computed loading path in terms of equivalent
plastic strain versus Lode angle and stress-triaxiality is shown in
Fig. 5. Observe that the loading path for the Hasek test covers a
similar range of stress states as the notched tensile experiments.
The hybrid-experimental analysis reveals an equivalent plastic
strain to fracture of 0.36. The mixed stress/strain-based model pre-
dicts a strain to fracture of 0.38 while the stress-based model
yields an estimate of 0.37.

As far as the stamping validation experiment is concerned, only
one quarter of the sheet is modeled using symmetry boundary con-
ditions. In the computational model, each the top and bottom die
comprise four punches which are modeled as analytical rigid sur-
faces with a friction coefficient of 0.06. A solid element mesh is em-
ployed representing the sheet material with eight elements along
the thickness direction. The mesh is refined near the center of
the specimen where the deformation is most severe. A total of
180,000 eight-node first-order solid elements are employed. More
than 100,000 explicit time steps are performed to perform the
stamping simulation up to the point of onset of fracture. Fig. 9
compares the predicted and measured force-displacement curves
(for a machine stiffness of 200kN/mm). Observe the much lower



Fig. 8. Stamping experiment: (a) force-displacement curve (primary axis) and
evolution of the equivalent plastic strain (secondary axis); side view of the
experimental set-up showing (b) the initial configuration, and (c) an intermediate
configuration.

Fig. 9. Sheet specimen after stamping all the way to fracture: (a) top view, (b)
close-up of the crack observed at location #2.

Fig. 10. Comparison of the model predictions with the experimentally measured
force–displacement curve for stamping; the labels with arrows indicate the instant
of onset of fracture as predicted by the stress- and mixed stress/strain-based
fracture models.
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apparent initial slope of the experimental curve. This difference is
attributed to small geometric imperfections in the experimental
set-up which cause the non-uniform initial loading of the speci-
men. This effect is significant in the elastic range, but negligible
thereafter (see Fig. 10).

Both the mixed stress/strain-based and stress-based models
underestimate the displacement to fracture. According to the
mixed stress/strain-based model, fracture is expected at a displace-
ment of 5.4 mm at a first location and at a displacement of 5.8 mm
at a second location. These two locations are highlighted in Fig. 11.
They coincide with the locations of the cracks observed in the
experiment (Fig. 9). Note that the cracks form on the tensile side
of a region of two positive curvatures. The stress-based model
predicts fracture at the same locations, but much earlier. The
predicted displacements to fracture for the stress-based model
are 4.9 mm and 5.3 mm for locations 1 and 2, respectively.

The loading paths to fracture for location #1 are shown in Figs
5a and b. It is highly non-linear and covers a remarkably wide
range of stress states. As compared to the loading paths for all
other experiments, an increment in displacement causes only a
small increase in the equivalent plastic strain (Fig 8b) towards
the end of the experiment, but a substantial change in stress
state. The stamping experiment therefore provides a good resolu-
tion as far as the identification of the strain to fracture is con-
cerned. The substantial changes in stress state are due to the
fact the specimen geometry changes significantly throughout
loading. At the same time, the modest increase in plastic strain
(with displacement) indicates that the location of fracture initia-
tion is not located inside a neck that accommodates all plastic
deformation. It is also worth noting that the use of fracture mod-
els that express the strain to fracture as a smooth continuous
function of the stress triaxiality only would probably not be able
to predict the fracture with reasonable accuracy. This can be seen
from Fig. 5a. Suppose a fracture envelope that connects the end



Fig. 11. Deformed FE mesh for stamping with contours of the damage indicator, (a) 3D view, and (b) side view of the quarter model, (c) detail of location 1 with the equivalent
plastic strain as contour.

Fig. 12. Illustration of two distinct loading paths in stress space. The black
envelopes correspond to different levels of equivalent plastic strain; the blue curve
highlights the fracture envelope in stress space for plane stress conditions.
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points of the loading paths for all punch experiments (shown as
thin dashed line in Fig. 5a). The loading path for stamping would
intersect this hypothetical envelope at an early stage of loading. It
thus appears to be important to incorporate the effect of the Lode
angle in the fracture model.

5.3. Comment on the effect of the loading path

The results of our hybrid experimental-numerical analysis sug-
gest that the Mohr–Coulomb model provides more accurate pre-
dictions when embedded in the damage indicator framework as
compared to the direct use of its original stress-based form. Be-
sides this apparent advantage, the mixed stress/strain-based dam-
age indicator model formulation also appears to be more sound
from a conceptual point of view.

For illustration, we limit our attention to plane stress condi-
tions and plot the stress-based fracture criterion in stress-space
(Fig. 12). We also limit our discussions to stress states between
uniaxial tension and equi-biaxial tension. The initial yield surface
is depicted as a solid black curve with the label �ep ¼ 0. In
addition, dashed black lines represent the yield envelopes for
�ep ¼ 0:34 (fracture strain for transverse plane strain tension),
an intermediate strain of �ep ¼ 0:45 and the fracture strain for
equi-biaxial tension (�ep ¼ 0:55). The calibrated Mohr–Coulomb
fracture envelope is shown as a solid blue line. Note that the
solution of Eq. (10) depends on the minimum and maximum
principal stress only. For plane stress tension, the smallest prin-
cipal stress is always zero and thus the Mohr–Coulomb model
reduces to a maximum principal stress criterion, i.e., the blue
envelope drawn in Fig. 12 corresponds to two perpendicular
straight lines.

Now consider two distinct loading paths:

(1) The first is a monotonic radial loading path in stress space
(green) which involves elastic loading (solid green line) fol-
lowed by elasto-plastic loading (dashed green line) all the
way to fracture at an equivalent plastic strain of �ep ¼ 0:34
(point A).
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(2) The second loading path (red) involves elastic and elasto-plas-
tic monotonic radial loading up to an equivalent plastic strain
of �ep ¼ 0:45 (point B). Subsequently, the direction of loading
is changed and a linear loading path is assumed up to point A.

Observe that the second portion of loading path #2 lies entirely
in the elastic domain defined by the yield envelope for �ep ¼ 0:45.
According to the stress-based fracture model, fracture would occur
at point A for both loading paths. This is due to the full path inde-
pendency of the stress-based fracture model in stress space. How-
ever, the model predictions are path dependent in the space
f�ep;g; �hg. Note that the equivalent plastic strain to fracture after
loading path #2 is �ef ð#2Þ

p ¼ 0:45, while a strain to fracture of only
�ef ð#1Þ

p ¼ 0:34 is reached after loading path #1.
A mixed stress/strain-based damage indicator model using the

same set of parameters c1 and c2 as the stress-based model would also
predict fracture at point A after loading path #1. However, the material
would still be intact according to the damage accumulation rule after
loading path #2. There is no damage accumulation possible if the load-
ing path is purely elastic. Thus, the value of the damage indicator
would be the same at points A and B (DA = DB < 1). Thus, the material
could still be strained further plastically at point B after loading path
#2. In other words, the strain to fracture under transverse plane strain
conditions after loading path #2 would not only exceed �ef ð#1Þ

p ¼ 0:34,
but also exceed the strain of �ef ð#2Þ

p ¼ 0:45 which had been predicted by
the stress-based model. At this point, we cannot fully assess the valid-
ity of either model assumption due to the lack of comprehensive
experimental data. However, the possible prediction of fracture in
the elastic domain is an undesirable (but obvious) feature of the
stress-based model which is traditionally used for brittle materials.

6. Conclusions

In the present work, attention is limited to tension-dominated
stress states in sheet metal forming between uniaxial tension
and equi-biaxial tension. A hybrid experimental-numerical pro-
gram is carried out on thin low carbon steel sheets involving
notched tension tests, a punch experiment for equi-biaxial tension,
a Hasek test and a stamping experiment. The deformation behavior
of the low carbon steel is modeled using a non-associated plasticity
with a von Mises yield surface and a planar orthotropic Hill’48 flow
rule. Two different implementations of the two-parameter Mohr–
Coulomb failure model are employed. The stress-based version
corresponds to the original Mohr–Coulomb model which describes
a failure surface in stress space. The mixed stress/strain-based ver-
sion corresponds to a damage indicator model where the stress-
state dependent weighting function is derived from the transfor-
mation of the Mohr–Coulomb model into the space of stress triax-
iality, Lode angle parameter and equivalent plastic strain. Both
models could be calibrated with good accuracy based on the re-
sults from the punch and three notched tension tests. This is attrib-
uted to the fact that the Mohr–Coulomb fracture model captures
the decrease in ductility for transverse plane strain tension with
respect to uniaxial tension and equi-biaxial tension when it is used
in conjunction with the von Mises yield surface. The subsequent
application of the calibrated models to predict the onset of fracture
during the stamping of an anticlastic structure reveals a much
higher prediction accuracy of the mixed stress/strain-based ver-
sion as compared to the stress-based formulation.
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